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1. Introduction

The idea that deformation problems are controlled by differential graded Lie
algebras (dgla’s) has been a key guiding principle in (characteristic zero) defor-
mation theory. This philosophy, currently subsumed in the work of J.Lurie, has
been actively exploited by Deligne, Drinfeld, Gerstenhaber, Goldman–Millson,
Kontsevich, Nijenhuis–Richardson, Schlessinger, Stasheff and Quillen, since the
earliest days of the subject. Kontsevich argued in [14] that the formal geometry
of moduli problems is governed by a richer structure: an L∞-algebra (strongly
homotopy Lie algebra), and natural transformations between deformation func-
tors are induced by L∞-morphisms of the controlling dgla’s. For example, it
is shown in [6] that Griffiths’ period map is induced by an L∞-morphism. In
a certain sense, an L∞-morphism encodes the “Taylor expansion” of a mor-
phism of pointed formal varieties ([14, §4.1]). By general deformation-theoretic
arguments its linear part is a morphism of obstruction theories.

In view of this, given a pair of deformation functors and a natural trans-
formation between them, one is confronted with the questions of identifying
controlling dgla’s and a corresponding L∞-morphism. Apart from being aes-
thetically pleasing, this gives additional information for the obstruction spaces
of the two functors. The main result in this note is a particular example of
such a setup.
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Let X be a compact complex manifold, and G be a complex reductive Lie
group of rank N , with Lie algebra g. By an Ω1

X-valued G-Higgs bundle (Higgs
pair) on X we shall mean a pair (P, θ), consisting of a holomorphic principal
G-bundle P → X, and a section θ ∈ H0(X, adP ⊗ Ω1

X), satisfying θ ∧ θ = 0.
The Hitchin map associates to (P, θ) the spectral invariants of θ. After some
choices, these invariants determine a point in B =

⊕
di
H0(X,SdiΩ1

X), where
di are the degrees of the basic G-invariant polynomials on g. For example, if
G is a classical group, then θ can be represented locally on X by a matrix
of holomorphic 1-forms, with commuting components. Then the Hitchin map
assigns to it the coefficients of its characteristic polynomial. Considering Higgs
pairs on X × SpecA, for an Artin local ring A, allows one to define the Hitchin
map as a natural transformation between suitable deformation functors, see
Section 2.2.

If X is projective ([22]) or compact Kähler ([7]) there exist actual (coarse)
moduli spaces of (semi-stable) Higgs pairs with fixed topological invariants. In
the projective case the Hitchin map is known to be a proper morphism to B
([22, §6]), and if dimCX = 1 it determines an algebraic completely integrable
Hamiltonian system ([11, 12]).

The main resluts in this note are the following two theorems.

Theorem 1.1. Let X be a compact complex manifold, G a complex reductive
Lie group, and {pi, i ∈ E} homogeneous generators of C[g]G, deg pi = di.
Let (P, θ) be a G-Higgs bundle on X, and C • =

⊕
p+q=•A

0,p(adP ⊗ ΩqX) its

controlling dgla. Then the obstruction space ODefC• ⊂ H
2(C •) is contained in

the kernel of the map

H2(C •) −→
⊕
i∈E

H1(X,SdiΩ1
X)

[
s2,0, s1,1, s0,2

]
7−→

⊕
i∈E

(∂pi)(s
1,1 ⊗ θdi−1).

Here ∂pi denotes the differential of pi, thought of as an element of g∨ ⊗
Sdi−1(g∨).

We make some remarks about the geometrical meaning of this theorem in
Section 4.2. Theorem 1.1 is an easy consequence of the more technical

Theorem 1.2. Let X be a compact complex manifold, G a complex reductive
Lie group, and {pi, i ∈ E} homogeneous generators of C[g]G, deg pi = di. Let
(P, θ) be a G-Higgs bundle on X, and C • =

⊕
p+q=•A

0,p(adP⊗ ΩqX) its con-

trolling dgla. Let p0 : S•(C •) → S• (A0,•(adP⊗ Ω1
X)) be the homomorphism

induced by
⊕

p,q s
p,q 7→ s1,q ∈ A0,q(adP⊗ Ω1

X). Then the collection of maps⊕
i h

di
k =

⊕
i(∂

kpi)(−⊗θdi−k) ◦ p0 : Sk(C •[1]) // ⊕
iA

0,•(SdiΩ1
X)
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⊕
p1,q1

sp1,q11 ·
⊕
p2,q2

sp2,q22 · . . . ·
⊕
pk,qk

spk,qkk

7−→
⊕
i

∑
q1,...,qk

(∂kpi)(s
1,q1
1 ⊗ . . .⊗ s1,qk

k ⊗ θdi−k)

for all k ≥ 1, induces an L∞-morphism

h∞ : C • =
⊕
p+q=•

A0,p(adP⊗ ΩqX)→ B• =
⊕
i∈E

A0,•(SdiΩ1
X)[−1].

The natural transformation of deformation functors, induced by h∞ is the
Hitchin map: Def(h∞) = H under the identifications DefB• ' DefH(E,θ) and
DefC• ' Def(P,θ).

The content of this note is organised as follows. In Section 2 we discuss
dgla’s and L∞-algebras, and give some examples. In Section 3 we study a
Lie-algebraic “toy model” for the Hitchin map. For that, we fix homogeneous
generators of C[g]G, which allows us to identify the adjoint quotient morphism
g → g � G with a polynomial map χ : g → CN . We associate to a fixed
v ∈ g a pair of (very simple) dgla’s, C• and B• (2.3, 3.1), whose Maurer–
Cartan functors satisfy MCC• = g, MCB• = CN . Motivated by [14, §4.2] we
construct an L∞-morphism h∞ : C• → B•, such that MC(h∞) = χ (after
some identifications).

A suitable modification of h∞ gives an L∞-description of the Hitchin map,
described in Section 4.1, where we prove Theorem 1.2. That in turn gives
information about obstructions to smoothness for the functor DefC• . These
are considered in Section 4.2, together with the proof of Theorem 1.1. For
details about obstruction calculus we refer to [5] and [18].

Our results are the natural generalisation of [19, §7], where the case of
G = GL(n,C) is treated by ingenuous use of powers and traces of matrices.

2. Preliminaries

2.1. Notation and Conventions

The ground field is C. We denote by ArtC the category of local Artin C-algebras
with residue field C, and denote by mA the maximal ideal of A ∈ ArtC. We
denote by Fun(ArtC,Sets) the category of functors from ArtC to Sets, and use
“morphism of functors” and “natural transformations” interchangeably. We
use the standard acronym “dgla” for a “differential graded Lie algebra”. If
V • is a graded vector space, we denote by V [n] its shift by n, i.e., V [n]i =
V n+i. We denote by T (V ) the tensor algebra and by S(V ) =

⊕
k≥0 S

k(V ) the
symmetric algebra of a (graded) vector space V . The same notation is used for
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the underlying vector spaces of the corresponding coalgebras, but we use Sc(V )
and Tc(V ) when we want to emphasise the coalgebra structure. The reduced
symmetric, resp. tensor (co)algebra is denoted S(V ) =

⊕
k≥1 S

k(V ), resp.

T (V ). We denote by · the multiplication in S(V ). By S(k, n − k) we denote
the (k, n − k) unshuffles: the permutations σ ∈ Σn, satisfying σ(i) < σ(i + 1)
for all i 6= k.

Next, G is a complex reductive Lie group of rank N and g = Lie(G).
We use fixed homogeneous generators, {pi, i ∈ E}, of the ring of G-invariant
polynomials on g. The degrees of the invariant polynomials are di = deg pi, so
the exponents of g are di − 1. The adjoint quotient map will always be given
in terms of this basis, i.e., χ : g→ CN ' g �G.

The base manifold X is assumed to be compact and complex. For a holo-
morphic principal bundle, P, we denote by adP its associated bundle of Lie
algebras, adP = P×ad g. We denote by ΩpX the sheaf of holomorphic p-forms
on X, and by Ap,q the global sections of the sheaf A p,q of complex differential
forms of type (p, q).

We use B for the Hitchin base, B• for the abelian dgla governing the de-
formations of an element of B, and B• := CN [−1] for the “toy model” of B•,
see Section 2.3. We use C • for the dgla controlling the deformations of a Higgs
pair (P, θ) (see Section 2.2) and C• for its “toy version” g⊗ C[ε]/ε2.

2.2. Differential Graded Lie Algebras

Since there exist numerous introductory references for this material ([8, 9, 16,
17, 18]), we present here only the basic definitions, without attempting to
motivate them in any way. A differential graded Lie algebra (dgla) is a triple
(C •, d, [ , ]). Here C • =

⊕
i∈N C i[−i] is a graded vector space, endowed with

a bracket [ , ] : C i × C j → C i+j . The bracket is graded skew-symmetric
and satisfies a graded Jacobi identity. Finally, d : C → C [1] is a differential
(d2 = 0), which is a degree 1 derivation of the bracket. To a dgla C • we
associate a Maurer–Cartan functor MCC• : ArtC → Sets,

MCC•(A) =

{
u ∈ C 1 ⊗mA

∣∣∣∣du+
1

2
[u, u] = 0

}
and a deformation functor DefC• : ArtC → Sets,

DefC•(A) = MCC•(A)/ exp(C 0 ⊗mA).

The (gauge) action of exp(C 0 ⊗mA) on C 1 ⊗mA is given by

exp(λ) : u 7→ exp(adλ)(u) +
I − exp(adλ)

adλ
(dλ). (1)
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Often MCC•(A) is considered as the set of objects of a groupoid (the Deligne
groupoid), which is the action groupoid for the gauge action on MCC•(A) ([8,
§2.2]).

2.3. Examples

Deformation problems are described by deformation functors Def : ArtC →
Sets, and we say that a problem is governed (controlled) by a dgla C •, if there
exists an isomorphism DefC• ' Def. A compendium of examples can be found
in [16, §1], or in [20]. The controlling dgla is by no means unique, but quasi-
isomorphic dgla’s have isomorphic deformation functors ([16, Corollary 3.2]).
We give now a minimalistic (abelian) example, which will be used later.

Let V be a finite-dimensional vector space, and ξ ∈ V . We consider the
functor Defξ,V : ArtC → Sets of embedded deformations of ξ ∈ V . That is, for
any A ∈ ArtC,

Defξ,V (A) = {σ ∈ V ⊗A |σ = ξ mod mA } = {ξ}+ V ⊗mA ⊂ V ⊗A,

with the obvious map on morphisms. Then V [−1], a dgla with trivial bracket
and trivial differentials, concentrated in degree 1, controls the deformation
problem. Indeed, MCV [−1](A) ≡ DefV [−1](A) = V ⊗ mA, which we write as
MCV [−1] = V = DefV [−1]. The bijection DefV [−1](A) ' Defξ,V (A), s 7→ ξ + s,
induces an isomorphism of functors DefV [−1] ' Defξ,V .

Suppose now X is Kähler, and V = H0(X,F ), for a holomorphic vector
bundle F → X, with hi(F ) = 0 for i ≥ 1. It is then easy to see that Defξ,H0(F )

is isomorphic to the deformation functor of the abelian dgla
(
A0,•(F )[−1], ∂F

)
,

where ∂F is the Dolbeault operator of F . The isomorphism is induced by the
canonical inclusion H0(X,F ) ⊂ A0,0(X,F ) ⊂ A0,•(F )[−1]1. The existence of
such an inclusion relies on Hodge theory (see [10, Chapter 0 §6, Chapter 1 § 2]),
and this is where we use the Kähler condition. To prove that the two dglas
H0(X,F )[−1] and

(
A0,•(F )[−1], ∂F

)
are quasi-isomorphic, one can use the

Hodge decomposition and follow the general setup from [9, §2] or [13].
We denote by Defξ the functor of deformations of a section ξ ∈ H0(X,F ).

It is isomorphic to the deformation functor of
(
A0,•(F )[−1], ∂F

)
on an arbi-

trary X and without the vanishing condition. There is a natural morphism
Defξ,H0(F ) → Defξ.

We reserve special notation for two instances of this example, namely B• :=
CN [−1] and B• :=

(
⊕iA0,•(SdiΩ1

X)[−1], ∂X
)
. We also use for the Hitchin base

B =
⊕

iH
0(X,SdiΩ1

X).

2.4. L-infinity algebras: Motivation

The notion of L∞-algebra (strongly homotopy Lie algebra, Sugawara algebra)
generalises the notion of a dgla by relaxing the Jacoby identity, and allowing
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it be satisfied only “up to homotopy” (“BRST-exact term”), determined by
“higher brackets”. For a detailed motivation to this (somewhat technical) sub-
ject and its applications to geometry and physics we refer to [14, 15, 20] and the
references therein. Here we make some non-rigorous remarks along the lines
of [14, §4] and give the precise definitions (following [17, Chapter VIII]) in the
next subsection.

Suppose that we want to study (algebraically) a formal neighbourhood of
0 ∈ V , where V is a (possibly infinite-dimensional) vector space. One way
to do this is to consider the reduced cofree cocommutative coassociative coal-
gebra, cogenerated by V , that is, C(V ) =

⊕
n≥1 (V ⊗n)

Σn ⊂ Tc(V ). Indeed,

if V is finite-dimensional, then C(V )
∨

is the maximal ideal of the algebra of
formal power series. Next, a morphism C(V ) → C(W ) is determined, by the
universal property of cofree coalgebras, by a linear map h : C(V ) → W , with

homogeneous components h(n) : (V ⊗n)
Σn → W , which are closely related to

the Taylor coefficients of h. Indeed, the Taylor coefficients of h are symmetric
multilinear maps hn = ∂nh : V ⊗n → W . They factor through the quotient

Sn(V ), and are carried to h(n) under the identification Sn(V ) ' (V ⊗n)
Σn . All

of this can be done with graded vector spaces as well.
An L∞-structure on a graded vector space V • is the data of a degree

+1 coderivation Q of the coalgebra Cc(V [1]), satisfying Q2 = 0, i.e., a cod-
ifferential. This is thought of as an odd vector field on the formal graded
manifold (V [1], 0). Its Taylor coefficients qn = ∂nQ : Snc (V [1]) → V [1] can
be considered, by the décalage isomorphism Sn(V [1]) ' Λn(V )[n], as maps
µn ∈ Hom2−n(ΛnV •, V •).

2.5. L-infinity algebras: Definitions

An L∞-algebra structure (V •, q) on a graded vector space V • is a collection of
linear maps qk ∈ Hom1(Skc (V [1]), V [1]), k ≥ 1, such that the natural extension
of q =

∑
k qk to a degree +1 coderivation Q on Sc(V [1]) is a codifferential, i.e.,

Q2 = 0. We recall ([17, Corollary VIII.34]) that

Q(v1 · . . . · vn) =

n∑
k=1

∑
σ∈S(k,n−k)

ε(σ)qk(vσ(1) · . . . · vσ(k)) · vσ(k+1) · . . . · vσ(n).

A dgla is an L∞-algebra with q1(a) = −da, q2(a·b) = (−1)deg a[a, b], and qk = 0
for k ≥ 3. To an L∞-algebra (V •, q) one associates a Maurer–Cartan functor
MCV • : ArtC → Sets

MCV (A) =

u ∈ V 1 ⊗mA

∣∣∣∣∣∣
∑
k≥1

qk(uk)

k!
= 0


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and a deformation functor DefV • , DefV (A) = MCV (A)/ ∼homotopy. We refer
to [17, IX] and [16, §5] for the definition of homotopy equivalence between two
Maurer–Cartan elements. We do not give it here, since we shall work only with
dgla’s considered as L∞-algebras, and for these gauge equivalence coincides
with homotopy equivalence, see [16, Theorem 5.5].

A morphism h∞ : (V, q)→ (W, q̂) between two L∞-algebras is a sequence of
linear maps hk ∈ Hom0(Skc V [1],W [1]), k ≥ 1, for which the induced coalgebra

morphism H : ScV [1] → ScW [1] is a chain map, i.e., satisfies H ◦Q = Q̂ ◦H.
If we denote the components of Q and H by Qnk : Skc (V ) → Snc (V ) and Hn

k ,
respectively, then the morphism condition reads

∞∑
a=1

ha ◦Qak =

∞∑
a=1

q̂a ◦Ha
k ,

for all k ∈ N .
We emphasise that the category of dgla’s is a subcategory of the category

of L∞-algebras, but it is not full. For a dgla the only possibly non-zero compo-
nents of Q are Qkk, k ≥ 1 and Qk−1

k , k > 1. For an abelian dgla q2 = 0 = Qk−1
k .

We spell out the condition for an L∞-morphism h∞ : (V, q) → (W, q̂) from a
dgla to an abelian dgla. The {hk} determine an L∞-morphism if

h1 ◦ q1 = q̂1 ◦ h1, (2)

which says that h1 is a morphism of complexes, and

hk ◦Qkk + hk−1 ◦Qk−1
k = q̂1 ◦ hk, k ≥ 2. (3)

The last condition, when evaluated on homogeneous elements s1, . . . , sk reads

hk

− ∑
σ∈S(1,k−1)

ε(σ)d(sσ1
) · sσ2

· . . . · sσk

+ (4)

hk−1

 ∑
σ∈S(2,k−2)

ε(σ)(−1)deg sσ1 [sσ1 , sσ2 ] · sσ3 · . . . · sσk

 =

−dhk(s1 · . . . · sk).

It expresses the failure of hk−1 to preserve the bracket in terms of a ho-
motopy given by hk. Finally, (V, q) 7→ MCV determines a functor MC :
L∞ → Fun(ArtC,Sets), whose action on morphisms is given by sending an
L∞-morphism h∞ ∈ HomL∞(V,W ) to a natural transformation MC(h∞) :
MCV → MCW , and, for each A ∈ ArtC,

MC(h∞)(A) : MCV (A) 3 x 7−→
∞∑
k=1

1

k!
hk(xk) ∈ MCW (A). (5)
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This descends to a natural transformation Def(h∞) : DefV → DefW . For more
details, see, e.g., [17].

2.6. Deformation functors for Higgs bundles

As already stated, for us a Higgs bundle (Higgs pair) is a pair (P, θ), θ ∈
H0(X, adP⊗Ω1

X), θ∧θ = 0. We use the term L-valued Higgs bundle if instead
θ ∈ H0(X, adP⊗ L), for some vector bundle L→ X (as in [4, §17]).

Infinitesimal deformations of Higgs bundles have been studied extensively.
Biswas and Ramanan ([2]) discussed the functor of deformations Def(P,θ) of
a Higgs pair (P, θ) for dimX = 1, and identified a deformation complex,
while in [1] a deformation complex is given for G = GL(n,C) and a higher-
dimensional (varying) base X. For arbitrary (fixed) compact Kähler X and
arbitrary reductive G, the dgla controlling the deformations of (P, θ) is

C • =
⊕
p+r=•

A0,p(X, adP⊗ ΩrX), (6)

with differential ∂P+adθ, see [23, §9], [21, §2], [22, §10]. The complex C • is the
Dolbeault resolution of the complex from [1, 2]. For the case of G = GL(n,C)
and L-valued pairs, one replaces ΩqX with Λq(L), see [19]. We note that the
isomorphism DefC•(A) ' Def(P,θ)(A) is obtained by mapping [(s1,0, s0,1)] to

(ker(∂ + s0,1), θ + s1,0), see [1, 19, 22].

We set H(P, θ) := χ(θ) ≡ ⊕ipi(θ) ∈ B. Using the notation from §2.3,
define the (infinitesimal) Hitchin map as a morphism (natural transformation)
of deformation functors

H : Def(P,θ) → DefH(P,θ)

by H(A)(PA, θA) = χ(θA), A ∈ ArtC, and the obvious map on morphisms. See
also [2, Remark 2.8 (iv)] or [4, §17.7]. While the two deformation functors at
hand are controlled by dgla’s

DefB• ' DefH(E,θ) and DefC• ' Def(P,θ), (7)

H is not a dgla morphism, unless G = (C×)N , since it is not even linear. It is,
however, induced by an L∞-morphism, as we intend to show.

In this note we are concerned with infinitesimal considerations only, but we
remark that the coarse moduli spaces of semi-stable Higgs bundles (whenever
they exist) carry an amazingly rich geometry. We refer to [4, 11, 12, 21, 22, 23]
for insight and discussion of global questions.
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3. The Adjoint Quotient in L-infinity terms

3.1. Toy Model

If one sees the Hitchin map H as a “global analogue” of the adjoint quotient
χ : g → CN ' g � G, then the Higgs field θ should be regarded as a “global
analogue” of an element v ∈ g. In the present section we describe the morphism
χ in L∞ terms, and in Section 4 we modify suitably this “toy model” to obtain
an L∞-description of H.

Consider first the dgla C• := g ⊗ C[ε]/ε2 = g ⊕ g[−1], with differential
d0 = εadv. Since d1 = 0 and [C1, C1] = 0, we have MCC• = g, i.e., MCC•(A) =
g⊗mA, for all A ∈ ArtC. Moreover, the formula (1) for the gauge action reduces
to (λ, a) 7→ eadλ(v + a) − v. We also recall from §2.3 the dgla B• = CN [−1],
with MCB• = CN . To see why is it appropriate to consider C•, we introduce
the functor Defv,g,G : ArtC → Sets,

Defv,g,G(A) = Defv,g(A)/ exp(g⊗mA),

with the obvious transformation under morphisms of the coefficient ring. That
is, Defv,g,G(A) is the quotient of the affine subspace {v}+g⊗mA ⊂ g⊗A under
the natural affine action of exp(g⊗mA) ([8, §4.2]), which we briefly recall. There
is a natural Lie bracket on g⊗A, obtained by extending the bracket on g. The
adjoint action of G on g extends to an action on exp(g⊗mA), and we denote by
GA the semidirect product exp(g⊗mA)oG. More intrinsically, if we consider
G as the group of C-points of a C-algebraic group G, then GA = G(A). The
subgroup exp(g ⊗ mA) ⊂ GA acts, via the adjoint representation, on g ⊗ A,
and preserves the affine subspace {v}+ g⊗mA. The affine action on g⊗mA is
(λ, a) 7→ eadλ(v + a)− v.

Thus we have a bijection DefC•(A) ' Defv,g,G(A), a 7→ v+a which induces
an isomorphism DefC• ' Defv,g,G, as all constructions are natural in the co-
efficient ring. Notice that H0(C•) is the centraliser of v ∈ g, so the functor
DefC• need not be representable. However, we have the following:

Proposition 3.1. Let K ⊂ g be a linear complement to Im(adv)⊂ g, and let

Ô(K,0) be its completed local ring at the origin. Then the functor Homalg(ÔK,0, )
is a hull for DefC• .

Proof. By [9, Theorem 1.1], if a dgla C• is equipped with a splitting and has
finite-dimensional Hk(C•), k = 0, 1, then it admits a hull Kur → DefC• by
formal Kuranishi theory. In [9, Theorem 2.3] it is shown that under certain

topological conditions Kur = Homalg(Ô(K,0), ), where (K, 0) is the germ of a

complex-analytic space (Kuranishi space) and Ô is its completed local ring. In
our case, C1 = g, d1 = 0 and [C1, C1] = 0, so by [9, Theorems 2.6 and 1.1] K
exists and can be taken to be any linear complement to the coboundaries, i.e.,
any linear complement Imadv ⊂ g.
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Our next step is to construct an L∞-morphism h∞ : C• → B• = CN [−1],
such that MC(h∞) : MCC• = g → MCB• = CN gives the adjoint quotient.
This involves two ingredients. First, as χ is given by homogeneous polynomials,
Taylor’s formula can be expressed conveniently by polarisation. Second, the
derivatives of G-invariant polynomials satisfy extra relations. We discuss these
technical properties in Section 3.2, and construct the promised L∞-morphism
in Section 3.3.

3.2. Polarisation and Invariant Polynomials

Let V be a finite-dimensional vector space. We have, for each d, k ∈ N, a linear
map

Pk,d−k
d = ∂k : Sd(V ∨) −→ T k(V ∨)Σk ⊗ Sd−k(V ∨), p 7→ ∂kp.

That is,

Pk,d−k
d (p)(X1 ⊗ . . .⊗Xk ⊗ v1 · . . . · vd−k) = LX1

. . .LXk(p)(v1 · . . . · vd−k),

where LX denotes Lie derivative. Differently put, Pk,d−k
d (p)(X1 ⊗ . . .⊗Xk ⊗

vd−k) is the coefficient in front of t1 . . . tk in the Taylor expansion of p(v +∑
tiXi). For example, if V = gl(r,C) and p(A) = trAd, then

Pk,d−k
d (p)(X1 ⊗ . . .⊗Xk ⊗Ad−k) =

d!

(d− k)!
tr(X1 . . . XkA

d−k).

In particular, Pd,0
d = ∂d : Sd(V ∨) '

(
V ∨⊗d

)Σd is the usual polarisation map,
identifying Σd invariants and coinvariants, and p(X) = 1

d!∂
dp(X⊗d). More

generally,

(∂kp)(X1 ⊗ . . .⊗Xk ⊗ vd−k) =
1

(d− k)!
(∂dp)(X1 ⊗ . . .⊗Xk ⊗ v⊗d−k)

and by Taylor’s formula

p(v +X)− p(v) =

∞∑
k=1

1

k!
(∂kp)(X⊗k ⊗ vd−k). (8)

We prove two technical lemmas.

Lemma 3.2. Let p ∈ C[g]G be a homogeneous G-invariant polynomial of degree
d. Then (∂p)(adX(v)⊗ vd−1) = 0, for all v,X ∈ g.
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Proof. The statement that d
dtp(v+tadX(v))|t=0 = 0 is just an infinitesimal form

of the G-invariance of p. Alternatively, one can write the above expression as
1

(d−1)! times

(∂dp)(adX(v)⊗ v⊗d−1) =
1

d

d

dt

(
∂dp

((
Ad(etX)v

)⊗d))∣∣∣∣
t=0

= 0.

Lemma 3.3. Let V =
⊕k−1

i=0 Vi, F ∈ T d(V ∨)Σ, and L ∈
∏
iGL(Vi). The

decomposition of V induces a decomposition of Sd(V ∨), indexed by ordered
partitions of d of length k. The projection of F ◦ (L⊗1⊗d−1) onto the subspace
corresponding to (d− k + 1, 1, . . . , 1) maps v ⊗X1 ⊗ . . .⊗Xk−1 to

d!

(d− k)!
F (L(v)⊗X1 ⊗ . . .⊗Xk−1 ⊗ v⊗d−k)+

∑
σ∈S(1,k−2)

d!

(d− k + 1)!
F (L(Xσ(1))⊗Xσ(2) ⊗ . . .⊗Xσ(k) ⊗ v⊗d−k).

Proof. The proof amounts to expanding F (L(v +
∑
iXi), v +

∑
iXi, . . . , v +∑

iXi) in powers of Xi, and counting the number of terms, containing exactly
one of each Xi.

Corollary 3.4. Let p ∈ C[g]G be a homogeneous G-invariant polynomial of
degree d. Let 2 ≤ k ≤ d, and let v, Y,X1, . . . , Xk−1 ∈ g. Then

(∂kp)([Y, v]⊗X1 . . . Xk−1 ⊗ vd−k) +∑
σ∈S(1,k−2)

(∂k−1p)([Y,Xσ1
]⊗ . . .⊗Xσk−1

⊗ vd−k+1) = 0.

Proof. We apply Lemma 3.3 to F = (∂dp) and L = adY and use Lemma 3.2
to argue that F ◦ (L⊗ 1) is zero.

In the next section we will apply the various operators Pk,d−k
d to sections of

A0,•(adP⊗SkΩ1
X) without changing the notation. For example, given sections

si expressed locally as si = αi ⊗Xi and v ∈ H0(X, adP ⊗ Ω1
X), we write

(∂kp)(s1 ⊗ . . .⊗ sk ⊗ vd−k) = α1 ∧ . . . ∧ αk(∂kp)(X1 ⊗ . . .⊗Xk ⊗ vd−k).
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3.3. The L-infinity Morphism

The main result of this section is the following

Proposition 3.5. Let p0 : S• (C•[1]) → S• (C1) denote the homomorphism
induced by the projection pr2 : C•[1] = g[1] ⊕ g → C1 = g. The collection of
maps ⊕

i h
di
k = (∂kpi)(−⊗vdi−k) ◦ p0 : Sk (C•[1]) // CN

(a1, b1) · . . . · (ak, bk) 7−→
⊕
i

(∂kpi)(b1 ⊗ . . .⊗ bk ⊗ vdi−k)

induces an L∞-morphism h∞ : C• → B• = CN [−1]. Under the identifications
MCB• ' Defχ(v),Cn and MCC• ' Defv,g, MC(h∞) : MCC• → MCB• coincides

with χ : g→ CN .

Proof. To show that this collection of maps determines an L∞-morphism, it
suffices to verify that for each fixed di, the maps {hdik } determine an L∞-
morphism C• → C[−1]. We prove this in Lemma 3.6. Assuming that, let
s = (0, b) ∈ MCC•(A), b ∈ g⊗ mA for A ∈ ArtC. Then, by (5), MC(h∞)(s) =∑∞
d=1

1
d!h∞(sd), which equals ⊕i (pi(v + b)− pi(v)) = χ(v + b) − χ(v) by (8).

The specified identifications amount to affine transformations translating the
origin, which carry MC(h∞) to the map v + b 7→ χ(v + b), hence the last
statement.

Lemma 3.6. Let p ∈ C[g]G be a homogeneous polynomial of degree d. The
collection of maps

hdk = (∂kp)(−⊗vd−k) ◦ p0 : Sk (C•[1]) // C

(a1, b1) · . . . · (ak, bk) 7−→ (∂kp)(b1 ⊗ . . .⊗ bk ⊗ vd−k)

induces an L∞-morphism

hd∞ : C• −→ C[−1].

Proof. We start with condition (2). The differentials of the two dgla’s are,
respectively, adv and 0, so we have to show that, for any s = (a, b) ∈ g⊕2,
hd1([v, s]) = 0. But this means (∂p)([v, b] ⊗ vd−1) = 0, which is the conclusion
of Lemma 3.2. We turn to (3), whose right hand side is identically zero (since
B• is formal). The left side is zero on Sk(C1), since [C1, C1] = 0. It is also zero
on Sr(C0) ·Sk−r(C1) for r ≥ 2, since hdk factors through p0. So we only have to
verify (3) on C0 ·Sk−1(C1), in which case Qk−1

k contributes via the bracket and
Qkk via adv. Take homogeneous elements sj = (0, bj), j ≥ 2 and s1 = (a, 0). In
the first summand of (4), unshuffles with σ(1) 6= 1 give zero, while σ(1) = 1
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means σ = id, so we have hdk ([v, s1] · s2 · . . . · sk) = (−1)(∂kpi)([a, v]⊗b2⊗ . . .⊗
bk ⊗ vd−k). The second summand of (4) is hdk−1 ◦ Q

k−1
k (s1 · . . . · sk) and the

non-vanishing terms correspond to (2, k − 2) unshuffles σ, for which σ(1) = 1.
Hence the summation is in fact over (1, k − 2) unshuffles and we have

hdk−1

 ∑
σ∈S(1,k−2)

(−1)ε(σ)[s1, sσ(1)] · . . . · sσ(k−1)

 =

(−1)
∑

σ∈S(1,k−2)

(∂k−1pi)
(
[a, bσ(1)]⊗ . . .⊗ bσ(k−1) ⊗ vd−k+1

)
.

Note that C1 = C•[1]0, so ε(σ) = 1. The two summands add up to zero by
Corollary 3.4.

4. The Hitchin Map

We prove now the two main results of this note by suitably adapting the cal-
culation of the previous section, thus extending the results of [19] to arbitrary
reductive structure groups.

4.1. Proof of Theorem 1.2

Proof. To prove that the collection{hk} determines an L∞-morphism, it suffices
to prove that for each fixed homogeneous polynomial pi of degree di, the given
collection of maps induces an L∞-morphism hdi∞ : C • → A0,•(SdiΩ1

X)[−1].
This is shown in Lemma 4.1 below. Assuming that, suppose s = (s′, s′′) ∈
MCC•(A), A ∈ ArtC. By (5) Def(h∞)(s) =

∑∞
d=1

1
d!h∞(sd), which by for-

mula (8) equals ⊕ipi(θ + s′) − pi(θ) = H(PA, θA) − H(P, θ). This is exactly
what we want to prove, in view of the identification (7), which amounts to
“shifting the origin”.

Lemma 4.1. Let p ∈ C[g]G be a homogeneous polynomial of degree d. Let

p0 : S•(C •) → S• (A0,•(adP⊗ Ω1
X)) denote the homomorphism induced by⊕

p+q=• s
p,q 7→ s1,q, where sp,q ∈ A0,q(adP ⊗ ΩpX). Then the collection of

maps

hdk = (∂kp)(−⊗θd−k) ◦ p0 : Sk(C •[1]) //A0,•(SdΩ1
X)⊕

p1,q1

sp1,q11 ·
⊕
p2,q2

sp2,q22 · . . . ·
⊕
pk,qk

spk,qkk 7−→
∑

q1,...,qk

(∂kp)(s1,q1
1 ⊗ . . .⊗s1,qk

k ⊗θd−k)

induces an L∞-morphism

hd∞ : C • =
⊕
r+s=•

A0,r(adP⊗ ΩsX)→ A0,•(SdΩ1
X)[−1].
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Proof. We check the conditions (2),(3). The differentials are ∂P + adθ and
∂P, so (2) is equivalent to (∂p)([θ, s]⊗ θd−1) = 0, which holds by Lemma 3.2.
Next assume k ≥ 2. Since by definition hdk factors through p0, both sides
of (3) are identically zero, except possibly for two cases. Case 1: when eval-
uated on Sk

(
A0,•(adP ⊗ Ω1)

)
and Case 2: when evaluated on A0,•(adP) ·

Sk−1
(
A0,•(adP⊗ Ω1)

)
. Notice that in C •[1], the degree of a homogeneous

element in A0,n(adP ⊗ Ω1
X) is n. We start with Case 1, evaluating on decom-

posable homogeneous elements si = αi ⊗ Xi, i = 1 . . . k. Since [sσ1, sσ2] and
adθ(sσ1) belong to A0,•(adP ⊗ Ω2

X), they do not contribute to the left side
of (4). And since

∑
σ∈S(1,k−1) ε(σ)∂(ασ(1))∧ . . .∧ασ(k) = ∂(α1 ∧ . . .∧αk), the

left side of (4) gives

−∂(α1 ∧ . . . ∧ αk)⊗ (∂kp)(X1 ⊗ . . .⊗Xk ⊗ θd−k) = q̂1 ◦ hdk(s1 · . . . · sk),

which we wanted to show. Next we proceed to Case 2, and take decomposable
homogeneous elements si = αi ⊗Xi, s1 ∈ A0,•(adP), s2, . . . , sk ∈ A0,•(adP⊗
Ω1
X). The right hand side of (4) is zero on their product, so we just compute

the left side. The terms with σ(1) 6= 1 are identically zero, and σ(1) = 1 implies
σ = id, so we obtain

hdk ([θ, s1] · s2 · . . . · sk) =

= (−1)deg s1α1 ∧ . . . ∧ αk(∂kp)([X1, θ]⊗X2 ⊗ . . .⊗Xk ⊗ θd−k).

The non-vanishing contributions from hdk−1◦Q
k−1
k in (4) correspond to (2, k−2)

unshuffles for which σ1 = 1, so the summation is in fact over (1, k−2) unshuffles
and we have

hdk−1

 ∑
σ∈S(1,k−2)

(−1)deg s1ε(σ)[s1, sσ(1)] · . . . · sσ(k−1)

 .

By the shift, the Koszul sign is traded for reordering the forms and we get

(−1)deg s1α1 ∧ . . .∧αk
∑

σ∈S(1,k−1)

(∂k−1p)([X1, Xσ(1)]⊗ . . .⊗Xσ(k−1)⊗ θd−k+1).

Then the sum of the two terms is zero by Corollary 3.4.

4.2. Obstructions to smoothness

While Higgs bundles on curves have been extensively studied, fairly little is
known about their moduli if dimX > 1, apart from the general results of [22],
partially due to scarcity of examples. By formality ([21, Lemma 2.2]), Simp-
son’s moduli spaces have at most quadratic singularities ([22, Theorem 10.4]).
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It is known that whenever H2(C •) = 0, the functor DefC• is smooth (the
representing complete local algebra is regular), see [2, Theorem 3.1], [3, Propo-
sition 3.7], [1, Remark 2.8]. We recall now the description of the obstruction
space ODefC• ⊂ H2(C •).

Recall ([5], [18, §4]) that an obstruction theory for a deformation functor F :
ArtC → Sets is a pair (V, v). Here V is a vector space (obstruction space), and v
assigns to any small extension e : 0 //M //B //A //0, an obstruc-
tion map ve : F (A)→ V ⊗M , respecting base change, with Im (F (B)→ F (A))
⊂ ker ve. The obstruction theory is complete, if this containment is an equality.
A universal obstruction theory is an obstruction theory (OF , o), admitting a
unique morphism to any other obstruction theory (V, v). The vector space OF
is called the obstruction space of F .

Proof of Theorem 1.1. The proof is essentially a standard argument in de-
formation theory, and can be considered as a form of the so-called “Kodaira
principle”. By [18, Theorem 4.6 and Corollary 4.8] (see also [5]), any defor-
mation functor F admits a universal obstruction theory, and, if (V, v) is any
complete obstruction theory, then OF is isomorphic to the space, generated by
ve(F (A)), where e ranges over all principal (i.e., with M = C) small extensions.
By [18, Example 4.4], for any dgla L, the functor F = MCL admits a complete
obstruction theory (H2(L), v). Here the map ve : MCL(A) → H2(L) ⊗M is
defined by ve(x) = [h], where h = dx̃ + 1

2 [x̃, x̃], and x̃ ∈ MCL(B) is a lift of
x ∈ MCL(A). Also, by [18, Corollary 4.13], the functors MCL and DefL have
isomorphic obstruction theories. In particular, ODefL ⊂ H2(L) and if L abelian,
then ODefL = (0). Now consider the abelian dgla B• and h∞ : C • → B•. By
equation (2), h1 is a morphism of complexes, and one can show ([16]) that
H2(h1) is a morphism of obstruction spaces, hence the result.

There is a more direct argument if X is Kähler and G is semi-simple (so
that di = 0 is not an exponent), or if H1(X,OX) = 0. Indeed, in that case
B• 'qis CN [−1] (see Section 2.3), so H2(B•) = (0) = H2(h1)(OC•).
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