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1. Introduction

In the preceding articles of the author [21, 23] line integration methods of par-
tial differential equations (PDE) over octonions and Cayley-Dickson algebras
were described [1, 2, 10]. Such technique is based on decompositions of par-
tial differential operators (PDO) into products of PDO of lower order. The
present paper is devoted to investigations of such decompositions. Besides
PDO with differentiable coefficients, PDO with generalized and discontinuous
coefficients are studied as well. This permits to integrate not only elliptic, but
also hyperbolic and parabolic PDE of the second and higher orders developing
further Dirac’s approach. It is important for many-sided applications of PDE
[4, 9, 11, 25, 28, 29], where differential equations over the real and complex
fields were considered. But recently substantial interest was evoked by PDE
over Clifford algebras [5, 6, 7, 8, 13].

In previous articles of the author (super)-differentiable functions of Cayley-
Dickson variables and their non-commutative line integrals were investigated
[14, 15, 19, 24]. Furthermore, in the works [18, 20, 22] differential equations
and their systems over octonions and quaternions were studied.

Main results of this paper are obtained for the first time.

2. Decompositions of PDE

Henceforward, notations and definitions of the article [21] are used.
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2.1. Transformations of the first order PDO over the
Cayley-Dickson algebras

We consider the first order Dirac’s type operator in the form:

Υf =

2v−1∑
j=0

(∂f/∂zj) ηj(z) , (1)

with either ηj(z) = i∗jψj(z) or ηj(z) = φ∗j (z) ∈ Av for each j (see Theo-
rems 2.4.1 and 2.5.2 in [21]). To simplify the operator Υ one can use a change
of variables. For it we seek the change of variables x = x(z) satisfying the
conditions:

2v−1∑
j=0

(∂xl/∂zj)ωj(z) = tl , (2)

where tl ∈ Av is a constant for each l, while each yet unknown function ωj
is supposed to be z-differentiable subjected to the condition that the resulting
matrix Ω is not degenerate, i.e. its rows are real-independent as vectors (see
below), when ηj is not identically zero. Certainly, (∂xl/∂zj) ∈ R are real
partial derivatives, since xl and zj are real coordinates, where z = z0i0 + . . .+
z2v−1i2v−1, while xj , zj ∈ R for each j, whilst i0,. . . ,i2v−1 are the standard
basis generators of the Cayley-Dickson algebra Av over the real field R so that
i0 = 1, i2j = −1 and i∗j = −ij and ijik = −ikij for each j 6= k ≥ 1. We suppose
that the functions ηj(z) are linearly independent over the real field for each
Cayley-Dickson number z in the domain U in Av. Using the standard basis of
generators {ij : j = 0, . . . , 2v − 1} of the Cayley-Dickson algebra Av and the
decompositions

ωj =
∑
k

ωj,k ik and tj =
∑
k

tj,k ik

with real elements ωj,k and tj,k for all j and k we rewrite system (2) in the
matrix form:

(∂xl/∂zj)l,j=0,...,2v−1Ω = T, (3)

where

Ω = (ωj,k)j,k=0,...,2v−1, T = (tj,k)j,k=0,...,2v−1.

It is supposed that the functions ωj(z) are arranged into the family
{ωj : j = 0, . . . , 2v−1} as above and are such that the matrix Ω = Ω(z) is non-
degenerate for all Cayley-Dickson numbers z in the domain U . For example,
this is always the case, when |ωj(z)| > 0 and Re[ωj(z)ωk(z)∗] = 0 for each
j 6= k and z ∈ U . There, particularly ωj(z) = ηj(z) can also be taken for all
j = 0, . . . , 2v − 1 and z ∈ U . Therefore, equality (3) becomes equivalent to

(∂xl/∂zj)l,j=0,...,2v−1 = TΩ−1 . (4)



DECOMPOSITIONS OF PDE 21

We take the real matrix T = T (z) of the same rank as the real matrix Ω =
(ωj,k)j,k=0,...,2v−1. Thus (4) is the linear system of PDE of the first order
over the real field R. It can be solved by the standard methods (see, for
example, [25]).

We remind how each linear partial differential equation (3) or (4) can be
resolved. One writes it in the form:

X1(x1, . . . , xn, u)∂u/∂x1 + . . .+Xn(x1, . . . , xn, u)∂u/∂xn
= R(x1, . . . , xn, u) ,

(5)

with u and x1, . . . , xn here instead of xl and z0, . . . , z2v−1 in (3) seeking si-
multaneously a suitable function R corresponding to tl,k. A function u =
u(x1, . . . , xn) continuous with its partial derivatives ∂u/∂x1, . . . ,∂u/∂xn and
defined in some domain V of variables x1, . . . , xn in Rn making (5) the identity
is called a solution of this linear equation. If the right side R = 0 identically,
then the equation is called homogeneous. A solution u = const of the homoge-
neous equation

X1(x1, . . . , xn, u)∂u/∂x1 + . . .+Xn(x1, . . . , xn, u)∂u/∂xn = 0 (6)

is called trivial. Then one composes the equations:

dx1/X1(x) = dx2/X2(x) = . . . = dxn/Xn(x) , (7)

where x = (x1, . . . , xn). This system is called the system of ordinary differen-
tial equations in the symmetric form corresponding to the homogeneous linear
equation in partial derivatives. It is supposed that the coefficients X1, . . . , Xn

are defined and continuous together with their first order partial derivatives by
x1, . . . , xn and that X1, . . . , Xn are not simultaneously zero in a neighborhood
of some point x0. Such point x0 is called non singular. For example when the
function Xn is non-zero, then system (7) can be written as:

dx1/dxn = X1/Xn, . . . , dxn−1/dxn = Xn−1/Xn . (8)

A system of n differential equations

dyk/dx = fk(x, y1, . . . , yn) , k = 1, . . . , n , (9)

is called normal of the n-th order. It is called linear if all functions fk depend
linearly on y1, . . . , yn. Any family of functions y1, . . . , yn satisfying the system
of n differential equations (9) in some interval (a, b) is called its solution.

A function g(x, y1, . . . , yn) different from a constant identically and differen-
tiable in a domain D and such that its partial derivatives ∂g/∂y1,. . . ,∂/∂yn are
not simultaneously zero in D is called an integral of system (9) in D if the total
differential dg = (∂g/∂x)dx+ (∂g/∂y1)dy1 + . . .+ (∂g/∂yn)dyn becomes iden-
tically zero, when the differentials dyk are substituted on their values from (9),
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that is (∂g(x, y)/∂x) + (∂g/∂y1)f1(x, y) + . . .+ (∂g(x, y)/∂yn)fn(x, y) = 0 for
each (x, y) ∈ D, where y = (y1, . . . , yn). The equality g(x, y) = const is called
the first integral of system (9). Thus system (8) satisfies conditions of the
theorem about an existence of integrals of the normal system.

It is supposed that each function fk(x, y) is continuous on D and satisfies
the Lipschitz conditions by variables y1, . . . , yn:

(L) |fk(x, y)− fk(x, z)| ≤ Ck|y − z|

for all (x, y) and (x, z) ∈ D, where Ck are positive constants. Then system (9)
has exactly n independent integrals in some neighborhood D0 of a marked
point (x0, y0) in D, when the Jacobian ∂(g1, . . . , gn)/∂(y1, . . . , yn) is not zero
on D0 (see Section 5.3.3 [25]).

In accordance with Theorem 12.1,2 [25] each integral of system (7) is a
non-trivial solution of equation (6) and vice versa each non-trivial solution of
equation (6) is an integral of (7). If g1(x1, . . . , xn), . . . , gn−1(x1, . . . , xn) are
independent integrals of (7), then the function

u = Φ(g1, . . . , gn−1) , (10)

where Φ is an arbitrary function continuously differentiable by g1, . . . , gn−1, is
the solution of (6). A solution provided by formula (10) is called a general
solution of equation (6).

To the non-homogeneous equation (5) the system

dx1/X1 = . . . = dxn/Xn = du/R , (11)

is posed. System (11) gives n independent integrals g1, . . . , gn and the general
solution

Φ(g1(x1, . . . , xn, u), . . . , gn(x1, . . . , xn, u)) = 0 (12)

of (5), where Φ is any continuously differentiable function by g1, . . . , gn. If
the latter equation is possible to resolve relative to u this gives the solution
of (5) in the explicit form u = u(x1, . . . , xn) which generally depends on Φ and
g1, . . . , gn. Therefore, formula (12) for different R and u and Xj corresponding
to tl,k and xl and ωj,k respectively can be satisfied, so that to solve equation (3)
or (4), where the variables xj are used in (12) instead of zj in (3) and (4),
k = 0, . . . , 2v − 1.

Thus after the change of the variables the operator Υ takes the form:

Υf =

2v−1∑
j=0

(∂f/∂xj) tj (13)

with constants tj ∈ Av. Undoubtedly, the operator Υ with j = 0, . . . , n,
2v−1 ≤ n ≤ 2v − 1 instead of 2v − 1 can also be reduced to the form Υf =
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∑n
j=0(∂f/∂xj)tj , when the rank is rank(ωj,k) = n+ 1 in a basis of generators

N0, . . . , Nn, where N0,. . . ,N2v−1 is a generator basis of the Cayley-Dickson
algebra Av over the real field R.

In particular, if the rank is rank(ωj,k) = m ≤ 2v and a matrix T contains
the unit upper left m × m block and zeros outside it, then tj = Nj for each
j = 0, . . . ,m− 1 can be chosen.

One can mention that direct algorithms of Theorems 2.4.1 and 2.5.2 [21] may
be simpler for finding the anti-derivative operator IΥ, than this preliminary
transformation of the partial differential operator Υ to the standard form (13).

2.2. Some notations

Let X and Y be two R linear normed spaces which also are left and right
Ar modules, where 1 ≤ r. Let Y be complete relative to its norm. We put
X⊗k := X ⊗R . . .⊗RX to be the k times ordered tensor product over R of X.
By Lq,k(X⊗k, Y ) we denote a family of all continuous k times R poly-linear
and Ar additive operators from X⊗k into Y . Then Lq,k(X⊗k, Y ) is also a
normed R linear and left and right Ar module complete relative to its norm.
In particular, Lq,1(X,Y ) is denoted also by Lq(X,Y ).

We present a normed spaceX as the direct sumX = X0i0⊕. . .⊕X2r−1i2r−1,
where X0,. . . ,X2r−1 are pairwise isomorphic real normed spaces. Moreover, if
A ∈ Lq(X,Y ) and A(xb) = (Ax)b or A(bx) = b(Ax) for each x ∈ X0 and
b ∈ Ar, then an operator A we call right or left Ar-linear respectively.

An R linear space of left (or right) k times Ar poly-linear operators is
denoted by Ll,k(X⊗k, Y ) (or Lr,k(X⊗k, Y ) respectively).

As usually a support of a function g : S → Ar on a topological space S
is by the definition supp(g) = cl{t ∈ S : g(t) 6= 0}, where the closure (cl) is
taken in S.

We consider a space of test function D := D(Rn, Y ) consisting of all infinite
differentiable functions f : Rn → Y on Rn with compact supports.

The following convergence is considered. A sequence of functions fn ∈ D
tends to zero, if all fn are zero outside some compact subset K in the Euclidean

space Rn, while on it for each k = 0, 1, 2, . . . the sequence {f (k)
n : n ∈ N}

converges to zero uniformly. Here as usually f (k)(t) denotes the k-th derivative
of f , which is a k times R poly-linear symmetric operator from (Rn)⊗k to Y ,
that is f (k)(t).(h1, . . . , hk) = f (k)(t).(hσ(1), . . . , hσ(k)) ∈ Y for each h1, . . . , hk ∈
Rn and every transposition σ : {1, . . . , k} → {1, . . . , k}, σ is an element of the
symmetric group Sk, t ∈ Rn. For convenience one puts f (0) = f . In particular,
f (k)(t).(ej1 , . . . , ejk) = ∂kf(t)/∂tj1 . . . ∂tjk for all 1 ≤ j1, . . . , jk ≤ n, where
ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 on the j-th place.

Such convergence in D defines closed subsets in this space D, their comple-
ments by the definition are open, that gives the topology on D. The space D
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is R linear and right and left Ar module.

By a generalized function of class D′ := [D(Rn, Y )]′ we call a continuous
R-linear Ar-additive function g : D → Ar. The set of all such functionals is
denoted by D′. That is, g is continuous, if for each sequence fn ∈ D, converging
to zero, a sequence of numbers g(fn) =: [g, fn) ∈ Ar converges to zero while n
tends to the infinity.

A generalized function g is zero on an open subset V in Rn, if [g, f) = 0 for
each f ∈ D equal to zero outside V . By a support of a generalized function g
is called the family, denoted by supp(g), of all points t ∈ Rn such that in each
neighborhood of each point t ∈ supp(g) the functional g is different from zero.
The addition of generalized functions g, h is given by the formula:

[g + h, f) := [g, f) + [h, f) . (14)

The multiplication g ∈ D′ on an infinite differentiable function w is given by
the equality:

[gw, f) = [g, wf) (15)

either for w : Rn → Ar and each test function f ∈ D with a real image
f(Rn) ⊂ R, where R is embedded into Y ; or w : Rn → R and f : Rn → Y .
A generalized function g′ prescribed by the equation:

[g′, f) := −[g, f ′) (16)

is called a derivative g′ of a generalized function g, where f ′∈D(Rn, Lq(R
n, Y )),

g′ ∈ [D(Rn, Lq(R
n, Y ))]′.

Another space B := B(Rn, Y ) of test functions consists of all infinite dif-
ferentiable functions f : Rn → Y such that the limit lim|t|→+∞ |t|mf (j)(t) = 0
exists for each m = 0, 1, 2, . . ., j = 0, 1, 2, . . .. Then analogously, a sequence

fn ∈ B is called converging to zero, if the sequence |t|mf (j)
n (t) converges to zero

uniformly on Rn\B(Rn, 0, R) for each m, j = 0, 1, 2, . . . and each 0 < R < +∞,
where B(Z, z,R) := {y ∈ Z : ρ(y, z) ≤ R} denotes a ball with center at z of ra-
dius R > 0 in a metric space Z with a metric ρ, whilst the Euclidean space Rn

is supplied with the standard norm. The family of all R-linear and Ar-additive
functionals on B is denoted by B′.

In particular we can take X = Aαr , Y = Aβr with 1 ≤ α, β ∈ Z. Fur-
thermore, analogous spaces D(U, Y ), [D(U, Y )]′, B(U, Y ) and [B(U, Y )]′ are
defined for domains U in Rn. For definiteness we write B(U, Y ) = {f |U : f ∈
B(Rn, Y )} and D(U, Y ) = {f |U : f ∈ D(Rn, Y )}.

It is said, that a function g : U → Av is locally integrable, if it is absolutely
integrable on each bounded λ measurable sub-domain V in U , i.e.∫

V
|g(z)|λ(dz) < ∞, where λ denotes the Lebesgue measure on U induced

by that of on its real shadow.
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A generalized function f is called regular if locally integrable functions

j,kf
1, lf

2 : U → Av exist such that

[f, ω) =

∫
U

∑
j,k,l

{
j,kf

1(z)kω(z)lf
2(z)

}
q(3)

λ(dz)

for each test function either ω ∈ B(U, Y ) or ω ∈ D(U, Y ) correspondingly,
where ω = (1ω, . . . , βω), kω(z) ∈ Av for each z ∈ U and all k, q(3) is a vector
indicating on an order of the multiplication in the curled brackets and it may
depend on the indices j, l = 1, . . . , α, k = 1, . . . , β.

We supply the space B(Rn, Y ) with the countable family of semi-norms

pα,k(f) := sup
x∈Rn

∣∣(1 + |x|)k∂αf(x)
∣∣ (17)

inducing its topology, where k = 0, 1, 2, . . .; α = (α1, . . . , αn), 0 ≤ αj ∈ Z. On
this space we take the space B′(Rn, Y )l of all Y valued continuous generalized
functions (functionals) of the form

f = f0i0 + . . .+ f2v−1i2v−1 and g = g0i0 + . . .+ g2v−1i2v−1 , (18)

where fj and gj ∈ B′(Rn, Y ), with restrictions on B(Rn,R) being real- or Ci =
R ⊕ iR- valued generalized functions f0, . . . , f2v−1, g0, . . . , g2v−1 respectively.
Let φ = φ0i0 + . . .+ φ2v−1i2v−1 with φ0, . . . , φ2v−1 ∈ B(Rn,R), then

[f, φ) =

2v−1∑
k,j=0

[fj , φk)ikij . (19)

Let their convolution be defined in accordance with the formula:

[f ∗ g, φ) =

2v−1∑
j,k=0

(
[fj ∗ gk, φ

)
ij)ik (20)

for each φ ∈ B(Rn, Y ). Particularly,

(f ∗ g)(x) = f(x− y) ∗ g(y) = f(y) ∗ g(x− y) (21)

for all x, y ∈ Rn due to formula (20), since the latter equality is satisfied for
each pair fj and gk (see also [3]).

2.3. The decomposition theorem of PDO over the
Cayley-Dickson algebras

We consider a partial differential operator of order u:

Af(x) =
∑
|α|≤u

aα(x)∂αf(x) , (22)
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where ∂αf = ∂|α|f(x)/∂xα0
0 . . . ∂xαnn , x = x0i0 + . . . xnin, xj ∈ R for each j,

1 ≤ n = 2r − 1, α = (α0, . . . , αn), |α| = α0 + . . . + αn, 0 ≤ αj ∈ Z. By the
definition this means that the principal symbol

A0 :=
∑
|α|=u

aα(x)∂α (23)

has α so that |α| = u and aα(x) ∈ Ar is not identically zero on a domain
U in Ar. As usually Ck(U,Ar) denotes the space of k times continuously
differentiable functions by all real variables x0, . . . , xn on U with values in Ar,
while the x-differentiability corresponds to the super-differentiability by the
Cayley-Dickson variable x.

Speaking about locally constant or locally differentiable coefficients we shall
undermine that a domain U is the union of sub-domains U j satisfying condi-
tions 2.2(D1, i−vii) [23] (or see Section 2.4 below) and U j∩Uk = ∂U j∩∂Uk for
each j 6= k. All coefficients aα are either constant or differentiable of the same
class on each Int(U j) with the continuous extensions on U j . More generally it
is up to a Cu or x-differentiable diffeomorphism of U respectively.

If an operator A is of the odd order u = 2s− 1, then an operator E of the
even order u+ 1 = 2s by variables (t, x) exists so that

Eg(t, x)|t=0 = Ag(0, x) (24)

for any g ∈ Cu+1([c, d]× U,Ar), where t ∈ [c, d] ⊂ R, c ≤ 0 < d, for example,
Eg(t, x) = ∂(tAg(t, x))/∂t.

Therefore, it remains the case of the operator A of the even order u =
2s. Take z = z0i0 + . . . + z2v−1i2v−1 ∈ Av, zj ∈ R. Moreover, operators
depending on a less set zl1 , . . . , zln of variables can be considered as restrictions
of operators by all variables on spaces of functions constant by variables zs with
s /∈ {l1, . . . , ln}.

Theorem 2.1. Let A = Au be a partial differential operator of an even order
u = 2s with (locally) either constant or variable Cs

′
or x-differentiable on U

coefficients aα(x) ∈ Ar such that it has the form

Af = cu,1(Bu,1f) + . . .+ cu,k(Bu,kf) , (25)

where each
Bu,p = Bu,p,0 +Qu−1,p (26)

is a partial differential operator of the order u by variables xmu,1+...+mu,p−1+1,
. . ., xmu,1+...+mu,p , mu,0 = 0, cu,k(x) ∈ Ar for each k, its principal part

Bu,p,0 =
∑
|α|=s

ap,2α(x)∂2α (27)
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is elliptic with real coefficients ap,2α(x) ≥ 0, either 0 ≤ r ≤ 3 and f ∈
Cu(U,Ar), or r ≥ 4 and f ∈ Cu(U,R). Then three partial differential op-
erators Υs and Υs

1 and Q of orders s and p with p ≤ u− 1 with (locally) either
constant or variable of the class Cs

′
or x-differentiable correspondingly on U

coefficients with values in Av exist and coefficients of the third operator Q may
be generalized functions, when coefficients of A are locally either constant or of
the class Cs

′
or x-differentiable and discontinuous on the entire domain U or

when s′ < s, r ≤ v, such that

Af = Υs(Υs
1f) +Qf . (28)

Proof. Certainly, we have ordQu−1,p ≤ u− 1, ord(A−A0) ≤ u− 1. We choose
the following operators:

Υsf(x) =

k∑
p=1

∑
|α|≤s; αq=0∀q<(mu,1+...+mu,p−1+1)

and αq=0∀q>(mu,1+...+mu,p)

(∂αf(x))[w∗pψp,α] (29)

and

Υs
1f(x) =

k∑
p=1

∑
|α|≤s; αq=0∀q<(mu,1+...+mu,p−1+1)

and αq=0∀q>(mu,1+...+mu,p)

(∂αf(x))[wpψ
∗
p,α] , (30)

where w2
p = cu,p for all p and ψ2

p,α(x) = −ap,2α(x) for each p and x, wp ∈ Ar,
ψp,α(x) ∈ Ar,v and ψp,α(x) is purely imaginary for ap,2α(x) > 0 for all α and
x, Re(wpIm(ψp,α)) = 0 for all p and α, Im(x) = (x − x∗)/2, v > r. There
Ar,v = Av/Ar is the real quotient algebra. The algebra Ar,v is considered with
the generators ij2r , j = 0, . . . , 2v−r − 1. Then a natural number v satisfying
the condition:

2v−r − 1 ≥
k∑
p=1

u∑
q=0

(
mp + q − 1

q

)
is sufficient, since as it is known the number of different solutions of the equation
α1 + . . .+ αm = q in non-negative integers αj is

(
m+q−1

q

)
, where(

m

q

)
=

m!

q!(m− q)!
denotes the binomial coefficient.

We have either ∂α+βf ∈ Ar for 0 ≤ r ≤ 3 or ∂α+βf ∈ R for r ≥ 4. Therefore,
we can take ψp,α(x) ∈ i2rqR, where q = q(p, α) ≥ 1, q(p1, α1) 6= q(p, α) when
(p, α) 6= (p1, α1).

Thus decomposition (28) is valid due to the following. For b = ∂α+βf(z)
and l = i2rp and w ∈ Ar one has the identities:

(b(wl))(w∗l) = ((wb)l)(w∗l) = −w(wb) = −w2b (31)



28 SERGEY V. LUDKOWSKI

and

(((bl)w∗)l)w = (((bw)l)l)w = −(bw)w = −bw2 (32)

in the considered in this section cases, since Ar is alternative for the param-
eter r ≤ 3, while R is the center of the Cayley-Dickson algebra (see formu-
las 2.2(13, 14) [21]).

This decomposition of the operator A2s is generally up to a partial differ-
ential operator of order not greater, than (2s− 1):

Qf(x) =

k∑
p=1

cu,pQu−1,p

+
∑

|α|≤s,|β|≤s;γ≤α,
ε≤β,|γ+ε|>0

2v−1∏
j=0

(
αj
γj

)(
βj
εj

)(∂α+β−γ−εf(x)
)[

(∂γηα(x))((∂εη1
β(x)

]
,

(33)

where operators Υs and Υs
1 are already written in accordance with the general

form

Υsf(x) =
∑
|α|≤s

(∂αf(x))ηα(x) ; (34)

Υs
1f(x) =

∑
|β|≤s

(∂βf(x))η1
β(x) . (35)

The coefficients of the operator Q may be generalized functions, since they
are calculated with the participation of partial derivatives of the coefficients
of the operator Υs

1, but the coefficients of the operators Υs and Υs
1 may be

locally either constant or of class Cs
′

or x-differentiable and discontinuous on
the entire U or s′ < s when for the initial operator A they are such.

When the operator A in formula (24) is with constant coefficients, then the
coefficients wp and ψp,α for Υm and Υm

1 can also be chosen constant and hence

Q−
∑k
p=1 cu,pQu−1,p = 0.

Corollary 2.2. Let suppositions of Theorem 2.1 be satisfied. Then a change
of variables (locally) either affine or variable C1 or x-differentiable on U cor-
respondingly on U exists so that the principal part A2,0 of A2 becomes with
constant coefficients, when ap,2α > 0 for each p, α and x.

Corollary 2.3. If two operators E = A2s and A = A2s−1 are related by
equation (24), and A2s is presented in accordance with formulas (25) and (26),
then three operators Υs, Υs−1 and Q of orders s, s− 1 and p ≤ 2s− 2 exist so
that

A2s−1 = ΥsΥs−1 +Q . (36)
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Proof. It remains to verify the inequality ord(Q) ≤ 2s−2 in the case of A2s−1,
where Q = {∂(tA2s−1)/∂t−ΥsΥs

1}|t=0. Indeed, the form λ(E) corresponding
to E is of degree 2s − 1 by x and each addendum of degree 2s in it is of
degree not less than 1 by t, consequently, the product of forms λ(Υs)λ(Υs

1)
corresponding to Υs and Υs

1 is also of degree 2s− 1 by x and each addendum
of degree 2s in it is of degree not less than 1 by t. But the principal parts of
λ(E) and λ(Υs)λ(Υs

1) coincide identically by variables (t, x), hence the order
satisfies the inequality ord({E − ΥsΥs

1}|t=0) ≤ 2s − 2. Let a(t, x) and h(t, x)
be coefficients from Υs

1 and Υs. Using the identities

a(t, x)∂t∂
γtg(x) = a(t, x)∂γg(x)

and
h(t, x)∂β∂t[a(t, x)∂γg(x)] = h(t, x)∂β [(∂ta(t, x))∂γg(x)]

for any functions g(x) ∈ C2s−1 and a(t, x) ∈ Cs,

ord[(h(t, x)∂β), (a(t, x)∂γ)]|t=0 ≤ 2s− 2

where ∂t = ∂/∂t, |β| ≤ s−1, |γ| ≤ s, [A,B] := AB−BA denotes the commuta-
tor of two operators, we reduce the term (ΥsΥs

1 +Q1)|t=0 from formula (28)to
the form prescribes by equation (36).

Remark 2.4. We consider operators of the form:

(Υk + βIr)f(z) :=

 ∑
0<|α|≤k

(∂αf(z))ηα(z)

+ f(z)β(z) ,

with ηα(z) ∈ Av, α = (α0, . . . , α2r−1), 0 ≤ αj ∈ Z for each j, |α| = α0 + . . .+
α2r−1, βIrf(z) := f(z)β, ∂αf(z) := ∂|α|f(z)/∂zα0

0 . . . ∂z
α2r−1

2r−1 , 2 ≤ r ≤ v <∞,
β(z) ∈ Av, z0, . . . , z2r−1 ∈ R, z = z0i0 + . . .+ z2r−1i2r−1.

Proposition 2.5. The operator (Υk + β)∗(Υk + β) is elliptic on the space
C2k(R2r ,Av), where (Υk + β)∗ denotes the adjoint operator (i.e. with adjoint
coefficients).

Proof. In view of formulas (1) and (29) the form corresponding to the principal
symbol of the operator (Υk + β)∗(Υk + β) is with real coefficients, of degree
2k and non-negative definite, consequently, the operator (Υk + β)∗(Υk + β) is
elliptic.

Example 2.6. Let Υ∗ be the adjoint operator defined on differentiable Av val-
ued functions f given by the formula:

(Υ + β)∗f =

 n∑
j=0

(∂f(z)/∂zj)φj(z)

+ f(z)β(z)∗ . (37)
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Thus we can consider the operator

Ξβ := (Υ + β)(Υ + β)∗ . (38)

From Proposition 2.5 we have that the operator Ξβ is elliptic as classified by its
principal symbol with real coefficients. Put Ξ = Ξ0. In the x coordinates from
Section 2.1 it has the simpler form:

(Υ + β)(Υ + β)∗f =

n∑
j=0

(∂2f/∂x2
j )|tj |2

+2
∑

0≤j<k≤n

(∂2f/∂xj∂xk)Re(tjt
∗
k)

+2

n∑
j=0

(∂f/∂xj)Re(t
∗
jβ) + {f |β|2

+

n∑
j=0

[f(∂β∗/∂xj)]tj} ,

(39)

because the coefficients tj are already constant. After a change of variables
reducing the corresponding quadratic form to the sum of squares

∑
j εjs

2
j we

get the formula:

ΥΥ∗f =

m∑
j=1

(∂2f/∂s2
j )εj , (40)

where sj ∈ R, εj = 1 for 1 ≤ j ≤ p and εj = −1 for each p < j ≤ m, m ≤ 2v,
1 ≤ p ≤ m depending on the signature (p,m− p).

Generally (see Formula (36)) we have

A = (Υ + β)(Υ1 + β1)f(z) = B0f(z) +Qf(z) , (41)

where the decomposition PDOs are given by the formulas:

B0f(z) =
∑
j,k

[
(∂2f(z)/∂zj∂zk)φ1

j (z)
∗]φ∗k(z) +

[
f(z)β1(z)

]
β(z) , (42)

Qf(z) =
∑
j,k

[
(∂f(z)/∂zj)(∂φ

1
j (z)

∗/∂zk)
]
φ∗k(z)

+
∑
j

[
(∂f(z)/∂zj)φ

1
j (z)

∗]β(z)

+
∑
k

[
f(z)(∂β1(z)/∂zk)

]
φ∗k(z)

(43)

and

(Υ1 + β1)f(z) =

∑
j

(∂f(z)/∂zj)φ
1
j (z)

∗

+ f(z)β1(z) . (44)
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The latter equations show that coefficients of the operator Q may be generalized
functions, when φ1

j (z) for some j or β1(z) are locally C0 or locally C1 functions,

while φk(z) for each k and β(z) are locally C0 functions on U . We consider
this in more details in the next section.

2.4. Partial differential operators with generalized
coefficients

Let an operator Q be given by the formula:[
Af, ω⊗(u+1)

)
=
[
Υs(Υs

1f) +Qf, ω⊗(u+1)
)

(45)

for each real-valued test function ω on a domain U . Initially it is considered
on a domain in the Cayley-Dickson algebra Av. But in the case when Q and
f depend on smaller number of real coordinates z0, . . . , zn−1 we can take the
real shadow of U and its sub-domain V of variables (z0, . . . , zn−1), where zk
are marked for example being zero for all n ≤ k ≤ 2v − 1. Thus we take a
domain V which is a canonical closed subset in the Euclidean space Rn, where
2v−1 ≤ n ≤ 2v − 1, v ≥ 2.

A canonical closed subset P of the Euclidean space X = Rn is called a
quadrant if it can be given by the condition P := {x ∈ X : qj(x) ≥ 0}, where
(qj : j ∈ ΛP ) are linearly independent elements of the topologically adjoint
space X∗. Here ΛP ⊂ N (with card(ΛP ) = k ≤ n) and k is called the index of
P . If x ∈ P and exactly j of functionals qi’s satisfy the equality qi(x) = 0 then
x is called a corner of index j. That is a quadrant P is affine diffeomorphic
with the domain Pn =

∏n
j=1[aj , bj ], where −∞ ≤ aj < bj ≤ ∞, [aj , bj ] := {x ∈

R : aj ≤ x ≤ bj} denotes the segment in R. This means that there exists a
vector p ∈ Rn and a linear invertible mapping C on Rn so that C(P )−p = Pn.
We put tj,1 := (t1, . . . , tj , . . . , tn : tj = aj), t

j,2 := (t1, . . . , tj , . . . , tn : tj = bj).
Consider t = (t1, . . . , tn) ∈ Pn.

Then a manifold M with corners is defined as follows. It is a metric separa-
ble space modelled on the Euclidean space X = Rn and it is supposed to be of
class Cs, where 1 ≤ s. Charts on the manifold M are denoted by (Ul, ul, Pl),
that is, ul : Ul → ul(Ul) ⊂ Pl is a Cs-diffeomorphism for each l, where a subset
Ul is open in M , the composition ul ◦ uj−1 is of Cs class of smoothness from
the domain uj(Ul ∩Uj) 6= ∅ onto ul(Ul ∩Uj), that is, uj ◦ u−1

l and ul ◦ u−1
j are

bijective,
⋃
j Uj = M .

A point x ∈M is called a corner of index j if there exists a chart (U, u, P )
of M with x ∈ U and u(x) is of index indM (x) = j in u(U) ⊂ P . A set of all
corners of index j ≥ 1 is called a border ∂M of M , x is called an inner point of
M if indM (x) = 0, so ∂M =

⋃
j≥1 ∂

jM , where ∂jM := {x ∈M : indM (x) = j}
(see also [26]). We consider that
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(D1) V is a canonical closed subset in the Euclidean space Rn, that is V =
cl(Int(V )), where Int(V ) denotes the interior of V and cl(V ) denotes the
closure of V .

Particularly, the entire Euclidean space Rn may also be taken. Let a man-
ifold W be satisfying the following conditions (i− v).

(i) The manifold W is continuous and piecewise Cα, where Cl denotes the
family of l times continuously differentiable functions. This means by the
definition that W as the manifold is of class C0 ∩ Cαloc. That is W is of
class Cα on open subsets W0,j in W and W \(

⋃
jW0,j) has a codimension

not less than one in W .

(ii) W =
⋃m
j=0Wj , where W0 =

⋃
kW0,k, Wj ∩ Wk = ∅ for each k 6= j,

m = dimRW , dimRWj = m− j, Wj+1 ⊂ ∂Wj .

(iii) Each Wj with j = 0, . . . ,m − 1 is an oriented Cα-manifold, Wj is open
in
⋃m
k=jWk. An orientation of Wj+1 is consistent with that of ∂Wj for

each j = 0, 1, . . . ,m − 2. For j > 0 the set Wj is allowed to be void or
non-void.

(iv) A sequence W k of Cα orientable manifolds embedded into the Euclidean
space Rn, with α ≥ 1, exists such that W k uniformly converges to W on
each compact subset in Rn relative to the metric dist. For two subsets
B and E in a metric space X with a metric ρ we put

dist(B,E) := max

{
sup
b∈B

dist({b}, E), sup
e∈E

dist(B, {e})
}

(46)

where dist({b}, E) := infe∈E ρ(b, e), dist(B, {e}) := infb∈B ρ(b, e), b ∈ B,
e ∈ E. Generally, dimRW = m ≤ n. Let (ek1(x), . . . , ekm(x)) be a basis
in the tangent space TxW

k at x ∈ W k consistent with the orientation
of W k, k ∈ N. We suppose that the sequence of orientation frames
(ek1(xk), . . . , ekm(xk)) of W k at xk converges to (e1(x), . . . , em(x)) for each
x ∈ W0, where limk xk = x ∈ W0, while e1(x),. . . ,em(x) are linearly
independent vectors in Rn.

(v) Let a sequence of Riemann volume elements λk on W k (see §XIII.2 [30])
induce a limit volume element λ on W , that is, λ(B∩W ) = limk→∞(B∩
W k) for each compact canonical closed subset B in Rn, consequently,
λ(W \W0) = 0.

(vi) We consider surface integrals of the second kind, i.e. by the oriented
surface W (see (iv)), where Wj is oriented for each j = 0, . . . ,m− 1 (see
also §XIII.2.5 [30]).
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Suppose that a boundary ∂U of U satisfies Conditions (i− v) and

(vii) let the orientations of ∂Uk and Uk be consistent for each k ∈ N (see
Proposition 2 and Definition 3 §XIII.2.5 [30]).

Particularly, the Riemann volume element λk on ∂Uk is consistent with the
Lebesgue measure on Uk induced from Rn for each k. These conditions provide
the measure λ on ∂U as in (v).

The consideration of this section certainly encompasses the case of a domain
U with a Cα boundary ∂U as well.

Suppose that U1,. . . ,Ul are domains in the Euclidean space Rn satisfying
conditions (D1, i − vii) and such that Uj ∩ Uk = ∂Uj ∩ ∂Uk for each j 6= k,

U =
⋃l
j=1 Uj . Consider a function g : U → Av such that each its restriction

g|Uj is of class Cs, but g on the entire domain U may be discontinuous or not
Ck, where 0 ≤ k ≤ s, 1 ≤ s. If x ∈ ∂Uj ∩∂Uk for some j 6= k, x ∈ Int(U), such
that x is of index m ≥ 1 in Uj (and in Uk also). Then there exists canonical
Cα local coordinates (y1, . . . , yn) in a neighborhood Vx of x in U such that
S := Vx ∩ ∂mUj = {y : y ∈ Vx; y1 = 0, . . . , ym = 0}. Using locally finite
coverings of the locally compact topological space ∂Uj ∩ ∂Uk without loss of
generality we suppose that Cα functions P1(z), . . . , Pm(z) on Rn exist with
S = {z : z ∈ Rn; P1(z) = 0, . . . , Pm(z) = 0}. Therefore, on the surface S the
delta-function δ(P1, . . . , Pm) exists, for m = 1 denoting them P = P1 and δ(P )
respectively (see §III.1 [3]).

It is possible to choose yj = Pj for j = 1, . . . ,m. Using generalized func-
tions with definite supports, for example compact supports, there is possible
without loss of generality to consider that y1, . . . , yn ∈ R are real variables.
Let θ(Pj) be the characteristic function of the domain Pj := {z : Pj(z) ≥ 0},
θ(Pj) := 1 for Pj ≥ 0 and θ(Pj) = 0 for Pj < 0. Then the generalized func-
tion θ(P1, . . . , Pm) := θ(P1) . . . θ(Pm) can be considered as the direct product
of generalized functions θ(y1),. . . ,θ(ym), 1(ym+1, . . . , yn) ≡ 1, since variables
y1, . . . , yn are independent. Then in the class of generalized functions the fol-
lowing formulas are valid:

∂θ(Pj)/∂zk = δ(Pj)(∂Pj/∂zk) (47)

for each k = 1, . . . , n, consequently,

grad[θ(P1, . . . , Pm)] =

=

m∑
j=1

[
θ(P1) . . . θ(Pj−1)δ(Pj)(grad(Pj))θ(Pj+1) . . . θ(Pm)

]
, (48)

where grad g(z) := (∂g(z)/∂z1, . . . , ∂g(z)/∂zn) (see Formulas III.1.3(1, 7, 7′, 9)
and III.1.9(6) [3]).
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Let for the domain U in the Euclidean space Rn the set of internal surfaces
clU [IntRn(U) ∩

⋃
j 6=k(∂Uj ∩ ∂Uk)] in U on which a function g : U → Av or its

derivatives may be discontinuous is presented as the disjoint union of surfaces
Γj , where each surface Γj is the boundary of the sub-domain

Pj := {Pj,1(z) ≥ 0, . . . , Pj,mj (z) ≥ 0} , Γj = ∂Pj =

mj⋃
k=1

∂kPj , (49)

mj ∈ N for each j, clX(V ) denotes the closure of a subset V in a topological
space X, IntX(V ) denotes the interior of V in X. By its construction {Pj : j}
is the covering of U which is the refinement of the covering {Uk : k}, i.e. for
each Pj a number k exists so that Pj ⊂ Uk and ∂Pj ⊂ ∂Uk and

⋃
j Pj =⋃

k Uk = U . We put

hj(z(x)) = h(x)|x∈Γj

:= lim
yj,1↓0,...,yj,n↓0

g(z(x+ y))− lim
yj,1↓0,...,yj,n↓0

g(z(x− y))
(50)

in accordance with the supposition made above that g can have only discon-
tinuous of the first kind, i.e. the latter two limits exist on each Γj , where x
and y are written in coordinates in Pj , z = z(x) denotes the same point in the
global coordinates z of the Euclidean space Rn. Then we take a new continuous
function

g1(z) = g(z)−
∑
j

hj(z)θ(Pj,1(z), . . . , Pj,mj (z)). (51)

Let the partial derivatives and the gradient of the function g1 be calculated
piecewise one each Uk. Since g1 is the continuous function, it is the regular
generalized function by the definition, consequently, its partial derivatives exist
as the generalized functions. If g1|Uj ∈ C1(Uj ,Av), then ∂g1(z)/∂zk is the con-
tinuous function on Uj . The latter means that in such case ∂g1(z)χUj (z)/∂zk
is the regular generalized function on Uj for each k, where χG(z) denotes the
characteristic function of a subset G in Av, χG(z) = 1 for each z ∈ G, while
χ(z) = 0 for z ∈ Av \G. Therefore, one gets:

g1(z) =
∑
j

g1(z)χUj\
⋃
k<j Uk

(z),

where U0 = ∅, j, k ∈ N.
On the other hand, the function g(z) is locally continuous on U , conse-

quently, it defines the regular generalized function on the space D(U,Av) of
test functions by the formula:

[g, ω) :=

∫
U

g(z)ω(z)λ(dz) ,
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where λ is the Lebesgue measure on U induced by the Lebesgue measure on
the real shadow R2v of the Cayley-Dickson algebra Av, ω ∈ D(U,Av). Thus
partial derivatives of g exist as generalized functions.

In accordance with formulas (47), (48) and (51) we infer that the gradient
of the function g(z) on the domain U is the following:

grad g(z) = grad g1(z) +
∑
j

hj(z)grad θ(Pj,1, . . . , Pj,mj ) . (52)

Thus formulas (48) and (52) permit calculations of coefficients of the partial
differential operator Q given by formula (43).

2.5. Line generalized functions

Let U be a domain satisfying conditions 2.1(D1, D2) [21] and (D1, i−vii). We
embed the Euclidean space Rn into the Cayley-Dickson algebra Av, 2v−1 ≤
n ≤ 2v − 1, as the R affine sub-space putting Rn 3 x = (x1, . . . , xn) 7→
x1ij1+. . .+xnijn+x0 ∈ Av, where jk 6= jl for each k 6= l, x0 is a marked Cayley-
Dickson number, for example, jk = k for each k, x0 = 0. Moreover, each zj can
be written in the z-representation in accordance with formulas 2.1(1− 3) [21].

We denote by P = P(U) the family of all rectifiable paths γ : [aγ , bγ ]→ U
supplied with the metric

ρ(γ, ω) := |γ(a)− ω(aω)|+ inf
φ
V ba (γ(t))− ω(φ(t)) (53)

where the infimum is taken by all diffeomorphisms φ : [aγ , bγ ] → [aω, bω] so
that φ(aγ) = aω, a = aγ < bγ = b.

Let us introduce a continuous mapping g : B(U,Av)×P(U)×V(U,Av)→ Y
such that its values are denoted by [g;ω, γ; ν], where Y is a module over the
Cayley-Dickson algebra Av, ω ∈ B(U,Av), γ ∈ P(U), while V(U,Av) denotes
the family of all functions on U with values in the Cayley-Dickson algebra of
bounded variation (see §2.3 [21]), ν ∈ V(U,Av). For the identity mapping
ν(z) = id(z) = z values of this functional will be denoted shortly by [g;ω, γ].
Suppose that this mapping g satisfies the following properties (G1−G5):

(G1) [g;ω, γ; ν] is bi- R homogeneous and Av additive by a test function ω and
by a function of bounded variation ν;

(G2) [g;ω, γ; ν] = [g;ω, γ1; ν] + [g;ω, γ2; ν] for each γ, γ1 and γ2 ∈ P(U) such
that γ(t) = γ1(t) for all t ∈ [aγ1 , bγ1 ] and γ(t) = γ2(t) for any t ∈ [aγ2 , bγ2 ]
and aγ1 = aγ and aγ2 = bγ1 and bγ = bγ2 .

(G3) If a rectifiable curve γ does not intersect a support of a test function ω
or a function of bounded variation ν, γ([a, b])∩ (supp(ω)∩ supp(ν)) = ∅,
then [g;ω, γ; ν] = 0, where supp(ω) := cl{z ∈ U : ω(z) 6= 0}.
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Further we put

(G4) [∂|m|g(z)/∂zm0
0 . . . ∂z

m2v−1

2v−1 ;ω, γ]:=(−1)|m|[g; ∂|m|ω(z)/∂zm0
0 . . . ∂z

m2v−1

2v−1 , γ]
for each m = (m0, . . . ,m2v−1), mj is a non-negative integer 0≤mj ∈ Z
for each j, |m| := m0 + . . .+m2v−1. In the case of a super-differentiable
function ω and a generalized function g we also put

(G5) [(dkg(z)/dzk).(h1, . . . , hk);ω, γ] := (−1)k[g; (dkω(z)/dzk).(h1, . . . , hk), γ]
for any natural number k ∈ N and Cayley-Dickson numbers h1, .., hk ∈
Av.

Then g is called the Y valued line generalized function on B(U,Av)×P(U)×
V(U,Av). Analogously it can be defined on D(U,Av) × P(U) × V(U,Av).
In the case Y = Av we call it simply the line generalized function, while
for Y = Lq(Akv ,Alv) we call it the line generalized operator valued function,
k, l ≥ 1, omitting ”on B(U,Av) × P(U) × V(U,Av)” or ”line” for short, when
it is specified. Their spaces we denote by Lq(B(U,Av)×P(U)×V(U,Av);Y ).
Thus if g is a generalized function, then formula (G5) defines the operator
valued generalized function dkg(z)/dzk with k ∈ N and l = 1.

If g is a continuous function on U , then the formula

[g;ω, γ; ν] =

∫
γ

g(y)ω(y)dν(y) (54)

defines the generalized function. If f̂(z) is a continuous Lq(Av,Av) valued
function on U , then it defines the generalized operator valued function with
Y = Lq(Av,Av) such that

[f̂ ;ω, γ; ν] =

∫
γ

{f̂(z).ω(z)}dν(z) . (55)

Particularly, for ν = id the equality dν(z) = dz is satisfied.

We consider on Lq(B(U,Av)×P(U)× V(U,Av);Y ) the strong topology:

(G6) liml f
l = f means by the definition that for each marked test function ω ∈

B(U,Av) and rectifiable path γ ∈ P(U) and function of bounded variation
ν ∈ V(U,Av) the limit relative to the norm in Y exists liml[f

l;ω, γ; ν] =
[f ;ω, γ; ν].

2.6. Poly-functionals

Let ak : B(U,Ar)k → Ar or ak : D(U,Ar)k → Ar be a continuous mapping
satisfying the following three conditions:
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(P1) [ak, ω
1 ⊗ . . .⊗ ωk) is R-homogeneous [ak, ω

1 ⊗ . . .⊗ (ωlt)⊗ . . .⊗ ωk) =
[ak, ω

1 ⊗ . . . ⊗ ωl ⊗ . . . ⊗ ωk)t = [akt, ω
1 ⊗ . . . ⊗ ωk) for each t ∈ R and

Ar-additive [ak, ω
1⊗ . . .⊗ (ωl+κl)⊗ . . .⊗ωk) = [ak, ω

1⊗ . . .⊗ωl⊗ . . .⊗
ωk) + [ak, ω

1⊗ . . .⊗κl⊗ . . .⊗ωk) by any Ar valued test functions ωl and
κl, when other functions are marked, l = 1, . . . , k, i.e. it is k R-linear and
k Ar-additive, where [ak, ω

1 ⊗ . . . ⊗ ωk) denotes a value of ak on given
test Ar valued functions ω1, . . . , ωk;

(P2) [akα, ω
1 ⊗ . . . ⊗ (ωlβ) ⊗ . . . ⊗ ωk) = ([ak, ω

1 ⊗ . . . ⊗ ωl ⊗ . . . ⊗ ωk)α)β
= [(akα)β, ω1 ⊗ . . .⊗ ωl ⊗ . . .⊗ ωk) for all real-valued test functions and
α, β ∈ Ar;

(P3) [ak, ω
σ(1) ⊗ . . . ⊗ ωσ(k)) = [ak, ω

1 ⊗ . . . ⊗ ωk) for all real-valued test
functions and each transposition σ, i.e. bijective surjective mapping σ :
{1, . . . , k} → {1, . . . , k}.

Then ak will be called the symmetric k R-linear k Ar-additive continuous
functional, 1 ≤ k ∈ Z. The family of all such symmetric functionals is denoted
by B′k,s(U,Av) or D′k,s(U,Ar) correspondingly. A functional satisfying condi-
tions (P1, P2) is called a continuous k-functional over Ar and their family is
denoted by B′k(U,Ar) or D′k(U,Ar) respectively. When a situation is outlined
we may omit for short ”continuous” or ”k R-linear k Av-additive”.

The sum of two k-functionals over the Cayley-Dickson algebra Ar is pre-
scribed by the equality:

[ak + bk, ω
1 ⊗ . . .⊗ ωk) = [ak, ω

1 ⊗ . . .⊗ ωk) + [bk, ω
1 ⊗ . . .⊗ ωk) (56)

for each test functions. Using formula (56) each k-functional can be written as

[ak, ω
1 ⊗ . . .⊗ ωk) =

= [ak,0i0, ω
1 ⊗ . . .⊗ ωk) + . . .+ [ak,2r−1i2r−1, ω

1 ⊗ . . .⊗ ωk) ,
(57)

where [ak,j , ω
1⊗. . .⊗ωk) ∈ R is real for all real-valued test functions ω1, . . . , ωk

and each j; i0,. . . ,i2r−1 denote the standard generators of the Cayley-Dickson
algebra Ar.

The direct product ak⊗bp of two functionals ak and bp for the same space
of test functions is a k + p-functional over Ar given by the following three
conditions:

(P4) [ak ⊗bp, ω
1⊗ . . .⊗ωk+p) = [ak, ω

1⊗ . . .⊗ωk)[bp, ω
k+1⊗ . . .⊗ωk+p) for

any real-valued test functions ω1, . . . , ωk+p;

(P5) if [bp, ω
k+1⊗. . .⊗ωk+p) ∈ R is real for any real-valued test functions, then

[(akN1)⊗(bpN2), ω1⊗ . . .⊗ωk+p) = ([ak⊗bp, ω
1⊗ . . .⊗ωk+p)N1)N2 for

any real-valued test functions ω1, . . . , ωk+p and Cayley-Dickson numbers
N1, N2 ∈ Ar;
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(P6) if [ak, ω
1⊗ . . .⊗ωk) ∈ R and [bp, ω

k+1⊗ . . .⊗ωk+p) ∈ R are real for any
real-valued test functions, then [ak⊗bp, ω

1⊗ . . .⊗(ωlN1)⊗ . . .⊗ωk+p) =
[ak⊗bp, ω1⊗. . .⊗ωk+p)N1 for any real-valued test functions ω1, . . . , ωk+p

and each Cayley-Dickson number N1 ∈ Ar for each l = 1, . . . , k + p.

Therefore, we can now consider a partial differential operator of order u
acting on a generalized function f ∈ B′(U,Ar) or f ∈ D′(U,Ar) and with
generalized coefficients either aα ∈ B′|α|(U,Ar) or all aα ∈ D′|α|(U,Ar) corre-
spondingly:

Af(x) =
∑
|α|≤u

(∂αf(x))⊗ [(aα(x))⊗ 1⊗(u−|α|)] , (58)

where ∂αf = ∂|α|f(x)/∂xα0
0 . . . ∂xαnn , x = x0i0 + . . . xnin, xj ∈ R for each

j, 1 ≤ n = 2r − 1, α = (α0, . . . , αn), |α| = α0 + . . . + αn, 0 ≤ αj ∈ Z,
[1, ω) :=

∫
U
ω(y)λ(dy), λ denotes the Lebesgue measure on U , for convenience

1⊗0 means the multiplication on the unit 1 ∈ R. The partial differential
equation Af = g in terms of generalized functions has a solution f means
by the definition that

[Af, ω⊗(u+1)) = [g, ω⊗(u+1)) (59)

for each real-valued test function ω on U , where ω⊗k = ω⊗ . . .⊗ω denotes the
k times direct product of a test functions ω.

Theorem 2.7. Let A = Au be a partial differential operator with generalized
over the Cayley-Dickson algebra Ar coefficients of an even order u = 2s on U
such that each aα is symmetric for |α| = u and A has the form

Af = (Bu,1f)cu,1 + . . .+ (Bu,kf)cu,k , (60)

where each
Bu,p = Bu,p,0 +Qu−1,p (61)

is a partial differential operator of the order u by variables xmu,1+...+mu,p−1+1,
. . . , xmu,1+...+mu,p , mu,0 = 0, cu,k(x) ∈ Ar for each k, its principal part

Bu,p,0f =
∑
|α|=s

(∂2αf)⊗ ap,2α(x) (62)

is elliptic, that is ∑
|α|=s

y2α[ap,2α, ω
⊗2s) ≥ 0

for all yk(1),. . . ,yk(mu,p) in R with k(1) = mu,1+. . .+mu,p−1+1,. . . ,k(mu,p) =

mu,1 + . . . + mu,p, yβ := y
βk1
k(1) . . . y

βk(mu,p)

k(mu,p) and [ap,2α, ω
⊗2s) ≥ 0 for each real



DECOMPOSITIONS OF PDE 39

test function ω, either 0 ≤ r ≤ 3 and f is with values in Ar, or r ≥ 4 and
f is real-valued on real-valued test functions. Then three partial differential
operators Υs and Υs

1 and Q of orders s and p with p ≤ u− 1 with generalized
on U coefficients with values in Av exist such that

[Af, ω⊗(u+1)) = [Υs(Υs
1f) +Qf, ω⊗(u+1)) (63)

for each real-valued test function ω on U .

Proof. If a2s is a symmetric functional and [cs, ω
⊗s) = [a2s, ω

⊗2s)1/2 for each
real-valued test function ω, then by formulas (P1, P2) this functional cs has
an extension up to a continuous s-functional over the Cayley-Dickson algebra
Ar. This is sufficient for Formula (63), where only real-valued test functions ω
are taken.

Consider a continuous p-functional cp over Av, p ∈ N. Supply the domain
U with the metric induced from either the corresponding Euclidean space or the
Cayley-Dickson algebra in which U is embedded depending on the considered
case. It is possible to take a sequence of non-negative test functions lω on U
with a support supp(lω) contained in the ball B(U, z, 1/l) with center z and
radius 1/l and lω positive on some open neighborhood of a marked point z in
U so that ∫

U
lω(z)λ(dz) = 1

for each l ∈ N. If the p-functional cp is regular and realized by a continuous
Av valued function g on Up, then the limit exists:

lim
l

[cp, lω
⊗p) = g(z, . . . , z).

Thus the partial differential equation (47) for regular functionals and their
derivatives implies the classical partial differential equation (22).

The considered above spaces of real-valued test functions are dense in the
corresponding spaces of real-valued generalized functions (see [3]). Moreover,
there is the decomposition of each generalized function g into the sum of the
form g =

∑
j gjij with real-valued generalized functions gj , where i0, . . . , i2v

are the standard basis generators of the Cayley-Dickson algebra. In this section
and Section 10 generalized functions are considered on real valued test func-
tions ω. Therefore, the statement of this theorem follows from Theorem 2.1,
Example 2.6, Sections 2.4 and 2.6.

Corollary 2.8. If

Af =
∑
j,k

(∂2f(z)/∂zk∂zj)⊗ aj,k(z)

+
∑
j

(∂f(z)/∂zj)⊗ bj(z)⊗ 1 + f(z)⊗ η(z)⊗ 1



40 SERGEY V. LUDKOWSKI

is a second order partial differential operator with generalized coefficients in
either B′(U,Ar) or D′(U,Ar), where each aj,k is symmetric, f and Ar are as
in Section 2.6, then three partial differential operators Υ+β, Υ1 +β1 and Q of
the first order with generalized coefficients with values in Av for suitable v ≥ r
of the same class exist such that

[Af, ω⊗3) = [(Υ + β)(Υ1 + β1)f +Qf, ω⊗3) (64)

for each real-valued test function ω on U .

Proof. This follows from §2.2 [21], Theorem 2.7, Corollary 2.3, Example 2.6
and Section 2.1 above.

Remark 2.9. An integration technique and examples of PDE with generalized
and discontinuous coefficients are planned to be presented in the next paper
using results of this article.
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