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Abstract. For a smooth complex projective variety X, let Np and F p

denote respectively the coniveau filtration on Hi(X,Q) and the Hodge
filtration on Hi(X,C) . Hodge proved that NpHi(X,Q) ⊂ F pHi(X,C)∩
Hi(X,Q) , and conjectured that equality holds. Grothendieck exhib-
ited a threefold X for which the dimensions of N1H3(X,Q) and
F 1H3(X,C) ∩ H3(X,Q) differ by one. Recently the point of view of
Hodge was somewhat refined (Portelli, 2014), and we aimed to use
this refinement to revisit Grothendieck’s example. We explicitly com-
pute the classes in this second space which are not in N1H3(X,Q) .
We also get a complete clarification that the representation of the ho-
mology customarily used for complex tori does not allow to apply the
methods of (Portelli, 2014) to give a different proof of N1H3(X,Q) (
F 1H3(X,C) ∩H3(X,Q) .
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1. Introduction

First of all, let us quickly recall the Generalized Hodge Conjecture.

Let X be a projective n-dimensional variety over C , smooth and connected.

To understand the algebraic geometry of X it is certainly of great interest the
knowledge of the cohomology classes ξ ∈ Hi(X,Q) for which there exists an
algebraic subvariety Y ⊂ X such that the image of ξ in the map Hi(X,Q) →
Hi(X − Y,Q) induced by the inclusion X − Y ⊂ X, is zero. We will say that
ξ is supported by Y, or that Y is a support for ξ .

For any fixed integer p ≥ 0 we can then consider the subspace of Hi(X,Q)

NpHi(X,Q) :=
∑

Y ⊂X Zariski closed
codimY ≥ p

Ker
(
Hi(X,Q)→ Hi(X − Y,Q)

)
.
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When p varies the NpHi(X,Q) form a decreasing filtration of Hi(X,Q) , the
so called coniveau filtration. Working with homology instead of cohomology,
this filtration was introduced by Hodge ( [3, p. 213] ). He always deal with
single classes instead of spaces 1.

In particular, Hodge gave the following necessary condition for a class ξ ∈
Hi(X,Q) to be supported by an algebraic subvariety Y ⊂ X, of codimension
≥ p ( for details and the proof, see § 2, Proposition 2.1 ). Assume that a singular
(2n − i)-cycle Γ is homologous to a (2n − i)-cycle, contained into a subvari-
ety Y as above. Let α be any closed (2n − i)-form on X, which contains in
any of its local expressions at least n − p + 1 dz’s. Then

∫
Γ
α = 0 ( under

suitable smoothness conditions on Γ ). The translation between homology and
cohomology is made by means of the Poincaré Duality, and it is implicit in the
above statement that [Γ] and ξ are Poincaré duals each other.

As we will see, in modern terms this amounts to say that NpHi(X,Q) is
contained into F pHi(X,C) , where F pHi(X,C) = ⊕a≥pH a , i−a(X) is a space
of the Hodge filtration on Hi(X,C) . Therefore we can conclude

NpHi(X,Q) ⊂ F pHi(X,C) ∩Hi(X,Q) . (1)

After this, Hodge raised a “ problem ” ( [3, p. 214]; see also [4], where these
contents of [3] have been presented to a large audience ) of whether the above
inclusion is, actually, an equality. Over the years this problem has become
known as the Generalized Hodge Conjecture ( from now on GHC, for short ). If
i = 2p in (1), then the conjectured equality is the ordinary Hodge Conjecture.

Twenty eight years after [3], Grothendieck exhibited in [2] a particular
abelian threefold X for which (1) is a strict inclusion, thus answering Hodge’ s
question in the negative.

However, Grothendieck also showed that it is possible to correct the GHC
simply by asking whetherNpHi(X,Q) ( instead of being equal to F pHi(X,C)∩
Hi(X,Q) ) is the maximal rational sub-Hodge structure of Hi(X,Q) which is
contained into F pHi(X,C) . Of course, the abelian threefold X satisfies this
amended GHC.

Let us remark here that, although Grothendieck also gives a variant of his
amended GHC valid for a single class 2, he puts the major emphasis in a direct
comparison between the spaces at the left and right hand sides of (1).

1However, it seems to us that his explicit concern to allow Y reducible ( loc. cit. ) is an
indication that he was aware of the fact that these classes could be added together to obtain
still classes of the same type.

2He wrote in [2, p. 300], “ ... , an element of Hi(X,C) should belong to NpHi(X,Q)
( he certainly meant here : to the complexification of this space, N.d.A. ) if and only if all its
bihomogeneous components ( i.e. the components with respect to the Hodge decomposition
of Hi(X,C) , N.d.A. ) belong to the C-vector space spanned by the right hand side of (1). ”
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The ordinary Hodge Conjecture does not require to be corrected.

Finally, to put the present paper in the right perspective we have to spend
a few words about the content of [6], where we assumed a point of view which
is close to that of Hodge. The starting point of that paper was the remark
that, if we assume from the beginning that Γ is contained into the subvariety
Y, then

∫
Γ
α = 0 holds true for any r-form α on X, not necessarily closed,

which contains in its local expressions at least n− p+ 1 dz’s.

It is not clear to us whether Hodge was aware or not of this fact. On the one
hand, he considered ( limits of ) integrals of a given form on suitably “ small ”
sets, see e.g. [3, pp. 113–115], to express punctual properties of the form.
On the other hand, he was looking for a handy criterion to check whether a
homology class on X is algebraic or not. And the model for such a criterion
was, undoubtely, Lefschetz theorem on (1, 1)-classes.

However, starting from the above remark, in [6] we proved that, if Γ is a
suitable r-cycle such that

∫
Γ
α = 0 for every r-form containing at least n−p+1

dz’s, then Γ is contained in an algebraic subvariety Y of X, of codimension ≥ p .
To prove this, the main ingredients in the proof are the following. First of

all, our complex projective variety X can be thought as a smooth, compact
real algebraic variety, of real dimension 2n . It is rather well known that these
varieties can be triangulated into simplexes which are real-analytic and semi-
algebraic. Moreover, it is necessary to use only certain peculiar systems of local
holomorphic coordinates, of essentially (complex) algebraic-geometric nature.

All this may give rise to the feeling that, perhaps, it is rather difficult to
apply the results of [6] to deal with some concrete case of the GHC.

This paper is a first attempt to make such an application. More precisely,
we analized if it is possible to check that the GHC fails for the Grothendieck’ s
example, by an argument exclusively based on homology, in the spirit of [6].
It turns out that the customary representation of the homology classes in the
case of complex tori, which we used throughout in the paper, is completely
inadequate for this purpose. In a certain sense, this confirms the above feeling.

The content of the paper is as follows.
In the first section we examine in detail the two main steps which lead to the

Generalized Hodge Conjecture as amended by Grothendieck, namely Hodge’s
necessary condition for a cohomology class to belong to NpHi(X,Q) and the
translation from homology to cohomology of the whole stuff. Grothendieck’s
example X is briefly introduced at the end of the section. In the next three
sections we undertake a thorough analysis of this example. More precisely,
in § 2, the homology and cohomology of X are quickly recalled for the reader
convenience, ant to fix notations. In § 3, we determine a basis for the vector



240 DARIO PORTELLI

space H2(X,Q) ∩ H 1,1(X) over Q . Moreover, for every element of such a
basis, we determine a smooth, integral surface in X representing such class.
In this way we obtain the surfaces S1, S2, S3, T1, T2, T3 of X. The contribution
of all these surface to N1H 3(X,Q) is computed in § 4. In § 5 we compute
F 1H 3(X,C) ∩H 3(X,Q) , thus completing the examination of Grothendieck’s
counterexample to the GHC. In the last section we compare the Poincaré duals
of two classes inside F 1H3(X,C) ∩ H3(X,Q) , only one of which belongs to
N1H3(X,Q) , while the other does not. The representation of the homology
classes used in the paper reveals to be completely inefficient to detect the
difference between the two.

2. The Generalized Hodge Conjecture, from Hodge to
Grothendieck

From now on we will set r = 2n− i .

Let us start with Hodge’s result, which is the following :

Proposition 2.1. Let Y ⊂ X be an algebraic subvariety, of codimension ≥ p .
Consider a class [Γ] ∈ Hr(Y,Q) . We can assume without loss of generality that
the singular r-cycle Γ is a linear combination of C∞ singular r-simplexes. Let
α be any closed r-form on X such that every term of the expression of α in
any system of local holomorphic coordinates contains at least n − p + 1 dz’s.
Then ∫

Γ

α = 0 . (2)

Proof. First of all, notice that the image of [Γ] in the canonical map
Hr(Y,Q) → Hr(X,Q) induced by the inclusion Y ⊂ X can be represented
by the same cycle Γ .

Notice moreover that the form which is actually integrated here is the pull-
back of α to the various singular simplexes of Γ. An intermediate step in this
pull-back procedure is the pull-back of α to Ysm . But α contains too many dz’s
to be supported by Ysm , hence

α|Ysm
≡ 0

and (2) is proved.

A possible doubt here is that some simplex S of Γ can be contained, actually,
into the singular locus of Y. But the codimension of Sing(Y ) is ≥ p+ 1 , hence
we can use the above argument with Sing(Y ) at the place of Y, to conclude
that

∫
S
α = 0 .
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Remark 2.2. The argument given above to prove (2) does not use the assump-
tion that α is a closed form. Only the dimension of Y and the type of the form
α are relevant.

To deal with the Generalized Hodge Conjecture, Grothendieck had the idea
to translate everything from homology to cohomology. The device for this is
the Poincaré duality isomorphism ( recall that i = 2n− r )

PD : Hr(X,C)→ Hi(X,C) ,

which works as follows. Fix [Γ] ∈ Hr(X,C) , and let j : Γ → X denote the
inclusion ( cum grano salis, because Γ is a cycle ). Then we have a well defined
C-linear map

λ[Γ] : H r(X,C)→ C given by [ω] 7→
∫

Γ

j∗ω .

Therefore, thanks to the canonical perfect pairing

Ψ : H r(X,C)×Hi(X,C)→ C , ([ω], [ω ′]) 7→
∫
X

ω ∧ ω ′ , (3)

there is one and only one [ξ] ∈ Hi(X,C) such that λ[Γ] = Ψ(−, [ξ]) . In more
down-to-earth terms ∫

Γ

j∗ω =

∫
X

ω ∧ ξ (4)

for any closed r-form ω .
The class [ξ] ∈ H i(X,C) is called the Poincaré dual of [Γ] ∈ Hr(X,Q) .

The attentive reader had certainly noticed that, to introduce Poincaré du-
ality as above, one represents cohomology classes à la de Rham, i.e. by mean
of closed forms. This forces us to use cohomology with complex coefficients.
How to deal with rational cohomology classes in this set-up ?

Recall that, if η is a closed differential s-form on X, then a period of η is
any complex number of the form ∫

Γ

η ,

where Γ is a s-cycle with integral coefficients. Then, η represents a class in
Hs(X,Q) (⊂ Hs(X,C) ) if and only if all its periods are in Q ( [8, pp. 34–35] ).

With these last preparations, we have at hand everything we need to trans-
late in cohomological terms Hodge’s necessary condition.
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Given a proper map f : Z → X, where Z is a smooth complex projective
variety, equidimensional of dimension t ≤ n− p , Poincaré duality allows us to
define the Gysin map f∗ : H2t−r(Z,Q)→ Hi(X,Q) as the composition

H2t−r(Z,Q)
PD // Hr(Z,Q)

f∗=can. // Hr(X,Q)
PD // Hi(X,Q) .

For this Gysin map we have the exact sequence ( [1, Coroll. (8.2.8)] )

H2t−r(Z,Q)
f∗ // Hi(X,Q) // Hi(X − f(Z),Q) .

Let us remark that Y := f(Z) is Zariski closed inside X because f is proper.
Moreover, the map f can be thought of as the composition of a resolution of
the singularities Z → f(Z) of f(Z) =: Y with the inclusion Y ⊂ X. All this
shows that the coniveau filtration on Hi(X,Q) is also given by

NpHi(X,Q) =
∑

f as above

Im(f∗) .

Finally, a simple weight argument shows that ( for more details the reader is
referred to [6] )

Im
(
f∗ : H2t−r(Z,Q)→ Hi(X,Q)

)
= PD

(
Im
(
Hr(Y,Q)→ Hr(X,Q)

))
. (5)

Of course, Hodge’s was concerned to characterize the classes in Hr(X,Q) which
were in the image of some map Hr(Y,Q)→ Hr(X,Q) .

The assumption on α in the statement of Proposition 2.1 can be simply
rephrased saying that [α] ∈ Fn−p+1Hr(X,C) . The relation (2) then becomes,
thanks to (4) , ∫

X

α ∧ ξ = 0

for every [α] ∈ Fn−p+1Hr(X,C) , i.e.

PD([Γ]) = [ξ] ∈
(
Fn−p+1Hr(X,C)

)⊥
,

where the orthogonal subspace is taken with respect to the canonical perfect
pairing (3). But it is easily computed that(

Fn−p+1Hr(X,C)
)⊥

= F pHi(X,C) . (6)

In fact, if [ω] ∈ H a , i−a(X) with a ≥ p , then n− p+ 1 + a > n and therefore
we have trivially [ω] ∧ Fn−p+1Hr(X,C) = 0 . On the other hand, if [ω] ∈
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H a , i−a(X) with a < p , then ∗[ω] ∈ Fn−p+1Hr(X,C) and it is well known
that ∫

X

[ω] ∧ ∗[ω] > 0 .

Therefore the complete translation into cohomology of Proposition 2.1 amounts
to the inclusion (1).

An advantage of the coomological translation is that the Gysin maps f∗
are maps of rational Hodge structures ( [7, 7.3.2] ). Hence, for any proper map
f : Z → X, where Z is a smooth complex projective variety, equidimensional
of dimension t ≤ n− p , we have that Im(f∗) is a rational sub-Hodge structure
of Hi(X,Q) . Then, by general facts on the category of ( pure ) rational Hodge
structures, the space NpHi(X,Q) is also a rational sub-Hodge structure of
Hi(X,Q) .

But then, from N1H3(X,Q) ⊂ F 1H3(X,C) it follows that the Hodge
decomposition of N1H3(X,Q) ⊗Q C has necessarily the form

N1H3(X,Q) ⊗Q C = U 1 , 2 ⊕ U 2 , 1 ,

for suitable complex subspaces U 1 , 2 and U 2 , 1 of H3(X,C) . Finally, since we
have U 1 , 2 = U 2 , 1, we conclude that the dimension of N1H3(X,Q) is even.

On the other hand, in Grothendieck’s example the right hand side of (1) is
odd-dimensional. The example is constructed as follows.

Let E be an elliptic curve over the field of complex numbers. The projective
manifolds we are interested in are the abelian threefolds

X := E × E × E = E 3 .

More precisely, X can be defined as follows. Let e1, e2, e3 denote the stan-
dard basis of C3, and let z1, z2, z3 denote the corresponding complex coordi-
nates. Fix a complex number τ = u + iv , where u, v ∈ R , with v > 0 . Then
e1, e2, e3, τ e1, τ e2, τ e3 is an ( ordered ) basis of a lattice Λ ' Z 6 contained into
C 3, and we set

X := C 3/Λ .

So everything depends on the choice of τ . To avoid some minor difficulties, we
will assume from now on that [Q(τ) : Q] ≥ 3 . Of course, we do not exclude
that τ may be a transcendental number, but if τ is algebraic, then its degree
is not 2 .

3. The topology of X

The homology and cohomology of complex tori is a completely standard topic.
Hence this section is just for the reader convenience, and to fix the notations.



244 DARIO PORTELLI

We will denote by u1, u2, u3, u4, u5, u6 the real coordinates in C3 with re-
spect to the basis of Λ fixed above, namely

zh = uh + τ uh+3 , h = 1, 2, 3 . (7)

Concerning the topology of X, let us consider integral homology first.
Let I = [0, 1] ⊂ R , and define maps γi : I → C3 by setting

γi(t) = t ei for i = 1, 2, 3 and γi(t) = t τ ei−3 for i = 4, 5, 6 .

If we compose these γi with the canonical map π : C3 → X we get six singular
1-cycles of X, whose classes are a basis for the free abelian group H1(X,Z) .
So inside X there are six copies of S1, the images of the π ◦ γi ; we will denote
them by C1, . . . , C6 . It is well known that a basis for Hr(X,Z) is then given
by the classes of all the r-cycles

Ci
1
× Ci

2
× . . .× Cir where 1 ≤ i1 < i2 < . . . < ir ≤ 6 . (8)

Now we turn to the cohomology with complex coefficients of X.
A basis for Hr(X,C) is given by the classes of the closed r-forms

d
H

= du
h1h2...hr

= du
h1
∧ du

h2
∧ . . . ∧ du

hr
, (9)

where H = (h1h2 . . . hr ) is a multi-index, and 1 ≤ h1 < h2 < . . . < hr ≤ 6 . A
straightforward computation then shows that∫

C
i1
×C

i2
×...×Cir

duh1
∧ duh2

∧ . . . ∧ duhr
= δh1

i1
δh2
i2
. . . δhr

ir
, (10)

where the δ’ s are Kronecker’ s. As remarked in the previous section, then the
classes of the forms (9) are also a basis for Hr(X,Q) over Q .

Example 3.1. For future use, let us show how goes the computation (10), at
least in a particular case, for r = 3 . Parametrize C2×C4×C5 by first defining

ϕ : [0, 1]3 → C3 ϕ : (t1, t2, t3) 7→ t1 e2 + t2 τ e1 + t3 τ e2

and then composing with the canonical map π : C3 → X. Namely we have

u1 = 0 u2 = t1 u3 = 0 u4 = t2 u5 = t3 u6 = 0 .

Actually, we can consider ϕ defined in an open neighborhood of [0, 1]3 inside
R3, and therefore

ϕ∗
(
du2 ∧ du4 ∧ du5

)
= dt1 ∧ dt2 ∧ dt3 ,

which yields the result.
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We turn now to the Hodge decomposition of the spaces Hr(X,C) , and to
their relations with Hr(X,Q) .

For our purposes we have to use also the basis dz1 , . . . , dz̄ 3 of H1(X,C) .
Because of (7), the simple relations between the dzh , dz̄ k and the duj are

dzh = duh + τ duh+3 dz̄h = duh + τ̄ duh+3 (11)

and

duh =
(

1
2 + i u

2 v

)
dzh +

(
1
2 − i

u
2 v

)
dz̄h ,

duh+3 = − i
2 v dzh + i

2 v dz̄h

(12)

for any h = 1, 2, 3 .

Finally, we can compute the various classes PD( [Ci × Cj × Ck] ) with
respect to the basis (9) by means of formula (4). To be precise, assume
that {i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6} , that 1 ≤ i < j < k ≤ 6 and that
1 ≤ l < m < n ≤ 6 . Moreover, denote by σ the permutation(

1 2 3 4 5 6
i j k l m n

)
.

Then it is easily checked that

PD( [Ci × Cj × Ck] ) = (−1)sign(σ)+1 du
lmn

. (13)

4. Divisors on X

To test Hodge’ s and Grothendieck’ s guesses on X we have to produce elements
of N1H3(X,Q) . This requires a rather detailed knowledge of the surfaces on
X.

Proposition 4.1. A basis of the Q-module H2(X,Q) ∩ H 1,1(X) is given by
the classes

i

2 v
dzh ∧ dz̄h = duh ∧ duh+3 , h = 1, 2, 3 (14)

and

i

2 v

(
dzh∧dz̄k +dzk ∧dz̄h

)
= duh∧duk+3 +duk ∧duh+3 , h = 1, 2, 3 .

(15)
Hence

dimQ

(
H2(X,Q) ∩H 1,1(X)

)
= 6 .
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Proof. Consider the closed 2-form

F =
∑

1≤h,k≤3

ahk dzh ∧ dz̄k =
∑

1≤s<t≤6

bst dus ∧ dut , (16)

where the ahk and bst are all in C . By (10), we have that [F ] ∈ H2(X,Q) if
and only if all the bst are in Q . Murasaki’ s idea in [5] is to write

F = F1 + F2 + F3 + F12 + F13 + F23 , (17)

where, for every h = 1, 2, 3 ,

Fh := ahh dzh ∧ dz̄h

and for every 1 ≤ h < k ≤ 3 ,

Fhk := ahk dzh ∧ dz̄k + akh dzk ∧ dz̄h .

Lemma 4.2. F represents a rational cohomology class if and only if all the Fh
and the Fhk represent rational cohomology classes.

Proof. One direction is obvious, so assume that F represents a rational coho-
mology class. From (11) we get the relations

Fh = − 2iv ahh duh ∧ duh+3

and (18)

Fhk = ( ahk − akh ) duh ∧ duk + ( ahk τ̄ − akh τ ) duh ∧ duk+3 +

+ ( akh τ̄ − ahk τ ) duk ∧ duh+3 + ( ahk − akh ) τ τ̄ duh+3 ∧ duk+3 .

This shows that each of the six terms in (17) involves different elements of the
basis dui ∧ duj of H2(X,C) , hence the lemma is completely proved.

Now, the first equation of (18) yields by (16) that

− 2iv ahh = bh,h+3 .

Therefore bh,h+3 ∈ Q if and only if

ahh =
i

2 v
r where r ∈ Q .

In other words, all the classes (14) are in H2(X,Q) ∩H 1,1(X) , and they are
independent over Q .
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Concerning the class Fhk , for any fixed 1 ≤ h < k ≤ 3 , the second relation
in (18) implies that all the following numbers are rational :

ahk − akh , ( ahk − akh ) τ τ̄ , ahk τ̄ − akh τ , akh τ̄ − ahk τ .

From this we get, in particular

( ahk − akh ) ( τ + τ̄ ) ∈ Q .

Therefore, if ahk−akh 6= 0 , then necessarily τ is an algebraic number over Q ,
of degree [Q(τ) : Q] ≤ 2 . We ruled out this possibility at the end of § 2.

Hence if F is rational, then necessarily ahk = akh = a and

Fhk = a ( τ̄ − τ )
(
duh ∧ duk+3 + duk ∧ duh+3

)
=

= − 2 i a v
(
duh ∧ duk+3 + duk ∧ duh+3

)
.

We get in this way the classes (15) of H2(X,Q)∩H 1,1(X) , which are linearly
independent over Q , and are also independent of the classes (14).

Let us consider the divisors now, i.e. the surfaces on X.
First of all, the abelian surface E × E can be embedded in X in a trivial

way by setting, for an arbitrary P ∈ E :

S3 := E × E × P .

The family {E × E × P }P∈E is a fibration of X. Moreover, if P,Q ∈ E,
then E × E × P and E × E × Q are algebraically equivalent, hence they are
homologically equivalent.

To determine the cohomology class of S3 , we remark that as a singular
4-cycle inside X we have S3 = C1×C2×C4×C5 . Then, for any closed 4-form

α =
∑

#I=4

b
I
du

I
, b

I
∈ Q for any I ,

the relation (10) implies∫
S3

α =

∫
C1×C2×C4×C5

α = b(1,2,4,5) .

Therefore, (4) will be satisfied for every form α if we take

ω3 := du3 ∧ du6 =
i

2 v
dz3 ∧ dz̄3 . (19)
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In other words

PD( [S3] ) =
i

2 v
dz3 ∧ dz̄3 . (20)

On X we have also two other obvious families of surfaces, given respectively by

S1 := P × E × E , S2 := E × P × E .

The corresponding cohomology classes, computed as above, are

PD( [S1] ) = ω1 :=
i

2 v
dz1 ∧ dz̄1 , PD( [S2] ) = ω2 :=

i

2 v
dz2 ∧ dz̄2 .

To produce divisors not equivalent to the Si’ s, we have to embed E × E
inside X by using the diagonal map ∆ : E → E × E like in

f : E × E �
� ∆×idE // E × E × E . (21)

We will denote by T3 the image of E × E in the proper map f. Two other
surfaces T1 and T2 can be defined inside X as the images of the ( proper ) map

E × E �
� idE×∆ // E × E × E ,

and similarly for T2 .

We will determine now the cohomology class of the divisor T3 .
To compute the pull-back of forms it is better to describe the map f

in (21) as follows. If ε1, ε2 is the standard basis of C 2, we have the real basis
ε1, ε2, τ ε1, τ ε2 of this space. It generates over the integers a lattice L ⊂ C 2,
and of course E × E = C 2/L . Moreover, let v1, v2, v3, v4 denote real coordi-
nates in C 2 with respect to ε1, ε2, τ ε1, τ ε2 . Then the map f is induced by the
map C 2 → C 3 given in real coordinates by

u1 = v1 , u2 = v1 , u3 = v2 , u4 = v3 , u5 = v3 , u6 = v4 . (22)

First consequences of these relations are

f∗ ( du1 ∧ du2 ) = 0 , f∗ ( du4 ∧ du5 ) = 0 .

Hence, given any rational closed 4-form α = b1234 du1 ∧ du2 ∧ du3 ∧ du4 + . . .
on X, we have

f∗ α = − ( b1346 + b1356 + b2346 + b2356 ) dv1 ∧ dv2 ∧ dv3 ∧ dv4 .

If we set
η3 := du15 + du24 − du14 − du25 , (23)
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it is easily checked that

η3 ∧ α = − ( b1346 + b1356 + b2346 + b2356 ) du1 ∧ du2 ∧ . . . ∧ du6 ,

and we can conclude that ∫
T3

f∗ α =

∫
X

η3 ∧ α

for any rational closed 4-form α on X. Namely, we have that the Poincaré dual
σ3 of T3 is represented by the closed form η3 , which can also be written as

η3 =
i

2 v

(
dz1 ∧ dz̄2 + dz2 ∧ dz̄1 − dz1 ∧ dz̄1 − dz2 ∧ dz̄2

)
, (24)

thanks to (14) and (15).

5. Classes of N1H 3(X,Q)

The purpose of this section is to compute the contribution to N1H 3(X,Q)
of the surfaces S1, S2, S3, T1, T2, T3 on X, introduced in the previous section.
More concretely, we will prove the

Proposition 5.1. Consider the abelian threefold X = E × E × E , where E
is the elliptic curve C/Z + τ Z . Here we assume that τ is a complex number
with =(τ) > 0 , and such that [Q(τ) : Q] ≥ 3 . Then, for every such threefold
N1H3(X,Q) contains a rational sub-Hodge structure M of H3(X,Q) , with
dimQM = 16 .

Proof. Let i denote the inclusion S1 ⊂ X. We start by computing the image of
the Gysin map i∗ : H 1(S1,Q)→ H 3(X,Q) . A basis for H3(S1,Q) is given by
the classes

[C2 × C3 × C5] , [C2 × C3 × C6] , [C2 × C5 × C6] , [C3 × C5 × C6] .

They are sent by i∗ into the same classes, viewed as elements of H3(X,Q) .
Finally, by (13) we conclude that i∗(H

1(S1,Q) ) is generated by

du146 , du145 , du134 , du124 .

Similarly, bases for the images of the Gysin maps for the surfaces S2 and S3

are given respectively by

du256 , du245 , du235 , du125 and du356 , du346 , du236 , du136 .

These twelve 3-forms are distinct elements of the basis (9) of H 3(X,Q) ; let
M1 denote the subspace they generate.
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The contribution of the surfaces T1 , T2 and T3 to N 1H 3(X,Q) is not easily
determined in homology, so we switch directly to cohomology.

Consider the map f defined in (21) ( or (22), in coordinates ). The image
of f was denoted by T3 ; for simplicity, we will still denote by f the inclusion
of T3 into X.

Lemma 5.2. Recall that the closed form η3 given in (23) represents the class
σ3 = PD([T3]). The following diagram is then commutative

H 1(X,Q)
σ3 ∪− //

f∗
&&

H 3(X,Q)

H 1(T3,Q)

f∗

88
. (25)

Proof. of Lemma 5.2.
In fact, consider the following commutative diagram, where [X] ∈ H6(X,Q)

and [T3] ∈ H4(T3,Q) are the fundamental classes of X and T3 respectively

H 1(X,Q)
f∗
// H 1(T3,Q)

f∗ //

o− ∩ [T3]

��

H 3(X,Q)

o − ∩ [X]

��
H3(T3,Q)

f∗

// H3(X,Q) .

The classes σ3 and [T3] are related by Poincaré duality in the following way

f∗[T3] = σ3 ∩ [X] .

Then, for every x ∈ H 1(X,Q) we have by the “ projection formula ” and the
above relation

( f∗ f
∗ x ) ∩ [X] = f∗ ( f∗ x ∩ [T3] ) = x ∩ f∗ [T3] =

x ∩ (σ3 ∩ [X] ) = (x ∪ σ3 ) ∩ [X] = (σ3 ∪ x ) ∩ [X] ,

where the last equality is true because the degree of σ3 is 2 . Since the Poincaré
duality map is an isomorphism, the commutativity of (25) is completely proved.

Now, the space Im(σ3 ∪ − ) is generated by the classes of

η3 ∧ du1 = η3 ∧ du2 = du124 − du125 ∈M1

η3 ∧ du3 = du134 + du235︸ ︷︷ ︸
∈M1

− du135 − du234 ,

η3 ∧ du4 = η3 ∧ du5 = du245 − du145 ∈M1

η3 ∧ du6 = −du256 − du146︸ ︷︷ ︸
∈M1

+ du246 + du156 .
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These relations shows that Im(σ3 ∪ − ) has dimension four. But this forces
f∗ to be onto because dimQ H

1(T3,Q) = 4 , hence Im( f∗ ) = Im(σ3 ∪ − ) .
To summarize, the contribution of Im( f∗ ) to the generation of the space

N1H 3(X,Q) is given by the classes

du135 + du234 , du246 + du156 .

Similar computations can be performed for the surfaces T1 and T2 , which
contribute to the generation of N1H 3(X,Q) respectively with the classes

du135+du126 , du246+du345 and du126−du234 , du156−du345 .

Finally, denote by M2 the subspace of H 3(X,Q) generated by the six classes
above. It is easily seen that a basis for M2 is given by

du126−du234 , du156−du345 , du246 +du345 , du135 +du234 (26)

and that M1∩M2 = 0 . Then M := M1⊕M2 is a rational sub-Hodge structure
of H3(X,Q) , contained into N1H3(X,Q) . Since dimQM = 16 , the proof of
Proposition 5.1 is complete.

6. Computation of F 1H 3(X,C) ∩H 3(X,Q)

For this computation we will exploit (6) and the fact thatH 3,0(X) is isomorphic
to C , generated by the class of the following closed form α ( which we give also
in terms of the base (9) )

dz1 ∧ dz2 ∧ dz3 = du123 + τ (du126 − du135 + du234) +
+ τ2 (du156 − du246 + du345) + τ3 du456 .

(27)

Then, for an arbitrary ω =
∑

1≤i<j<k≤6 rijk duijk where rijk ∈ Q for any
i, j, k, we have that

ω∧α =
(
r123 τ

3−( r234−r135+r126 ) τ2+( r345−r246+r156 ) τ−r456

)
du123456 .

Hence [ω] is orthogonal to [α] with respect to (3) if and only if

r123 τ
3 − ( r234 − r135 + r126 ) τ2 + ( r345 − r246 + r156 ) τ − r456 = 0 . (28)

At the end of § 2 we made the assumption [Q(τ) : Q] ≥ 3 . Therefore, if τ is
not algebraic over Q , of degree 3 , the above relation is satisfied only if all the
coefficients in it vanish. Since the linear system

r123 = 0
r234 − r135 + r126 = 0
r345 − r246 + r156 = 0

r456 = 0
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has rank four, we conclude dimQ

(
H3(X,Q) ∩ F 1H3(X,C)

)
= 16 , and we

have the following straightforward consequence of Proposition 5.1 :

Proposition 6.1. If [Q(τ) : Q] > 3 ( in particular, if τ is transcendental over
Q ), then

N1H3(X,Q) = F 1H3(X,C) ∩H3(X,Q) ,

i.e. the Generalized Hodge conjecture is true in its original form for X.

On the other hand, Grothendieck considered the case when τ is algebraic
over Q , of degree 3 . Let f := X3 + µ1X

2 + µ2X + µ3 be the minimal
polynomial of τ over Q . Then relation (28) can be rewritten as

( r234−r135+r126+µ1 r123 ) τ2− ( r345−r246+r156−µ2 r123 ) τ + r456+µ3 r123 = 0 .

Since [Q(τ) : Q] = 3 , we have necessarily r234 − r135 + r126 + µ1 r123 = 0
r345 − r246 + r156 − µ2 r123 = 0

r456 + µ3 r123 = 0
.

This linear system has rank 3 , hence

dimQ

(
H3(X,Q) ∩ F 1H3(X,C)

)
= 17 , (29)

and the Generalized Hodge Conjecture fails in its original form.

But, since we know a priori that the dimension of N1H3(X,Q) is even, (29)
forces N1H3(X,Q) = M, the space introduced in Proposition 5.1, and this is
also the maximal rational sub-Hodge structure of F 1H3(X,C) . Hence, the
Generalized Hodge Conjecture as amended by Grothendieck is true for such
threefolds X.

7. Final remarks

Let us set ϕ := d123 − µ1 d234 + µ2 d345 − µ3 d456 . Then the detailed compu-
tations performed in the last two sections show that

F 1H3(X,C) ∩ H3(X,Q) = Q [ϕ] ⊕ N1H3(X,Q) .

We would like to be able to conclude that [ϕ] /∈ N1H3(X,Q) by a direct
examination of [ϕ] , or, in a spirit close to Hodge’ s, by a direct examination of
the Poincaré dual of [ϕ] . If we set

Γ1 := C4×C5×C6 , Γ2 := C1×C5×C6 , Γ3 := C1×C2×C6 , Γ4 := C1×C2×C3
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then PD([ϕ]) is represented by the cycle Γ := Γ1 +µ1 Γ2 +µ2 Γ3 +µ3 Γ4 , where
the rational numbers µi are the coefficients of the minimal polynomial of τ .
Now, (10) and (27) together imply∫

Γ1

α = τ3 ,

∫
Γ2

α = τ2 ,

∫
Γ3

α = τ ,

∫
Γ4

α = 1 . (30)

Therefore ∫
Γ

α = τ3 + µ1τ
2 + µ2τ + µ3 = 0 ,

which simply means that [ϕ] ∈ F 1H3(X,C) , as we already know.

The integrals (30) imply, in particular, that no one of the 3-cycles Γ1, . . . ,Γ4

can be contained into an algebraic surface Y ⊂ X.

Consider now the cycles Γ5 := C2×C3×C4 and Γ6 := C1×C3×C5 . Then,
it is easily checked that∫

Γ5+Γ6

α =

∫
Γ5

α +

∫
Γ6

α = τ − τ = 0 .

In particular, the computation shows also that neither of the two cycles Γ5 and
Γ6 can be contained into an effective divisor on X. But

PD( [Γ5] + [Γ6] ) = [d156 + d246] ∈ N1H3(X,Q) ,

as we have seen.

Let us add another remark on the above cycles, in the spirit of [6]. Let Γ
denote any of the cycles Γ1, . . . ,Γ4,Γ5,Γ6 . Since Γ is smooth, for any point
P ∈ Γ we have T

P
Γ ⊂ T

P
X, where X denotes here the differentiable manifold

underlying the projective, smooth variety. Moreover, if J : T
P
X → T

P
X

denotes the complex structure on the real vector space T
P
X, then the non

vanishing of the integral of the form α on Γ implies that

T
P

Γ + J(T
P

Γ) = T
P
X .

This relation can also be easily checked by an easy, direct computation.

To summarize, thanks to the detailed computations performed in §§ 5 and 6,
we know that [d156 +d246] is supported by an algebraic surface Y ⊂ X, whereas
[ϕ] is not.

On the other hand, our aim would be to be able to directly determine this
different nature of these two classes, by examining their respective Poincaré
duals, to get a direct proof that N1H3(X,Q) ( F 1H3(X,C) ∩H3(X,Q) .
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Throughout the paper we used the representation of the homology classes
which is customary for complex tori. The above remarks show that this par-
ticular representation is completely inadequate to reach our goal.

All this seems to indicate that to apply the results of [6] to the computation
of some concrete case of the Generalized Hodge Conjecture, it is necessary to
use bases for the homology spaces, which are induced by some suitable real-
analytic semi-algebraic triangulation of X.
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[1] P. Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974),
no. 44, 5–77.

[2] A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topol-
ogy 8 (1969), 299–303.

[3] W. V. D. Hodge, The Theory and Applications of Harmonic Integrals, Cam-
bridge University Press, Cambridge, England; Macmillan Company, New York,
1941.

[4] W. V. D. Hodge, The topological invariants of algebraic varieties, Proceedings
of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1,
Amer. Math. Soc., Providence, R. I., 1952, pp. 182–192.

[5] T. Murasaki, A calculation of rational cohomology classes on some complex tori,
Science Reports of the Faculty of Education, Gunma University 28 (1979), 13–16.

[6] D. Portelli, A remark on the generalized Hodge conjecture, Math. Z. 278 (2014),
no. 1-2, 1–17.
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