
Rend. Istit. Mat. Univ. Trieste
Volume 46 (2014), 231–235

On an inequality from

Information Theory

Horst Alzer

Abstract. We prove that the inequalities
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(α, β ∈ R),

where

mj = min(p2j , q
2
j ) and Mj = max(p2j , q

2
j ) (j = 1, ..., n),

hold for all positive real numbers pj , qj (j = 1, ..., n;n ≥ 2) with∑n
j=1 pj =

∑n
j=1 qj if and only if α ≤ 1/3 and β ≥ 2/3. This re-

fines a result of Halliwell and Mercer, who showed that the inequalities
are valid with α = 0 and β = 1.
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1. Introduction

If pj and qj (j = 1, ..., n) are positive real numbers with
∑n
j=1 pj =

∑n
j=1 qj ,

then

0 ≤
n∑
j=1

pj log
pj
qj
. (1)

The sign of equality holds in (1) if and only if pj = qj (j = 1, ..., n). This
inequality is known in the literature as Gibbs’ inequality, named after the
American scientist Josiah Willard Gibbs (1839-1903). A proof of (1) can be
found, for instance, in [5, p. 382].

The expression on the right-hand side of (1) is called the Kullback-Leibler
divergence. It is a measure of the difference between the probability distribu-
tions P = {p1, ..., pn} and Q = {q1, ..., qn}. Gibbs’ inequality has many appli-
cations in information theory and also in mathematical statistics. It attracted
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the attention of numerous researchers, who discovered remarkable extensions,
improvements and related results. For details we refer to [1, 2, 4] and the
references therein.

The work on this note has been inspired by an interesting paper published
by Halliwell and Mercer [3] in 2004. They presented the following elegant
refinement and converse of (1).

Proposition 1.1. Let pj , qj (j = 1, ..., n) be positive real numbers satisfying∑n
j=1 pj =

∑n
j=1 qj. Then,

n∑
j=1

qj(qj − pj)2

q2j +Mj
≤

n∑
j=1

pj log
pj
qj
≤

n∑
j=1

qj(qj − pj)2

q2j +mj
, (2)

where

mj = min(p2j , q
2
j ) and Mj = max(p2j , q

2
j ) (j = 1, ..., n).

Double-inequality (2) can be written as

n∑
j=1
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jM

1−β
j

(3)

with α = 0 and β = 1. With regard to this result it is natural to ask for all
real parameters α and β such that (3) holds. In the next section, we establish
that (3) is valid if and only if α ≤ 1/3 and β ≥ 2/3. In particular, setting
α = 1/3 and β = 2/3 leads to an improvement of both sides of (2).

2. Result

We need certain upper and lower bounds for the log-function.

Lemma 2.1. (i) If 0 < x ≤ 1, then

x− 1− (x− 1)2

x+ x1/3
≤ log x ≤ x− 1− (x− 1)2

x+ 1
(4)

with equality if and only if x = 1.

(ii) If x > 1, then

x− 1− (x− 1)2

x+ 1
< log x < x− 1− (x− 1)2

x+ x1/3
. (5)
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Proof. Let

f(x) = log x− x+ 1 +
(x− 1)2

x+ 1
and g(x) = − log x+ x− 1− (x− 1)2

x+ x1/3
.

Then,

f ′(x) =
(x− 1)2

x(x+ 1)2
and g′(x) =

(t− 1)4(t2 + t+ 1)

3t4(t2 + 1)2
(t = x1/3).

It follows that f and g are strictly increasing on (0,∞). Since f(1) = g(1) = 0,
we conclude that (4) and (5) are valid.

We are now in a position to prove the following refinement of (2).

Theorem 2.2. Let α, β ∈ R. The inequalities (3) hold for all positive real
numbers pj , qj (j = 1, ..., n;n ≥ 2) with

∑n
j=1 pj =

∑n
j=1 qj if and only if

α ≤ 1/3 and β ≥ 2/3.

Proof. First, we show that if α ≤ 1/3 and β ≥ 2/3, then (3) is valid for all
pj , qj > 0 (j = 1, ..., n) with

∑n
j=1 pj =

∑n
j=1 qj . Since the sums on the left-

hand side and on the right-hand side of (3) are increasing with respect to α
and β, respectively, it suffices to prove (3) for α = 1/3 and β = 2/3.

First, let qj ≤ pj . Applying (4) gives

qj
pj
− 1− (qj/pj − 1)2

qj/pj + (qj/pj)1/3
≤ log

qj
pj
≤ qj
pj
− 1− (qj/pj − 1)2

qj/pj + 1
.

We multiply by pj and sum up. This yields∑
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(6)

Next, let qj > pj . Using (5) leads to

qj
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qj/pj + 1
< log

qj
pj

<
qj
pj
− 1− (qj/pj − 1)2

qj/pj + (qj/pj)1/3
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Again we multiply by pj and sum up. Then we obtain∑
qj>pj
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Combining (6) and (7) gives

n∑
j=1
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Since
∑n
j=1 pj =

∑n
j=1 qj , we conclude from (8) that (3) is valid with α = 1/3

and β = 2/3.
It remains to prove that if (3) holds for all pj , qj > 0 (j = 1, ..., n) with∑n
j=1 pj =

∑n
j=1 qj , then α ≤ 1/3 and β ≥ 2/3.

Let s, t ∈ R with 1 < t < s+ 1. We set

p1 =
s

t
, p2 =

1

t
, q1 =

s+ 1

t
− 1, q2 = 1, pj = qj (j = 3, ..., n).

Then we have

n∑
j=1

pj =

n∑
j=1

qj , m1 = q21 , M1 = p21, m2 = p22, M2 = q22 .

A short calculation reveals that (3) is equivalent to

Fα(s, t) ≤ s log
s

s+ 1− t
− log t ≤ Fβ(s, t),

where

Fc(s, t) =
(t− 1)2

s+ 1− t+ s2(1−c)(s+ 1− t)2c−1
+

(t− 1)2

t+ t1−2c
.
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We define
Gc(s, t) = s log

s

s+ 1− t
− log t− Fc(s, t).

Then,

Gc(s, 1) =
∂

∂t
Gc(s, t)

∣∣∣
t=1

=
∂2

∂t2
Gc(s, t)

∣∣∣
t=1

= 0

and
s2

3(s2 + 1)

∂3

∂t3
Gc(s, t)

∣∣∣
t=1

=
s2 + 2

3(s2 + 1)
− c.

Since

lim
s→0

s2 + 2

3(s2 + 1)
=

2

3
and lim

s→∞

s2 + 2

3(s2 + 1)
=

1

3
,

we conclude from Gα(s, t) ≥ 0 that α ≤ 1/3 and from Gβ(s, t) ≤ 0 that
β ≥ 2/3.

Remark 2.3. The proof of the Theorem reveals that if α ≤ 1/3 and β ≥ 2/3,
then the sign of equality holds in each inequality of (3) if and only if pj = qj
(j = 1, ..., n).
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