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Stratonovich-Weyl correspondence
via Berezin quantization

Benjamin Cahen

Abstract. Let G be a quasi-Hermitian Lie group and let K be a
maximal compactly embedded subgroup of G. Let π be a unitary repre-
sentation of G which is holomorphically induced from a unitary repre-
sentation ρ of K. We introduce and study a notion of complex-valued
Berezin symbol for an operator acting on the space of π and the corre-
sponding notion of Stratonovich-Weyl correspondence. This generalizes
some results already obtained in the case when ρ is a unitary character,
see [19]. As an example, we treat in detail the case of the Heisenberg
motion groups.
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1. Introduction

There are different ways to extend the usual Weyl correspondence between
functions on R2n and operators on L2(Rn) to the general setting of a Lie
group acting on a homogeneous space [1, 13, 29]. In this paper, we focuse
on Stratonovich-Weyl correspondences. The notion of Stratonovich-Weyl cor-
respondence was introduced in [42] and its systematic study began with the
work of J.M. Gracia-Bond̀ıa, J.C. Vàrilly and their co-workers (see [11, 23, 25,
27, 28]). The following definition is taken from [27], see also [28].

Definition 1.1. Let G be a Lie group and π a unitary representation of G on
a Hilbert space H. Let M be a homogeneous G-space and let µ be a (suitably
normalized) G-invariant measure on M . Then a Stratonovich-Weyl correspon-
dence for the triple (G, π,M) is an isomorphism W from a vector space of
operators on H to a space of (generalized) functions on M satisfying the fol-
lowing properties:

1. W maps the identity operator of H to the constant function 1;
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2. the function W (A∗) is the complex-conjugate of W (A);

3. Covariance: we have W (π(g)Aπ(g)−1)(x) = W (A)(g−1 · x);

4. Traciality: we have∫
M

W (A)(x)W (B)(x) dµ(x) = Tr(AB).

A basic example is the case when G is the (2n+ 1)-dimensional Heisenberg
group Hn acting on R2n by translations and π is a Schrödinger representation of
Hn on L2(Rn). In this case, the usual Weyl correspondence (see [26]) provides
a Stratonovich-Weyl correspondence for the triple (Hn, π,R2n) [6, 40, 44].

Stratonovich-Weyl correspondences were constructed for various Lie group
representations, in particular for the massive representations of the Poincaré
group [23, 27].

In [19], we constructed and studied a Stratonovich-Weyl correspondence for
a quasi-Hermitian Lie group G and a unitary representation π of G which is
holomorphically induced from a unitary character of a compactly embedded
subgroup K of G (see also [15] and [16]). In this case, M is taken to be a
coadjoint orbit of G which is associated with π by the Kirillov-Kostant method
of orbits [33, 34] and we can consider the Berezin calculus on M [9, 10]. Recall
that the Berezin map S is an isomorphism from the Hilbert space of all Hilbert-
Schmidt operators onH (endowed with the Hilbert-Schmidt norm) onto a space
of square-integrable functions on a homogeneous complex domain [43]. In this
situation, we can apply an idea of [25] (see also [3] and [4]) and construct a
Stratonovich-Weyl correspondence for (G, π,M) by taking the isometric part
W in the polar decomposition of S, that is, W := (SS∗)−1/2S. Note that
B := SS∗ is the so-called Berezin transform which have been intensively studied
by many authors, see in particular [24, 38, 39, 43, 46].

In [19], we also showed that if the Lie algebra g of G is reductive then W
can be extended to a class of functions which contains S(dπ(X)) for each X ∈ g
and that, for each simple ideal s in g, there exists a constant c ≥ 0 such that
W (dπ(X)) = cS(dπ(X)) for each X ∈ s. Similar results have been obtained
for different examples of non-reductive Lie groups, see in particular [21].

On the other hand, in [17] and [18] we also obtained a Stratonovich-Weyl
correspondence for a non-scalar holomorphic discrete series representation of a
semi-simple Lie group by introducing a generalized Berezin map.

In the present paper, we adapt the method and the arguments of [17]
and [18] in order to generalize the results of [19] to the case when π is holomor-
phically induced from a unitary representation ρ of K (in a finite-dimensional
vector space V ) which is not necessarily a character. More precisely, we prove
that the coadjoint orbitO ofG associated with π is diffeomorphic to the product
D×o where D is a complex domain and o is the coadjoint orbit of K associated
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with ρ. Then, following [17], we introduce a Berezin calculus for End(V )-valued
functions on D. By combining this calculus with the usual Berezin calculus s
on o, we obtain a Berezin calculus S on O which is G-equivariant with respect
to π. Thus, we get a Stratonovich-Weyl correspondence for the triple (G, π,O)
by taking the isometric part of S.

As an illustration, we consider the case when G is a Heisenberg motion
group, that is, the semi-direct product of the (2n + 1)-Heisenberg group Hn

with a compact subgroup of the unitary group U(n). Note that Heisenberg
motion groups play an important role in the theory of Gelfand pairs, since the
study of a Gelfand pair of the form (K0, N) where K0 is a compact Lie group
acting by automorphisms on a nilpotent Lie group N can be reduced to that
of the form (K0, Hn) [7, 8].

In this case, the space H of π can be decomposed as H0 ⊗ V where H0 is
the Fock space and we show that for each operator A on H of the form A1⊗A2

we have the decomposition formula S(A)(Z,ϕ) = S0(A1)(Z)s(A2)(ϕ) where
S0 denotes the Berezin calculus on H0. Moreover, we verify that the Berezin
transform takes a simple form and then can be extended to the functions of the
form S(dπ(X1X2 · · ·Xp)) for X1, X2, . . . , Xp ∈ g and we compute explicitely
W (dπ(X)) for X ∈ g.

2. Preliminaries

All the material of this section is taken from the excellent book of K.-H.
Neeb, [37, Chapters VIII and XII], (see also [41, Chapter II] and, for the Her-
mitian case, [30, Chapter VIII] and [31, Chapter 6]).

Let g be a real quasi-Hermitian Lie algebra, that is, a real Lie algebra for
which the centralizer in g of the center Z(k) of a maximal compactly embedded
subalgebra k coincides with k [37, p. 241]. We assume that g is not compact.
Let gc be the complexification of g and Z = X + iY → Z∗ = −X + iY the
corresponding involution. We fix a compactly embedded Cartan subalgebra
h ⊂ k, [37, p. 241], and we denote by hc the corresponding Cartan subalgebra
of gc. We write ∆ := ∆(gc, hc) for the set of roots of gc relative to hc and
gc = hc⊕

∑
α∈∆ gα for the root space decomposition of gc. Note that α(h) ∈ iR

for each α ∈ ∆ [37, p. 233]. Recall that a root α ∈ ∆ is called compact if
α([Z,Z∗]) > 0 holds for some element Z ∈ gα. All other roots are called non-
compact [37, p. 235]. We write ∆k, respectively ∆p, for the set of compact,
respectively non-compact, roots. Note that kc = hc ⊕

∑
α∈∆k

gα [37, p. 235].

Recall also that a subset ∆+ ⊂ ∆ is called a positive system if there exists an
element X0 ∈ ih such that ∆+ = {α ∈ ∆ : α(X0) > 0} and α(X0) 6= 0 for
all α ∈ ∆. A positive system is then said to be adapted if for α ∈ ∆k and
β ∈ ∆+ ∩ ∆p we have β(X0) > α(X0), [37, p. 236]. Here we fix a positive
adapted system ∆+ and we set ∆+

p := ∆+ ∩∆p and ∆+
k := ∆+ ∩∆k, see [37,
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p. 241].
Let Gc be a simply connected complex Lie group with Lie algebra gc and

G ⊂ Gc, respectively, K ⊂ Gc, the analytic subgroup corresponding to g,
respectively, k. We also set Kc = exp(kc) ⊂ Gc as in [37, p. 506].

Let p+ =
∑
α∈∆+

p
gα and p− =

∑
α∈∆+

p
g−α. We denote by P+ and P−

the analytic subgroups of Gc with Lie algebras p+ and p−. Then G is a group
of the Harish-Chandra type [37, p. 507], that is, the following properties are
satisfied:

1. gc = p+ ⊕ kc ⊕ p− is a direct sum of vector spaces, (p+)∗ = p− and
[k+, p±] ⊂ p±;

2. The multiplication map P+KcP− → Gc, (z, k, y)→ zky is a biholomor-
phic diffeomorphism onto its open image;

3. G ⊂ P+KcP− and G ∩KcP− = K.

Moreover, there exists an open connected K-invariant subset D ⊂ p+

such that one has GKcP− = exp(D)KcP−, [37, p. 497]. We denote by
ζ : P+KcP− → P+, κ : P+KcP− → Kc and η : P+KcP− → P− the
projections onto P+-, Kc- and P−-component. For Z ∈ p+ and g ∈ Gc with
g expZ ∈ P+KcP−, we define the element g ·Z of p+ by g ·Z := log ζ(g expZ).
Note that we have D = G · 0.

We also denote by g → g∗ the involutive anti-automorphism of Gc which
is obtained by exponentiating X → X∗. We denote by pp+ , pkc and pp− the
projections of gc onto p+, kc and p− associated with the direct decomposition
gc = p+ ⊕ kc ⊕ p−.

The G-invariant measure on D is dµ(Z) := χ0(κ(expZ∗ expZ)) dµL(Z)
where χ0 is the character on Kc defined by χ0(k) = Detp+(Ad k) and dµL(Z)
is a Lebesgue measure on D [37, p. 538].

Now, we construct a section of the action of G on D, that is, a map Z → gZ
from D to G such that gZ ·0 = Z for each Z ∈ D. Such a section will be needed
later. In [20], we proved the following proposition.

Proposition 2.1. Let Z ∈ D. There exists a unique element kZ in Kc such
that k∗Z = kZ and k2

Z = κ(expZ∗ expZ)−1. Each g ∈ G such that g · 0 = Z
is then of the form g = exp(−Z∗) ζ(expZ∗ expZ)k−1

Z h where h ∈ K. Conse-
quently, the map Z → gZ := exp(−Z∗) ζ(expZ∗ expZ)k−1

Z is a section for the
action of G on D.

Note that we have

gZ = exp(−Z∗) ζ(expZ∗ expZ)k−1
Z

= expZη(expZ∗ expZ)−1κ(expZ∗ expZ)−1k−1
Z

= expZη(expZ∗ expZ)−1kZ
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and then κ(gZ) = kZ .

3. Representations

Let (ρ, V ) be a (finite-dimensional) unitary irreducible representation of K
with highest weight λ (relative to ∆+

c ). We also denote by ρ the extension of
ρ to Kc and by ρ̃ the extension of ρ to KcP− which is trivial on P−. First,
we verify that the representation π of G which is associated with ρ as in [37,
Proposition XII.2.1], can be obtained by holomorphic induction from ρ.

Let us introduce the Hilbert G-bundle L := G×ρ V over G/K. Recall that
an element of L is an equivalence class

[g, v] = {(gk, ρ(k)−1v) : k ∈ K}

where g ∈ G, v ∈ V and thatG acts on L by left translations: g [g′, v] := [gg′, v].
The projection map [g, v] → gK is then G-equivariant. The G-invariant

Hermitian structure on L is given by

〈[g, v], [g, v′]〉 = 〈v, v′〉V
where g ∈ G and v, v′ ∈ V .

The space G/K being endowed with the complex structure defined in Sec-
tion 2, let H0 be the space of all holomorphic sections s of L which are square-
integrable with respect to the invariant measure µ0 on G/K, that is,

‖s‖2H0 =

∫
G/K

〈s(p) , s(p)〉 dµ0(p) < +∞.

We can consider the action π0 of G on H0 defined by

(π0(g) s)(p) = g s(g−1p).

Recall also that the map gK → log ζ(g) is a diffeomorphism from G/K
onto D (see Section 2) whose inverse is the diffeomorphism σ from D onto
G/K defined by σ(Z) = gZK. We can verify that σ intertwines the natural
action of G on G/K and the action of G on D introduced in Section 2, that
is, we have σ(g · Z) = gσ(Z) for each Z ∈ D and each g ∈ G. Then we have
µ0 = (σ−1)∗(µ).

Now, we will introduce a realization of π0 on a space of functions on D. To
this aim, we associate with any s ∈ H0 the function fs : D → V defined by
s(σ(Z)) = [gZ , ρ̃(g−1

Z expZ)fs(Z)]. Then, for each s and s′ in H0, we have

〈s(σ(Z)), s′(σ(Z))〉 = 〈ρ̃(g−1
Z expZ)fs(Z) , ρ̃(g−1

Z expZ)fs′(Z)〉V
= 〈ρ̃(g−1

Z expZ)∗ρ̃(g−1
Z expZ)fs(Z), fs′(Z)〉V

= 〈ρ̃(κ(expZ∗ expZ))fs(Z), fs′(Z)〉V
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since g∗ZgZ = e (the unit element of G).
This implies that

〈s , s′〉H0 =

∫
D
〈ρ(κ(expZ∗ expZ))fs(Z) , fs′(Z)〉V dµ(Z).

This leads us to introduce the Hilbert space H of all holomorphic functions
f : D → V such that

‖f‖2H :=

∫
D
〈ρ(κ(expZ∗ expZ))f(Z) , f(Z)〉V dµ(Z) < +∞.

On the other hand, for each s ∈ H0, g ∈ G and Z ∈ D, we have

(π0(g) s)(σ(Z)) = gs(g−1σ(Z))

= g [gg−1·Z , ρ̃(g−1
g−1·Z exp(g−1 · Z))fs(g

−1 · Z)]

= [gZ , ρ̃(g−1
Z g exp(g−1 · Z))fs(g

−1 · Z)].

Then we get

fπ0(g) s(Z) = ρ̃(g−1
Z expZ)∗ρ̃(g−1

Z g exp(g−1 · Z))fs(g
−1 · Z)

= ρ̃(exp(−Z)g exp(g−1 · Z))fs(g
−1 · Z).

Now, noting that

g−1 expZ = exp(g−1 · Z)κ(g−1 expZ)η(g−1 expZ),

we obtain
fπ0(g) s(Z) = ρ(κ(g−1 expZ))−1fs(g

−1 · Z).

Let J(g, Z) := ρ(κ(g expZ)) for g ∈ G and Z ∈ D. Hence we can conclude
that the equality

(π(g)f)(Z) = J(g−1, Z)−1f(g−1 · Z)

defines a unitary representation π of G on H which is unitarily equivalent to π0.
This is precisely the representation of G introduced in [37, Proposition XII.2.1].
Note also that π is irreducible since ρ is irreducible, [37, p. 515].

We denote K(Z,W ) := ρ(κ(expW ∗ expZ))−1 for Z, W ∈ D. The evalu-
ation maps KZ : H → V, f → f(Z) are continuous [37, p. 539]. The gen-
eralized coherent states of H are the maps EZ = K∗Z : V → H defined by
〈f(Z), v〉V = 〈f,EZv〉 for f ∈ H and v ∈ V .

We have the following result, see [37, p. 540].
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Proposition 3.1. (1) There exists a constant cρ > 0 such that E∗ZEW =
cρK(Z,W ) for each Z, W ∈ D.
(2) For g ∈ G and Z ∈ D, we have Eg·Z = π(g)EZJ(g, Z)∗.

In the rest of this section, we give an explicit expression for the derived
representation dπ. We use the following notation. If L is a Lie group and X is
an element of the Lie algebra of L then we denote by X+ the right invariant
vector field on L generated by X, that is, X+(h) = d

dt (exp tX)h|t=0 for h ∈ L.
Then, by differentiating the multiplication map from P+ × Kc × P− onto
P+KcP−, we can easily prove the following result.

Lemma 3.2. Let X ∈ gc and g = z k y where z ∈ P+, k ∈ Kc and y ∈ P−. We
have

1. dζg(X
+(g)) = (Ad(z) pp+(Ad(z−1)X))+(z).

2. dκg(X
+(g)) = (pkc(Ad(z−1)X))+(k).

3. dηg(X
+(g)) = (Ad(k−1) pp−(Ad(z−1)X))+(y).

From this lemma, we deduce the following proposition (see also [37, p. 515]).

Proposition 3.3. For X ∈ gc and f ∈ H, we have

(dπ(X)f)(Z) = dρ(pkc(e
− adZ X)) f(Z)− (df)Z

(
adZ

1− e− adZ
pp+(e− adZ X)

)
.

4. Berezin calculus

Here, we first introduce the Berezin calculus associated with ρ, see [5, 14, 45].
Let λ ∈ (hc)∗ denote the highest weight of ρ relative to ∆+

c . Let ϕ0 := −iλ ∈
(hc)∗. We also denote by ϕ0 the restriction to k of the trivial extension of ϕ0

to kc. Then the orbit o(ϕ0) of ϕ0 under the coadjoint action of K is said to be
associated with ρ [13, 45].

Note that a complex structure on o(ϕ0) is then defined by the diffeomor-
phism o(ϕ0) ' K/H ' Kc/HcN− where N− is the analytic subgroup of Kc

with Lie algebra
∑
α∈∆+

c
g−α.

Without loss of generality, we can assume that V is a space of holomorphic
functions on o(ϕ0) as in [14]. For each ϕ ∈ o(ϕ0) there exists a unique function
eϕ ∈ V (called a coherent state) such that a(ϕ) = 〈a, eϕ〉V for each a ∈ V . The
Berezin calculus on o(ϕ0) associates with each operator B on V the complex-
valued function s(B) on o(ϕ0) defined by

s(B)(ϕ) =
〈Beϕ, eϕ〉V
〈eϕ, eϕ〉V

which is called the symbol of B. In the following proposition, we recall some
basic properties of the Berezin calculus, see for instance [5, 14, 22].
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Proposition 4.1. 1. The map B → s(B) is injective.

2. For each operator B on V , we have s(B∗) = s(B).

3. For each ϕ ∈ o(ϕ0), k ∈ K and B ∈ End(V ), we have

s(B)(Ad(k)ϕ) = s(ρ(k)−1Bρ(k))(ϕ).

4. For each U ∈ k and ϕ ∈ o(ϕ0), we have s(dρ(U))(ϕ) = iβ(ϕ,U).

In order to define the Berezin symbol S(A) of an operator A on H, we
first define the pre-symbol S0(A) of A as a End(V )-valued function on D,
following [2, 17, 32].

Let Hs be the subspace of H generated by the functions EZv for Z ∈ D and
v ∈ V . Clearly, Hs is a dense subspace of H. Let C be the space consisting of
all operators A on H such that the domain of A contains Hs and the domain
of A∗ also contains Hs. We define the pre-symbol S0(A) of A ∈ C by

S0(A)(Z) = c−1
ρ ρ(k−1

Z )E∗ZAEZρ(k−1
Z )∗

and then the Berezin symbol S(A) of A is defined as the complex-valued func-
tion on D × o(ϕ0) given by

S(A)(Z,ϕ) = s(S0(A)(Z))(ϕ).

In order to establish that S0 hence S are G-equivariant with respect to π,
we need the following lemma.

Lemma 4.2. For g ∈ G and Z ∈ D, let k(g, Z) := k−1
Z κ(g expZ)−1kg·Z . Then

we have k(g, Z) = g−1
Z g−1gg·Z . In particular, k(g, Z) is an element of K.

Proof. Let g ∈ G and Z ∈ D. We can write gZ = expZkZy where y ∈ P−.
Then, on the one hand, we have

ggZ = g expZkZy = exp(g · Z)κ(g expZ)η(g expZ)kZy.

On the other hand, we can also write gg·Z = exp(g ·Z)kg·Zy
′ where y′ ∈ P−.

Since (ggZ) · 0 = g ·Z = gg·Z · 0, we see that k := (ggZ)−1gg·Z is an element of
K. Then, by replacing ggZ and gg·Z by the above expressions we get

k = y−1k−1
Z η(g expZ)−1κ(g expZ)−1kg·Zy

′.

Thus, applying κ, we obtain k = k(g, Z) hence the result.

Proposition 4.3. 1. Each A ∈ C is determined by S0(A).

2. For each A ∈ C and each Z ∈ D, we have S0(A∗)(Z) = S0(A)(Z)∗.
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3. For each Z ∈ D, we have S0(I)(Z) = IV . Here I denotes the identity
operator of H and IV the identity operator of V .

4. For each A ∈ C, g ∈ G and Z ∈ D, we have

S0(A)(g · Z) = ρ(k(g, Z))−1S0(π(g)−1Aπ(g))(Z)ρ(k(g, Z)).

Proof. The proof is similar to that of [17, Proposition 4.1]. Following [37, p. 15],
we associate with any operator A ∈ C the function KA(Z,W ) := E∗ZAEW .

1. Let A ∈ C. Since we have

〈(Af)(Z), v〉V = 〈Af,EZv〉 = 〈f,A∗EZv〉

=

∫
D
〈K(W,W )−1f(W ), (A∗EZv)(W )〉V dµ(W )

=

∫
D
〈K(W,W )−1f(W ),KA(Z,W )∗v〉V dµ(W )

we see that A is determined by KA. Moreover, since KA(Z,W ) is clearly
holomorphic in the variable Z and anti-holomorphic in the variable W , we also
see that KA hence A is determined by KA(Z,Z) or, equivalently, by S0(A)(Z).

2. Clearly, for each A ∈ C, Z, W ∈ D, we have KA∗(Z,W ) = KA(W,Z)∗.
The result follows.

3. Let Z ∈ D. We have

E∗ZEZ = cρK(Z,Z) = cρρ(κ(expZ∗ expZ))−1 = cρρ(kZk
∗
Z).

The result therefore follows.
4. Let A ∈ C, g ∈ G and Z ∈ D. We have

S0(A)(g · Z) =
1

cρ
ρ(k−1

g·Z)E∗g·ZAEg·Z ρ(k−1
g·Z)∗

=
1

cρ
ρ(k−1

g·Z) ρ(κ(g expZ))E∗Zπ(g)−1Aπ(g)EZρ(κ(g expZ))∗ρ(k−1
g·Z)∗

=
1

cρ
ρ(k(g, Z))−1ρ(k−1

Z )E∗Zπ(g)−1Aπ(g)EZρ(k−1
Z )∗ρ(k(g, Z))

= ρ(k(g, Z))−1S0(π(g)−1Aπ(g))(Z)ρ(k(g, Z)).

From this proposition and Proposition 4.1 we immediately deduce the fol-
lowing proposition.

Proposition 4.4. 1. Each A ∈ C is determined by S(A).

2. For each A ∈ C, we have S(A∗) = S(A).
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3. We have S(I) = 1.

4. For each A ∈ C, g ∈ G, Z ∈ D and ϕ ∈ o(ϕ0), we have

S(A)(g · Z,ϕ) = S(π(g)−1Aπ(g))(Z,Ad(k(g, Z))ϕ).

5. Berezin symbols of representation operators

In this section, we give some simple formulas for the Berezin pre-symbol of
π(g) for g ∈ G and for the Berezin symbol of dπ(X) for X ∈ gc.

Proposition 5.1. For g ∈ G and Z ∈ D, we have

S0(π(g))(Z) = ρ
(
k−1
Z κ(expZ∗g−1 expZ)−1(k−1

Z )∗
)
.

Proof. For each g ∈ G, we have

S0(π(g))(0) = c−1
ρ E∗0π(g)E0 = c−1

ρ E∗0Eg·0J(g, 0)∗−1

= K(0, g · 0)J(g, 0)∗−1 = ρ(κ(g))∗−1 = ρ(κ(g−1))−1

by Proposition 3.1.

Now, by using G-equivariance of S0 (see Proposition 4.3), we get

S0(π(g))(Z) = S0(π(g−1
Z ggZ))(0) = ρ(κ(g−1

Z g−1gZ))−1.

But writing gZ = expZkZy with y ∈ P− we see that

g−1
Z g−1gZ = g∗Zg

−1gZ = y∗k∗Z expZ∗g−1 expZkZy

hence κ(g−1
Z g−1gZ) = k∗Zκ(expZ∗g−1 expZ)kZ . This gives the result.

Now, we aim to compute S0(dπ(X)) and S(dπ(X)) for X ∈ gc. For ϕ ∈ k∗,
we also denote by ϕ the restriction to g of the extension of ϕ to gc which
vanishes on p±. Then we have the following result.

Proposition 5.2. 1. For each g ∈ G and Z ∈ D, we have

S0(dπ(X))(Z) = (dρ ◦ pkc)(Ad(g−1
Z )X).

2. For each g ∈ G, Z ∈ D and ϕ ∈ o(ϕ0), we have

S(dπ(X))(Z,ϕ) = i〈Ad∗(gZ)ϕ,X〉.
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Proof. We can deduce the first statement from the preceding proposition. In-
deed, by using Lemma 3.2 we get

d

dt
ρ(κ(expZ∗ exp(−tX) expZ)−1)|t=0

= ρ(κ(expZ∗ expZ)−1)(dρ ◦ pkc)(Ad(ζ(expZ∗ expZ)−1 expZ∗)X).

Recall that we have gZ = exp(−Z∗) ζ(expZ∗ expZ)k−1
Z . Then we obtain

S0(dπ(X))(Z) =(dρ ◦ pkc)(Ad(kZζ(expZ∗ expZ)−1 expZ∗)X)

=(dρ ◦ pkc)(Ad(g−1
Z )X).

The second statement follows from the first and 4 of Proposition 4.1.

We are then lead to consider the map Ψ : D × o(ϕ0) → g∗ defined by
Ψ(Z,ϕ) = Ad∗(gZ)ϕ. Note that by 4 of Proposition 4.4 and 2 of Proposition 5.2
we have

Ψ(g · Z,ϕ) = Ad∗(g) Ψ(Z,Ad∗(k(g, Z))ϕ) (1)

for each g ∈ G, Z ∈ D and ϕ ∈ o(ϕ0).

We say that ξ0 ∈ g∗ is regular if the stabilizer G(ξ0) of ξ0 for the coadjoint
action is connected and if the Hermitian form (Z,W ) → 〈ξ0, [Z,W ∗]〉 is not
isotropic. Recall that we have denoted by ϕ0 ∈ g∗ the restriction to g of the
trivial extension to gc of −iλ ∈ h∗ where λ is the highest weight of ρ. Let
O(ϕ0) be the orbit of ϕ0 ∈ g∗ for the coadjoint action of G and let K(ϕ0) be
the stabilizer of ϕ0 for the coadjoint action of K. We assume that ϕ0 is regular.
Then we have the following result.

Lemma 5.3. We have G(ϕ0) = K(ϕ0).

Proof. Let us denote by g(ϕ0) and k(ϕ0) the Lie algebras of G(ϕ0) and K(ϕ0).
We first show that g(ϕ0) = k(ϕ0).

Let X ∈ g(ϕ0). Then we have 〈ϕ0, [X,X
′]〉 = 0 for each X ′ ∈ gc. Now, we

can write X = Z + H + Y where Z ∈ p+, H ∈ kc and Y ∈ p−. Take X ′ = Z
in the preceding equation and recall that we have ϕ0|p± = 0 and [kc, p±] ⊂ p±.
Thus we get 〈ϕ0, [Z,Z

∗]〉 = 0 hence Z = 0. Similarly, we obtain Y = 0. This
gives X = H ∈ k(ϕ0). This shows that g(ϕ0) = k(ϕ0).

Now, G(ϕ0) is connected by hypothesis and K(ϕ0) is also connected by [35,
Lemma 5]. Since K(ϕ0) ⊂ G(ϕ0), we can conclude that G(ϕ0) = K(ϕ0).

We are now in position to establish the following proposition.

Proposition 5.4. The map Ψ is a diffeomorphism form D×o(ϕ0) onto O(ϕ0).
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Proof. For each g ∈ G, one has

Ad∗(g)ϕ0 = Ad∗(g)Ψ(0, ϕ0) = Ψ(g · 0,Ad∗(k(g, 0))ϕ0).

This implies that Ψ takes values in O(ϕ0) and that Ψ is surjective.
Now, let (Z,ϕ) and (Z ′, ϕ′) in D × o(ϕ0) such that Ψ(Z,ϕ) = Ψ(Z ′, ϕ′).

Then we have Ad∗(gZ)ϕ = Ad∗(gZ′)ϕ
′. Write ϕ = Ad∗(k)ϕ0 and ϕ′ =

Ad∗(k′)ϕ0 where k, k′ ∈ K. Thus we get Ad∗(gZk)ϕ0 = Ad∗(gZ′k
′)ϕ0 and, by

Lemma 5.3, there exists k0 ∈ K(ϕ0) such that gZ′k
′ = gZkk0. Consequently,

we have Z ′ = (gZ′k
′) · 0 = (gZkk0) · 0 = Z hence k′ = kk0 and, finally, we

obtain ϕ′ = Ad∗(k′)ϕ0 = Ad∗(kk0)ϕ0 = Ad∗(k)ϕ0 = ϕ. This shows that Ψ is
injective.

Now we have to show that Ψ is regular. By using Equation 1, it is sufficient
to prove that Ψ is regular at (0, ϕ) for ϕ ∈ o(ϕ0). Recall that we have

Ψ(Z,ϕ) = Ad∗
(
exp(−Z∗) ζ(expZ∗ expZ)k−1

Z

)
ϕ.

Then, differentiating Ψ by using Lemma 3.2, we easily get

(dΨ)(0, ϕ)(W,U+(ϕ)) = ad∗(W −W ∗ + U)ϕ

for each W ∈ p+ and U ∈ kc. Thus, for each X ∈ gc, we have

〈ϕ, [W −W ∗ + U,X]〉 = 0.

Taking in particular X = W ∗, we get 〈ϕ, [W,W ∗]〉 = 0. Since ϕ0 hence ϕ is
regular, we obtain W = 0 and, consequently, ad∗(U)ϕ = U+(ϕ) = 0. This
finishes the proof.

Note that we have also the following result.

Proposition 5.5. Assume that we have [p+, p−] ⊂ kc (this is the case, in
particular, when g is reductive). Let ϕ0 ∈ h∗. As usual, we denote also by ϕ0

the restriction to g of the trivial extension of ϕ0 to g∗. Then ϕ0 is regular if
and only if the Hermitian form (Z,W ) → 〈ϕ0, [Z,W ∗]〉 is not isotropic. In
that case, we also have G(ϕ0) = K(ϕ0).

Proof. Assume that the Hermitian form (Z,W )→ 〈ϕ0, [Z,W ∗]〉 is not isotropic.
Let g ∈ G(ϕ0). Write g = (expZ)ky where Z ∈ p+, k ∈ Kc and Y ∈ p−. Then
we have Ad∗(k expY )ϕ0 = Ad∗(expZ)ϕ0 and, for each X ∈ gc,

〈ϕ0,Ad(expZ)−1X〉 = 〈ϕ0,Ad(k expY )−1X〉.

Taking X = Z∗, we find 〈ϕ0, [Z,Z∗]〉 = 0 hence Z = 0. Similarly, we verify
that Y = 0. This gives g = k ∈ Kc ∩G(ϕ0) = K(ϕ0). Consequently, G(ϕ0) is
connected and ϕ0 is regular.
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Moreover, by adapting the arguments of the proof of [19, Lemma 3.1], we
also obtain the following proposition.

Proposition 5.6. Assume that H 6= (0). Then the Hermitian form (Z,W )→
〈ϕ0, [Z,W ∗]〉 is not isotropic.

6. Berezin transform and Stratonovich-Weyl
correspondence

In this section, we introduce the Berezin transform and we review some of its
properties. As an application, we construct a Stratonovich-Weyl correspon-
dence for (G, π,O(ϕ0)).

Let us fix a K-invariant measure ν on o(ϕ0) normalized as in [14, Section 2].
Then the measure µ̃ := µ⊗ ν on D × o(ϕ0) is invariant under the action of G
on D × o(ϕ0) given by g · (Z,ϕ) := (g · Z,Ad(k(g, Z))−1ϕ) and the measure
µO(ϕ0) := (Ψ−1)∗(µ̃) is a G-invariant measure on O(ϕ0).

We denote by L2(H) (respectively L2(V )) the space of Hilbert-Schmidt
operators onH (respectively V ) endowed with the Hilbert-Schmidt norm. Since
V is finite-dimensional, we have L2(V ) = End(V ). We denote by L2(D×o(ϕ0))
(respectively L2(D), L2(o(ϕ0))) the space of functions on D × o(ϕ0) (resp. D,
o(ϕ0)) which are square-integrable with respect to the measure µ̃ (respectively
µ, ν). The following result is well-known, see for instance [15].

Proposition 6.1. For each ϕ ∈ o(ϕ0), let pϕ denote the orthogonal projection
of V on the line generated by eϕ. Then the adjoint s∗ of the operator s :
L2(V )→ L2(o(ϕ0)) is given by

s∗(a) =

∫
o(ϕ0)

a(ϕ)pϕ dν(ϕ)

and the Berezin transform b := ss∗ is given by

b(a)(ψ) =

∫
o(ϕ0)

a(ϕ)
|〈eψ, eϕ〉V |2

〈eϕ, eϕ〉V 〈eψ, eψ〉V
dν(ϕ)

for each a ∈ L2(o(ϕ0))

Following [18], we can easily obtain the following analogous results for S,
see also [43].

Proposition 6.2. The map S is a bounded operator from L2(H) to L2(D ×
o(ϕ0)). Moreover, S∗ is given by

S∗(f) =

∫
D×o(ϕ0)

PZ,ϕf(Z,ϕ)dµ(Z)dν(ϕ)
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where PZ,ϕ := c−1
ρ EZρ(h−1

Z )∗pϕρ(h−1
Z )E∗Z is the orthogonal projection of H on

the line generated by EZρ(h−1
Z )∗eϕ.

From this result we easily deduce that the following proposition.

Proposition 6.3. The Berezin transform B := SS∗ is a bounded operator of
L2(D× o(ϕ0)) and, for each f ∈ L2(D× o(ϕ0)), we have the following integral
formula

B(f)(Z,ψ) =

∫
D×o(ϕ0)

k(Z,W,ψ, ϕ) f(W,ϕ) dµ(W )dν(ϕ)

where

k(Z,W,ψ, ϕ) :=
|〈ρ(κ(g−1

Z gW ))−1eψ, eϕ〉V |2

〈eϕ, eϕ〉V 〈eψ, eψ〉V
.

Let us introduce the left-regular representation τ of G on L2(D × o(ϕ0))
defined by (τ(g)(f))(Z,ϕ) = f(g−1 · (Z,ϕ)). Clearly, τ is unitary. Moreover,
since S is G-equivariant, we immediately verify that for each f ∈ L2(D×o(ϕ0))
and each g ∈ G, we have B(τ(g)f) = τ(g)(B(f)).

Now, we consider the polar decomposition of S : L2(H)→ L2(D × o(ϕ0)).
We can write S = (SS∗)1/2W = B1/2W where W := B−1/2S is a unitary
operator from L2(H) to L2(D×o(ϕ0)). Then we have the following proposition.

Proposition 6.4. 1. The map W : L2(H)→ L2(D × o(ϕ0)) is a
Stratonovich-Weyl correspondence for the triple (G, π,D × o(ϕ0)).

2. The map W from L2(H) to L2(O(ϕ0), µO(ϕ0)) defined by W(f) = W (f ◦
Ψ) is a Stratonovich-Weyl correspondence for the triple (G, π,O(ϕ0)).

7. Generalies on Heisenberg motion groups

We first introduce the Heisenberg group. For z, w ∈ Cn, we denote zw :=∑n
k=1 zkwk. Consider the symplectic form ω on C2n defined by

ω((z, w), (z′, w′)) =
i

2
(zw′ − z′w).

for z, w, z′, w′ ∈ Cn. The (2n+ 1)-dimensional real Heisenberg group is Hn :=
{((z, z̄), c) : z ∈ Cn, c ∈ R} endowed with the multiplication

((z, z̄), c) · ((z′, z̄′), c′) = ((z + z′, z̄ + z̄′), c+ c′ + 1
2ω((z, z̄), (z′, z̄′))). (2)

Then the complexification Hc
n of Hn is Hc

n := {((z, w), c) : z, w ∈ Cn, c ∈ C}
and the multiplication of Hc

n is obtained by replacing (z, z̄) by (z, w) and (z′, z̄′)
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by (z′, w′) in Equation 2. We denote by hn and hcn the Lie algebras of Hn and
Hc
n.

Let K0 be a closed subgroup of U(n). Then K0 acts on Hn by k ·((z, z̄), c) =
((kz, k̄z), c) and we can form the semi-direct product G := Hn o K0 which
is called a Heisenberg motion group. The elements of G can be written as
((z, z̄), c, h) where z ∈ Cn, c ∈ R and h ∈ K0. The multiplication of G is then
given by

((z, z̄), c, h) · ((z′, z̄′), c′, h′)
= ((z, z̄) + (hz′, h̄z′), c+ c′ + 1

2ω((z, z̄), (hz′, h̄z′)), hh′).

We denote by Kc
0 the complexification of K0. In order to describe the com-

plexification Gc of G, it is convenient to introduce the action of Kc
0 on Cn×Cn

given by k · (z, w) = (kz, (kt)−1w) (here, the subscript t denotes transposition).
The group Gc is then the semi-direct product Gc = Hc

n oKc
0. The elements of

Gc can be written as ((z, w), c, h) where z, w ∈ Cn, c ∈ C and h ∈ Kc
0 and the

multiplication law of Gc is given by

((z, w), c, h) · ((z′, w′), c′, h′)
= ((z, w) + h · (z′, w′), c+ c′ + 1

2ω((z, w), h · (z′, w′)), hh′).

We denote by k0, kc0, g and gc the Lie algebras of K0, Kc
0, G and Gc. The

derived action kc0 on Cn × Cn is A · (z, w) := (Az,−Atw) and the Lie brackets
of gc are given by

[((z, w), c, A), ((z′, w′), c′, A′)]

= (A · (z′, w′)−A′ · (z, w), ω((z, w), (z′, w′)), [A,A′]).

Recall that, for each X ∈ gc, we have X∗ = −θ(X) where θ denotes con-
jugation over g. We can easily verify that if X = ((z, w), c, A) ∈ gc then
X∗ = ((−w̄,−z̄), c, Āt).

Here we take K = {((0, 0), c, h) : c ∈ R, h ∈ K0} for the maximal com-
pactly embedded subgroup of G. Also, let h0 be a Cartan subalgebra of k0.
Then we take h := {((0, 0), c, A) : c ∈ R, A ∈ h0} for the compactly em-
bedded Cartan subalgebra of g, see Section 2. Moreover, we can choose the
positive non-compact roots in such a way that P+ = {((z, 0), 0, In) : z ∈ Cn}
and P− = {((0, w), 0, In) : w ∈ Cn}. The P+KcP−-decomposition of g =
((z0, w0), c0, h) ∈ Gc is given by

g = ((z0, 0), 0, In) · ((0, 0), c, h) · ((0, w0), 0, In)

where c = c0− i
4z0w0. From this, we deduce that the action of the element g =

((z0, w0), c0, h) ofG on Z = ((z, 0), 0, 0) ∈ p+ is given by g·Z = log ζ(g expZ) =
((z0 + hz, 0), 0, 0). Then we have D = p+ ' Cn.
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We can also easily compute the section Z → gZ . We find that if Z =
((z, 0), 0, 0) ∈ D then gZ = ((z, z̄), 0, In) and kZ = κ(gZ) = ((0, 0),− i

4 |z|
2, In).

Now we compute the adjoint action of Gc. Let g = (v0, c0, h0) ∈ Gc where
v0 ∈ C2n, c0 ∈ C, h0 ∈ Kc

0 and X = (w, c,A) ∈ gc where w ∈ C2n, c ∈ C and
A ∈ kc0. We set exp(tX) = (w(t), c(t), exp(tA)). Then, since the derivatives of
w(t) and c(t) at t = 0 are w and c, we find that

Ad(g)X =
d

dt
(g exp(tX)g−1)|t=0

=
(
h0w − (Ad(h0)A) · v0, c+ ω(v0, h0w)− 1

2ω(v0, (Ad(h0)A) · v0),Ad(h0)A
)
.

From this, we deduce the coadjoint action of Gc. Let us denote by ξ =
(u, d, φ), where u ∈ C2n, d ∈ C and φ ∈ (kc0)

∗
, the element of (gc)∗ defined by

〈ξ, (w, c,A)〉 = ω(u,w) + dc+ 〈φ,A〉.

Also, for u, v ∈ C2n, we denote by v × u the element of (kc0)∗ defined by
〈v × u,A〉 := ω(u,A · v) for A ∈ kc0.

Now, let ξ = (u, d, φ) ∈ (gc)∗ and g = (v0, c0, h0) ∈ Gc. Recall that we have
〈Ad∗(g)ξ,X〉 = 〈ξ,Ad(g−1)X〉 for each X ∈ gc. Then we obtain

Ad∗(g)ξ =
(
h0u− dv0, d,Ad∗(h0)φ+ v0 × (h0u− d

2v0)
)

By restriction, we also get the analogous formula for the coadjoint action of G.
From this, we deduce that if a coadjoint orbit of G contains a point (u, d, φ)
with d 6= 0 then it also contains a point of the form (0, d, φ0). Such an orbit is
called generic.

8. Representations of Heisenberg motion groups

We retain the notation of the previous section and introduce some additional
notation. Let ρ0 be a unitary irreducible representation of K0 on a (finite-
dimensional) Hilbert space V and let γ ∈ R. Then we take ρ to be the repre-
sentation of K on V defined by ρ((0, 0), c, h) = eiγcρ0(h) for each c ∈ R and
h ∈ K0. Thus, for each Z = ((z, 0), 0, 0), W = ((w, 0), 0, 0) ∈ D, we have
K(Z,W ) = ρ(κ(expW ∗ expZ))−1 = eγzw̄/2IV . Hence the Hilbert product on
H is given by

〈f, g〉 =

∫
D
〈f(Z), g(Z)〉V e−γ|z|

2/2 dµ(Z)

where µ is theG-invariant measure onD ' Cn defined by dµ(Z) := ( γ2π )n dx dy.
Here Z = ((z, 0), 0, 0) and z = x + iy with x and y in Rn. Note that we have
cρ = 1. Moreover, for each v ∈ V , Z = ((z, 0), 0, 0), W = ((w, 0), 0, 0) ∈ D, we
have (EW v)(Z) = K(Z,W )v = e

γ
2 zw̄v.
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On the other hand, we easily verify that, for each g = ((z0, z̄0), c0, h) ∈ G
and Z = ((z, 0), 0, 0),∈ D, we have

J(g, Z) = ρ (κ(g expZ)) = exp
(
iγc0 + γ

2 z̄0(hz) + γ
4 |z0|2

)
ρ0(h)

and consequently, we get the following formula for π:

(π(g)f)(Z) = exp
(
iγc0 + γ

2 z̄0z − γ
4 |z0|2

)
ρ0(h) f(h−1(z − z0), 0, 0)

where g = ((z0, z̄0), c0, h) ∈ G and Z = ((z, 0), 0, 0),∈ D.

Let φ0 ∈ k∗0. Assume that the orbit o(φ0) of φ0 for the coadjoint action of
K0 is associated with ρ0 as in Section 4. Then, in the notation of Section 4,
the coadjoint orbit of ϕ0 := ((0, 0), γ, φ0) for the coadjoint action of G is then
associated with π. Note that the orbit o(ϕ0) of ϕ0 := ((0, 0), γ, φ0) for the
coadjoint action of K can be identify to o(φ0) via φ→ ((0, 0), γ, φ).

In the present situation, Proposition 3.3 can be reformulated as follows.

Proposition 8.1. Let X = ((a, b), c, A) ∈ gc. Then, for each f ∈ H and each
Z = ((z, 0), 0, 0),∈ D, we have

(dπ(X)f)(Z) = dρ0(A)f(Z) + γ(ic− 1
2bz)f(Z)− dfZ((a+Az, 0), 0, 0).

Now consider the Hilbert space H0 of all holomorphic functions f0 : D → C
such that

‖f‖20 =

∫
D
|f(Z)|2 e−γ|z|

2/2 dµ(Z) < +∞.

Then for each Z ∈ D there exists a coherent state e0
Z ∈ H0 such that f(Z) =

〈f, e0
Z〉0 for each f ∈ H0. More precisely, for each Z = ((z, 0), 0, 0), W =

((w, 0), 0, 0) ∈ D, we have e0
Z(W ) = eγz̄w/2.

Clearly, one has H = H0 ⊗ V . For f0 ∈ H0 and v ∈ V , we denote by
f0 ⊗ v the function Z → f0(Z)v. Moreover, if A0 is an operator of H0 and A1

is an operator of V then we denote by A0 ⊗ A1 the operator of H defined by
(A0 ⊗A1)(f0 ⊗ v) = A0f0 ⊗A1v.

Let π0 be the unitary irreducible representation of Hn on H0 defined by

(π0((z0, z̄0), c0)f0)(Z) = exp
(
iγc0 + γ

2 z̄0z − γ
2 |z0|2

)
f0((z − z0, 0), 0, 0)

for each Z = ((z, 0), 0, 0) ∈ D and let σ0 be the left-regular representation of
K0 on H0, that is, (σ0(h)f0)(Z) = f0(h−1 · Z). Then we have

π((z0, z̄0), c0, h) = π0((z0, z̄0), c0) ◦ σ0(h)⊗ ρ0(h)

for each z0 ∈ Cn, c0 ∈ R and h ∈ K0. This is precisely Formula (3.18) in [7].
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9. Berezin and Stratonovich-Weyl symbols for Heisenberg
motion groups

In this section, we first establish a decomposition formula for the Berezin sym-
bol of an operator on H of the form A0⊗A1 where A0 is an operator of H0 and
A1 is an operator of V . As an application, we compute explicitely the Berezin
and the Stratonovich-Weyl symbols of the representation operators.

We also need here the Berezin calculus for operators on H0. Recall that the
Berezin symbol S0(A0) of an operator A0 on H0 is the function on D defined
by

S0(A0)(Z) :=
〈A0 e

0
Z , e

0
Z〉

〈e0
Z , e

0
Z〉

= e−γ|z|
2/2 (A0e

0
Z)(Z),

see, for instance, [12]. In particular, S0 is Hn-equivariant with respect to π0.
Let B0 := S0(S0)∗ be the corresponding Berezin transform.

On the other hand, recall that ϕ0 = ((0, 0), γ, φ0) and that we have identified
the coadjoint orbit o(ϕ0) of K with the coadjoint orbit o(φ0) of K0. Then, for
ϕ = ((0, 0), γ, φ), we can identify the coherent state eϕ on o(ϕ0) with the
coherent state eφ on o(φ0). Hence, the corresponding Berezin calculus can be
also identified.

Let f0 be a complex-valued function on D and f1 be a complex-valued
function on o(φ0). Then we denote by f0 ⊗ f1 the function on D × o(φ0)
defined by f0 ⊗ f1(Z, φ) = f0(Z)f1(φ).

Proposition 9.1. Let A0 be an operator on H0 and let A1 be an operator on
V . Let A := A0 ⊗A1. Then

1. For each Z ∈ D, we have S0(A)(Z) = S0(A0)(Z)A1.

2. For each Z ∈ D and each φ ∈ o(φ0), we have
S(A)(Z, φ) = S0(A0)(Z)s(A1)(φ), that is, S(A) = S0(A0)⊗ s(A1).

Proof. Let Z = ((z, 0), 0, 0) ∈ D and v ∈ V . We have

S0(A)(Z)v = e−γ|z|
2/2E∗ZAEZv = e−γ|z|

2/2A(EZv)(Z).

Now, recall that EZv = e0
Z ⊗ v. Then we get A(EZv) = A0e

0
Z ⊗ A1v and,

consequently,

S0(A)(Z)v = e−γ|z|
2/2(A0e

0
Z)(Z)A1v = S0(A0)(Z)A1.

This proves 1. Assertion 2 immediately follows from 1.

The preceding proposition is useful to compute the Berezin symbol of an
operator on H which is a sum of operators of the form A0⊗A1. This is precisely
the case of the representation operators π(g), g ∈ G and dπ(X), X ∈ gc and
then we have the following propositions.
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Proposition 9.2. Let g = ((z0, z̄0), c0, h) ∈ G. For each Z = ((z, 0), 0, 0) ∈ D
and each φ ∈ o(φ0), we have

S(π(g))(Z, φ)

= exp γ
(
ic0 + 1

2 z̄0z − 1
4 |z0|2 − 1

2 |z|
2 + 1

2 z̄h
−1(z − z0)

)
s(ρ0(h))(φ).

Proof. Recall that, for each g = ((z0, z̄0), c0, h) ∈ G, we have

π(g) = π0((z0, z̄0), c0) ◦ σ(h)⊗ ρ0(h).

Then the result follows from Proposition 9.1.

Proposition 9.3. 1. For each X = ((a, b), c, A) ∈ gc, Z = ((z, 0), 0, 0) ∈ D
and φ ∈ o(φ0), we have

S(dπ(X))(Z, φ) = iγc− γ

2
(az̄ + bz + z̄(Az)) + s(dρ0(A))(φ).

2. For each X = ((a, b), c, A) ∈ gc and Z = ((z, 0), 0, 0) ∈ D and φ ∈ o(φ0),
we have S(dπ(X))(Z, φ) = i〈Ψ(Z, φ), X〉 where the diffeomorphism Ψ :
D × o(φ0)→ O(ϕ0) is defined by

Ψ(Z, φ) =
(
−γ(z, z̄), γ, φ− γ

2 (z, z̄) × (z, z̄)
)
.

Proof. Assertion 1 follows from Proposition 3.3 and Proposition 9.1 and Asser-
tion 2 follows from the equality Ψ(Z, φ) = Ad∗(gZ)ϕ0.

By adapting Proposition 6.3 to the present situation, we get the following
decomposition of the Berezin transform B = SS∗.

Proposition 9.4. For each f ∈ L2(D × o(φ0)), we have

B(f)(Z,ψ) =

∫
D×o(φ0)

k(Z,W,ψ, φ) f(W,φ) dµ(W )dν(φ)

where

k(Z,W,ψ, φ) = e−γ|z−w|
2/2 |〈eψ, eφ〉V |2

〈eφ, eφ〉V 〈eψ, eψ〉V
.

In particular, for each f0 ∈ L2(D) and f1 ∈ L2(o(φ0)), we have B(f0⊗f1) =
B0(f0)⊗ b(f1).

Proof. We can compute k(Z,W,ψ, φ) (see Proposition 6.3) as follows. Let
Z = ((z, 0), 0, 0) and W = ((w, 0), 0, 0) ∈ D. Then we have

g−1
Z gW =

(
(−z + w,−z̄ + w̄),− i

4
(zw̄ − z̄w), In

)
.
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Thus

κ(g−1
Z gW ) =

(
(0, 0),− i

4
(zz̄ + ww̄ − 2z̄w), In

)
.

Consequently, we get

ρ(κ(g−1
Z gW ))−1 = e−γ(|z|2+|w|2−2z̄w)/4 IV .

Since we have
|e−γ(|z|2+|w|2−2z̄w)/4|2 = e−γ|z−w|

2/2,

the first assertion follows from Proposition 6.3. The second assertion is an
immediate consequence of the first one.

In the following proposition, we study the form of the function

S(dπ(X1X2 · · ·Xq))

for X1, X2, . . . , Xq ∈ gc.

Proposition 9.5. Let X1, X2, . . . , Xq ∈ gc. Then

1. The function S(dπ(X1X2 · · ·Xq))(Z, φ) is a sum of terms of the form

P (Z)Q(Z̄)s(dρ0(Y1Y2 · · ·Yr))(φ)

where P , Q are polynomials of degree ≤ q, r ≤ q and Y1, Y2, . . . , Yr ∈ kc0.

2. We have S(dπ(X1X2 · · ·Xq)) ∈ L2(D × o(φ0)).

Proof. 1. By using Proposition 3.3, we can verify by induction on q that, for
each X1, X2, . . . , Xq ∈ gc, dπ(X1X2 · · ·Xq) is a sum of terms of the form

P (Z)dρ0(Y1Y2 · · ·Yr)∂i1∂i2 · · · ∂is

where P is a polynomial of degree ≤ q, r, s ≤ q and Y1, Y2, . . . , Yr ∈ kc0. Here
we write as usual Z = ((z, 0), 0, 0) with z ∈ Cn and ∂i stands for the derivative
with respect to zi.

Taking Proposition 9.1 into account, this implies that S(dπ(X1X2 · · ·Xq))
is a sum of terms of the form

P (Z)S0(∂i1∂i2 · · · ∂is)(Z) s(dρ0(Y1Y2 · · ·Yr))(φ).

But recall that e0
Z(W ) = eγz̄w/2. Then we have

(∂i1∂i2 · · · ∂ise0
Z)(W ) = w̄i1w̄i1 · · · w̄ise0

Z(W ).

Thus we see that

S0(∂i1∂i2 · · · ∂is)(Z) = e0
Z(Z)−1(∂i1∂i2 · · · ∂ise0

Z)(Z) = w̄i1w̄i1 · · · w̄is .
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The result follows.
2. This assertion is a consequence of 1. Indeed, the function P (Z)Q(Z̄)

with P , Q polynomials is clearly square-integrable with respect to µ0. On the
other hand, recall that V is finite-dimensional, that o(φ0) is compact and that
we have the property |s(A0)| ≤ ‖A0‖op for each operator A0 on V . Then we
see that s(dρ0(Y1Y2 · · ·Ys)) is bounded hence square-integrable on o(φ0).

In the general case, by contrast to the preceding proposition, the function
S(dπ(X1X2 · · ·Xq)) is not usually square-integrable. However, when g is re-
ductive, we have proved that B can be extended to a class of fonctions which
contains S(dπ(X1X2 · · ·Xq)) for X1, X2, . . . , Xq ∈ gc and q ≤ qπ where qπ only
depends on π, see [18, 19].

Finally, we compute W (dπ(X)), X ∈ gc which is well-defined thanks to
the preceding proposition. Consider the Stratonovich-Weyl correspondences

W := B−1/2S, W0 := B
−1/2
0 S0 and w := b−1/2s on D × o(φ0), D and o(φ0),

respectively. Clearly, for any A0 operator on H0 and any A1 operator on V , we
have W (A0 ⊗A1) = W0(A0)⊗ w(A1) by Proposition 9.1 and Proposition 9.4.

Proposition 9.6. For each X = ((a, b), c, A) ∈ gc, Z = ((z, 0), 0, 0) ∈ D and
φ ∈ o(φ0), we have

W (dπ(X))(Z, φ) = icγ + w(dρ0(A))(φ) +
1

2
Tr(A)− γ

2
(az̄ + bz + z̄(Az)) .

Proof. Let ∆ := 4
∑n
k=1(∂zk∂z̄k) be the Laplace operator. Then it is well-

known that we have B0 = exp(∆/2γ), see [36]. Thus we get

W0 = exp(−∆/4γ)S0

and, by applying Proposition 9.3 and Proposition 9.4, we find that

W (dπ(X))(Z, φ) = icγ + w(dρ0(A))(φ)− γ

2
exp(−∆/4γ) (az̄ + bz + z̄(Az))

= icγ + w(dρ0(A))(φ) +
1

2
Tr(A)− γ

2
(az̄ + bz + z̄(Az)) .
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