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An analysis of the Stokes system with
pressure dependent viscosity
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Abstract. In this paper we study the existence and uniqueness of
the solution of the Stokes system, describing the flow of a viscous fluid,
in case of pressure dependent viscosity.
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1. Introduction

In his classical paper from 1848 [22] Stokes predicted that the viscosity of the
fluid can depend on the pressure. Those effects for various liquids have been
measured in many engineering papers, starting from the beginning of the 20-
th century (see e.g. [1, 2, 10, 13, 15] etc.). That effect is usually neglected
as it becomes important only in case of high pressure. Several models have
been used to describe that relation since. The most popular is probably the
exponential law

µ = µ0 exp (αp) (1)

usually called the Barus formula [1]. Here µ0 and α are the constants depend-
ing on the fluid. The formula seems to be reasonable for mineral oil, unless
the pressure is very high (larger then 0.5 MPa). The coefficient α typically
ranges between 1 and 10−8 Pa−1. The lower end of the range corresponding
to paraffinic and the upper end to the nephtenic oils (see Jones et al [14]).
That formula is frequently used by engineers, sometimes combined with tem-
perature dependence. In case of two above mentioned laws explicit solutions
of the equations of motion, for some particular situations like unidirectional
and plane-parallel flows, were found in [12]. Discussion on other possibilities
for the viscosity-pressure formula and some historical remarks on the subject
can be found in the same paper. Several engineering papers can be found dis-
cussing other possible laws and their consistency. We mention for instance [19]
and [21].

From mathematical point of view supposing that the viscosity depends on
the pressure makes the Navier-Stokes system much more complicated. Not
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only that it brings in additional nonlinearity to the momentum equation, but
it changes the nature of the pressure as it cannot be eliminated from the sys-
tem using Helmholtz decomposition and it cannot be seen as just a Lagrange
multiplier. First important contribution was made by Renardy [20], where
the viscosity function p 7→ µ(p) is assumed to be sublinear at infinity and its
derivative is assumed to be bounded on R. In three interesting papers Gaz-
zola and Gazzola and Secchi have proved the existence theorems for stationary
and evolutional case under the assumption that the flow is governed by almost
conservative force, has small initial velocity (in non-stationary case) and that
µ is a smooth function globally bounded from below by some positive constant
(hypothesis that rules out the Barus formula). The approach is based on the
local inverse function theorem and relies on the fact that given data are small
enough. Since our next goal is to do the asymptotic analysis of the system in
thin domain, the small data assumption is not acceptable as such condition,
in general, depends on the domain, which is not practical when the domain
shrinks.

Interesting results were found about evolution Navier- Stokes system with
pressure and shear dependent viscosity in two papers [11] and [16], but under
certain technical assumptions on the viscosity that are not fulfilled by the Barus
formula. More precisely they assume that µ = µ(p, |D u|2), satisfies

C1

(
1 + |D|2

) r−2
2 |B|2 ≤ ∂

∂D
µ
(
p, |D|2

)
(B ⊗ B) ≤ C2

(
1 + |D|2

) r−2
2 |B|2

∂

∂p
µ
(
p, |D|2

)
|D|2 ≤ γ0

(
1 + |D|2

) r−2
4 ≤ γ0

∀ D , B ∈ Rn×n symmetric , p ∈ R , 1 < r < 2 .

Those assumptions allow them to derive the uniform a priori estimates for
the Galerkin approximation. Also, for simplicity, they take periodic boundary
conditions which is not useful for applications that we have in mind.

Reynolds lubrication equation with pressure dependent viscosity was stud-
ied in [17]. It’s well-posedness was proved as well as an apropriate maximum
principle. Finally the nonlocal effects obtained by homogenization of the same
equation in case of large Reynolds number were studied. An asymptotic model
for flow of the fluid with pressure dependent viscosity through thin domain was
derived in [18].

We use an approach here that does not need any small data assumption
and very general assumption on µ satisfied by Barus formula and other em-
piric laws that can be found in the literature. Indeed, we assume that the
function p 7→ µ(p) is convex in vicinity of −∞, that lims→−∞ µ′(s) = 0 and∫ 0

−∞
ds
µ(s) = +∞ . Those assumption are irrelevant from the physical point of

view since the dependence of the viscosity on the pressure becomes significant
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only for large positive pressure, while all our assumptions concern the behavior
of the viscosity for large negative pressures. Typically, the viscosity is taken to
be constant for negative pressures, and thus all our assumptions are trivially
fulfilled. We also work with physically relevant Dirichlet boundary condition.
However the approach works only for the stationary Stokes system. i.e. we do
not handle neither the inertial term nor the time derivative.

2. Position of the problem

The mathematical model can be written in the following form: Let Ω ⊂
Rd , d = 2, 3 be a bounded smooth domain. We assume that the bound-
ary is at least of class C2. The unknowns in the model are u - the velocity ,
p - the pressure . We recall that the stationary motion of the incompressible
viscous laminar flow is governed by the Navier-Stokes equations. Thus we write
the following system{

−2div [µ(p)Du ] + (u · ∇ )u +∇p = 0 , divu = 0 in Ω ,
u = g on ∂Ω .

(2)

If the Reynolds number is not too large it is reasonable to neglect the inertial
term and replace the Navier-Stokes by the Stokes system{

−2div [µ(p)Du ] +∇p = 0 , divu = 0 in Ω ,
u = g on ∂Ω .

(3)

We assume that the function g satisfies the following regularity and com-
patibility conditions

g ∈W 2−1/β,β(Ω)d , for some β > d (4)∫
∂Ω

g · n = 0 . (5)

For the dependence of the viscosity on the pressure we assume that p 7→ µ(p)
is a C2 function and that it satisfies the following conditions:∫ 0

−∞

ds

µ(s)
= +∞ (6)

lim
s→−∞

µ′(s) = 0 , and µ is convex in vicinity of −∞ . (7)

3. The idea

For the sake of simplicity, in this chapter, we assume that µ satisfies the Barus
formula (1). Then

∇p = 2div (µ(p) Du) = µ(p) ∆u + 2µ′(p)∇pDu

= µ0 e
αp (∆u + 2α∇p Du) .
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Dividing by µ0 e
αp we get

−∆u +
1

µ0
e−αp∇p = 2α ∇p Du .

We now look for the function q such that

1

µ0
e−αp∇p = ∇q .

Obviously there is a continuum of such functions given by

q =
1

αµ0

(
e−ασ − e−αp

)
, (8)

where σ ∈ R is arbitrary . We can use that liberty in choice of σ to get what
we want. Now

∇p = µ0 e
αp ∇q =

µ0

e−ασ − αµ0q
∇q .

Thus our system becomes

−∆u +∇q = 2
αµ0

e−ασ − αµ0q
∇q Du . (9)

Obviously

lim
σ→−∞

αµ0

e−ασ − αµ0q
= 0

meaning that the right-hand side can be made as small as we need by picking
large |σ| , σ < 0.

Equation (9) is to be complemented by

divu = 0 , u = g on ∂Ω

and it makes a nonlinear Stokes-like system, but with nonlinearity that can be
made as small as we want. Under the circumstances, it is not too complicated
to prove that it has a solution. Does it mean that our original problem (3) has
a solution? Well, it does if we can invert the transformation (8) and reconstruct
p from q. It is easy to see that

p(x) =
1

α
ln

(
1

e−ασ − αµ0 q(x)

)
.

For that formula to make sense, we need to make sure that

q(x) <
1

αµ0 eασ
, ∀ x ∈ Ω .

Once again that condition can be met by choosing σ small enough, i.e. σ < 0
and |σ| large enough.

The uniqueness of such solution can be proved since the transformed system
is the Stokes system with small nonlinear perturbation, and if the transformed
system has a unique solution, so does the original system. At least as long as
we look only for regular solutions.
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4. The main results

The statement of the main result is that our problem has a solution, which is
unique, under some technical conditions. In standard Stokes (or Navier-Stokes)
system the pressure is obviously determined only up to a constant, so it is not
unique unless we impose some additional condition, like prescribing the value
of its integral over Ω or prescribing the value of the pressure in some point
of the domain Ω. That is less obvious here, since the pressure appears in the
viscosity formula. However, it turns out that similar condition is needed here
to fix the pressure.

4.1. Existence theorem

Theorem 1. Let g satisfy (4) and (5). Assume, in addition that (6) and (7)
hold. Then the problem (3) has a solution (u, p) ∈ X = W 2,β(Ω)d × W 1,β(Ω).

4.2. Existence proof

4.2.1. Transformation of the system

We slightly generalize the idea presented in chapter 3, for general viscosity-
pressure relation, and give all the technical details.

So, for some σ ∈ R we define two mappings

B(p, σ) =

∫ p

σ

ds

µ(s)
(10)

As p 7→ 1
µ(p) is continuous and positive, B is of class C1. Since

∂B

∂p
(p, σ) =

1

µ(p)
> 0

the function B( · , σ) : R 7→ R is strictly increasing (and thus injective), for any
parameter σ. Furthermore

ImB( · , σ) = [M−σ ,M
+
σ ] ,

where

M+
σ = lim

p→+∞
B(p, σ) =

∫ +∞

σ

ds

µ(s)
, M−σ = lim

p→+∞
B(p, σ) = −

∫ σ

−∞

ds

µ(s)
. (11)

If the above integrals are divergent we take their value to be +∞. We can
now define another function

H( · , σ) = B−1( · , σ) . (12)
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Thus q 7→ H(q, σ) is an inverse of the function p 7→ B(q, σ) , while σ is treated
only as a parameter. Obviously H( · , σ) : [M−σ ,M

+
σ ] → R is well defined,

strictly increasing and smooth. Furthermore

∂H

∂q
(q, σ) = µ(p) = µ(H(q, σ)) .

Next we define the function

b(q, σ) = 2µ′(p) = 2µ′(H(q, σ)) (13)

that we need in the sequel. Function µ′ is defined on R, but H( · , σ) is defined
only on [M−σ ,M

+
σ ], thus the domain of b( · , σ) is [M−σ ,M

+
σ ] . As µ and H are

smooth b is continuous. Using the assumptions on µ we prove the following
important technical result:

Lemma 1. Let µ : R→ R satisfy the following hypothesis

1.)

∫ 0

−∞

ds

µ(s)
= +∞

2.) µ is convex in vicinity of −∞ and lim
s→−∞

µ′(s) = 0 .

Then

M−σ = −∞ , lim
σ→−∞

M+
σ = +∞ (14)

lim
σ→−∞

b(q, σ) = 0 , for any q ∈ R . (15)

Proof. First of all, 1.) means that M−σ = −∞ and that

lim
σ→−∞

M+
σ =

∫ +∞

−∞

ds

µ(s)
=∞ .

Next, since b(q, σ) = µ′ (H(q, σ)) we only need to see that assumption 1.)
implies that

lim
σ→−∞

H(q, σ) = −∞ . (16)

But that is clear, because the mapping σ 7→ H(q, σ) is strictly increasing and
unbounded from below. Indeed

∂

∂σ
H(q, σ) =

µ (H(q, σ))

µ(σ)
> 0 .
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On the other hand the mapping σ 7→ H(q, σ) cannot be bounded from below.
Supposing that there exists some γ(q) = infσ∈RH(q, σ) ∈ R implies that

q =

∫ H(q,σ)

σ

ds

µ(s)
≥
∫ γ(q)

σ

ds

µ(s)
.

Now the assumption 1.) leads to

q = lim
σ→−∞

inf

∫ H(q,σ)

σ

ds

µ(s)
≥ lim
σ→−∞

∫ γ(q)

σ

ds

µ(s)
=

∫ γ(q)

−∞

ds

µ(s)
= +∞ .

Thus σ 7→ H(q, σ) is strictly increasing and unbounded from below and
consequently

lim
σ→−∞

H(q, σ) = −∞ .

Then, since µ′ tends to zero at −∞ we have

b(q, σ) = 2µ′(H(q, σ))→ 0 , as σ → −∞ ,

We now define the new unknown

q = B(p, σ) (17)

We can now rewrite our system in terms of new unknown and it reads

−∆u +∇q = b(q, σ)Du ∇q , divu = 0 in Ω , (18)

u = g on ∂Ω . (19)

Recall that, due to (15)

lim
σ→−∞

b(q, σ) = 0 , for any q . (20)

Example 1. In case of Barus law µ(p) = µ0 e
αp we have

B(p, σ) =
1

αµ0

(
e−ασ − e−αp

)
, H(q, σ) =

1

α
ln

1

e−ασ − αµ0q
.

Furthermore

b(q, σ) ≡ 2µ′(H(q, σ)) =
2αµ0

e−ασ − αµ0q
, M+

σ =
e−ασ

αµ0
, M−σ = −∞ .
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4.2.2. The proof of Theorem 1

The idea is to define the mapping T : X = W 2,β(Ω)d×W 1,β(Ω)→ X by taking
T (v, q) = (w, π) where (w, π) is the solution to the problem

−∆w +∇π = b(q, σ)Dv ∇q in Ω , (21)

divw = 0 in Ω , w = g on ∂Ω ,

∫
Ω

π = 0 . (22)

The classical result by Cattabriga [3](see Appendix A) implies, for any
β > d and any (v, q) ∈ W 2,β(Ω)d ×W 1,β(Ω) the existence of such (w, π) ∈
W 2,β(Ω)×W 1,β(Ω) . Since we have imposed∫

Ω

π = 0 , (23)

the solution is unique. Furthermore, assuming that

|(v, q)|X ≡ |v|W 2,β(Ω) + |q|W 1,β(Ω) ≤M ,

∫
Ω

q = 0 . (24)

and using (45), we obtain

|w|W 2,β(Ω) + |π|W 1,β(Ω) ≤ Cβ
(
|b(q, σ)|L∞(Ω)|Dv|L∞(Ω)|∇q|Lβ(Ω) + (25)

+|g|W 2−1/β,β(∂Ω)

)
≤ Cβ

(
M2C(β,∞)2|b(q, σ)|L∞(Ω) + |g|W 2−1/β,β(∂Ω)

)
.

For any x ∈ Ω
|q(x)| ≤ C(β,∞) M ≡M . (26)

As µ is convex in vicinity of −∞, there exists some s0 < 0 such that
s 7→ µ(s) is convex for all s < s0.

For any η < 0 there exists σ0 < 0 such that for any σ < σ0

H(q(x), σ) < H(M,σ) < η .

We choose η < s0 . Due to the convexity of µ we know that µ′ is increasing for
s < −s0 so that for all σ < σ0

b(q(x), σ) = µ′(H(q(x), σ)) < µ′(H(M,σ)) = b(M,σ) . (27)

Now, due to the Lemma 1

lim
σ→−∞

|b(M,σ)| = 0 . (28)
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Thus, for any x ∈ Ω and for any ε > 0, there exists σ0 such that for any σ < σ0

|b(q(x), σ)|L∞(Ω) ≤ b(M,σ) ≤ ε

CβM2C(β,∞)2
.

For
G = |g|W 2−1/β,β(∂Ω) (29)

we choose
M = 2Cβ G (30)

and for ε < G (24) and (25) imply that

|(w, π)|X ≡ |w|W 2,β(Ω) + |π|W 1,β(Ω) < M . (31)

It proves that T maps the ball BM ⊂ X of radius M in itself. To apply the
Tychonoff fixed point theorem it remains to prove that T is weakly continuous.
As the ball BM is metrizable in weak topology, weak sequential continuity will
be enough. To do so, we assume that the sequence (vn, qn) converges weakly in
X to some (v, q) . Due to the compact embedding W 1,β(Ω) ⊂ C(Ω) we know
that Dvn is bounded and strongly convergent in C(Ω), while ∇qn is bounded
in Lβ(Ω).

Let (wn, πn) = T (vn, qn). Since T maps BM in itself, the sequence (wn, πn)
is bounded in X. Furthermore, we can extract a subsequence, denoted by the
same symbol, such that

wn ⇀ w weakly in W 2,β(Ω)d (32)

qn ⇀ q weakly in W 1,β(Ω) . (33)

Compact embedding W 1,β(Ω) ⊂ C(Ω) and (31) implies the strong convergence

wn → w in C1(Ω)d (34)

qn → q in Lσ(Ω) and in C(Ω) . (35)

Due to the continuity of b, we consequently get

b(qn, σ)→ b(q, σ) in C(Ω) . (36)

That is enough to pass to the limit in (21), (22). Proving that T (vn, qn) ⇀
T (v, q) weakly in X means that T : BM → BM is weakly continuous. Now the
Tychonoff fixed point theorem implies the existence of solution (u, q) ∈ BM of
the transformed system (18), (19). To prove that (u, p), p = H(q, σ), with H
defined by (12), is the solution to the original system (3) we need to verify that
q(x) is in the range of function H( · , σ) , ImH( · , σ) = [M−σ ,M

+
σ ], for some

σ < 0. We recall that M±σ were defined by (11) . Under the assumption (7)
Lemma 1 states that M−σ = −∞ so that we only need to verify that q(x) ≤M+

σ

, ∀x ∈ Ω , which is fulfilled (again Lemma 1) for sufficiently large negative σ.
Indeed, we know that q(x) ≤M . It is therefore sufficient to chose σ such that
M+
σ ≥M .
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4.3. Uniqueness theorem

The uniqueness of the solution can, in general, be proved only if the given
boundary data is not too large and the pressure is not too high. The con-
struction that we have used to prove the existence of the solution leads to the
unique solution of that form. We recall that for such solution the velocity u and
the transformed pressure q = B(p, σ) remain inside the ball BM in X for an
appropriate choice of M . However, for general boundary data, we cannot rule
out the possibility that there are some other solutions for which (u, q) /∈ BM .
For our solution (27) and (28) hold, so that the right hand side in the trans-
formed equation (19) can be made as small as we want. Thus supposing that
the problem (19) has two solutions (u, q), (w, η) in X. We denote by

E = u−w , e = q − η .

Then, obviously

E = 0 on ∂Ω . (37)

On the other hand, due to (13), (15), for given ε > 0 we can choose σ in
definition of b such that

|b(q, σ)∇q D u|Lβ(Ω) ≤
ε

2Cβ
, |b(η, σ)∇η Dw|Lβ(Ω) ≤

ε

2Cβ
, (38)

where Cβ > 0 is the constant from (45) Since the difference (E, e) satisfies the
Stokes system

−∆E +∇e = b(q, σ)∇q D u− b(η, σ)∇η Dw

and the boundary condition (37), the standard a priori estimate (45) implies

|E|W 2,β(Ω) + |e|W 1,β(Ω)/R ≤ ε .

As ε was arbitrary, we conclude that E = 0 and e = const. That proves the
uniqueness of the velocity since it is independent on choice of σ. On the other
hand q and η do depend on σ. However their difference does not since

e(x) = q(x)− η(x) =

∫ p(x)

π(x)

ds

µ(s)
,

with p = H(q, σ) , π = H(η, σ). So, if we prescribe the mean value of the
transformed pressure , i.e. if we put∫

Ω

q =

∫
Ω

η = 0 , (39)
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we have q = η and then∫ p(x)

π(x)

ds

µ(s)
= 0 for any x ∈ Ω .

Functions 1/µ, p, π are continuous and 1/µ is positive, so that p(x) = π(x).
Thus, there can be only one solution constructed by transforming the pressure
q = B(p, σ) and solving (19).

As for the general case, we were only able to prove weaker result.
First of all, we need to assume that µ is increasing, which is physically reason-
able. We also require that µ is convex, not only in vicinity of −∞ but also in
vicinity of +∞. More precisely, we assume that there exists some ξ0 ≥ 0 such
that ξ 7→ µ(ξ) is convex for ξ > ξ0 . Next, suppose that µ is smooth and define

µ′ = sup
ξ≤ξ0
|µ′(ξ)| .

It is well known (see e.g. Galdi [5]) that, for any ψ ∈ L2(Ω) such that∫
Ω

ψ = 0

there exists z ∈ H1(Ω) such that div z = ψ
z = 0 on ∂Ω
|z|H1(Ω) ≤ Cdiv|ψ|L2(Ω) ,

(40)

with Cdiv depending only on the domain Ω.
We can now formulate the uniqueness result:

Theorem 2. Let M be defined by (26), (30) and (29). Assume that

µ′ M Cdiv

(
1 +

√
µ(ξ0)

)
< 1 . (41)

Then the problem (3) has only one solution (u, p) ∈ X = W 2,β(Ω)d × W 1,β(Ω)
such that

p(x) ≤ ξ0 , x ∈ Ω .

Proof. First of all, it is sufficient to prove the uniqueness of the pressure, since
it implies the uniqueness of the velocity. Indeed, for given pressure the viscosity
is given and the system is linear with respect to velocity.

If p(x) ≤ ξ0 then
µ(p(x)) ≤ µ(ξ0) , x ∈ Ω .
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Let (w, π) ∈ X be the solution constructed in Theorem 1 and let (u, p) be
any other solution. Then, subtracting the equations (3) for (u, p) , (w, π) and
testing with u−w gives∫

Ω

µ(p) |D (u−w)|2 =

∫
Ω

[µ(p)− µ(π)] D (u−w)Dw ≤

≤ µ′ |Dw|L∞(Ω) |D(u−w)|L2(Ω) .

Since
|Dw|L∞(Ω) ≤ C(∞, β)|w|W 2,β(Ω) ≤M

we get
|
√
µ(p) D (u−w)|L2(Ω) ≤ µ′ M . (42)

Now, taking z such that

div z = p− π in Ω , z = 0 on ∂Ω

|z|H1(Ω) ≤ Cdiv |p− π|L2(Ω) ,

and testing (3) with it, we obtain, using (42)∫
Ω

(p− π)2 =

∫
Ω

(p− π) div z =

∫
Ω

[µ(p)− µ(π)] Dw Dz +

+

∫
Ω

µ(p)D (u−w)Dz ≤ µ′ M Cdiv

(
1 +

√
µ(ξ0)

)
|p− π|2L2(Ω) .

The result now follows from the assumption (41).

A. Technical results

It is well known (see e.g. Cattabriga [3]) that the Stokes system

−∆v +∇π = f , divv = 0 in Ω (43)

v = h on ∂Ω . (44)

with f ∈ Lβ(Ω)d and h ∈W 2−1/β,β(∂Ω)d, satisfying∫
∂Ω

h · n = 0 ,

admits a solution (v, π) ∈ X = W 2,β(Ω)d × W 1,β(Ω) which is unique (π up to
an additive constant) . Furthermore it satisfies the following estimate

|v|W 2,β(Ω) + |π|W 1,β(∂Ω)/R ≤ Cβ
(
|f |Lβ(Ω) + |h|W 2−1/β,β(∂Ω)

)
. (45)

We recall that for β > n the embedding W 1,β(Ω) ⊂ L∞(Ω) holds true. We
denote by C(β,∞) the constant such that

|φ|L∞(Ω) ≤ C(β,∞) |φ|W 1,β(Ω) , ∀ φ ∈W 1,β(Ω) . (46)
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Bijenička 30, 10000 Zagreb, Croatia
E-mail: emarusic@math.hr

Received December 1, 2013
Revised July 20, 2014


