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1. Introduction

Real and complex manifolds are widely used in different branches of mathemat-
ics [4, 16, 17, 18, 20, 21, 22, 34]. On the other hand, Cayley-Dickson algebras
Ar, particularly, the quaternion skew field H = A2 and the octonion algebra
O = A3, have found many-sided applications not only in mathematics, but also
in theoretical physics (see [2], [7] - [14], [16, 22, 36, 35] and references therein).
Theory of functions of quaternion and octonion variables is presented in these
works and cited below. Various classes of such functions and different variants
of their super-differentiability were investigated and described depending on
needs of mathematics and theoretical physics over quaternions, octonions and
some other alternative algebras.

This paper continues previous works of the author, where different theory
from the cited above publications was developed. Functions of Cayley-Dickson
variables were studied earlier [23, 24, 29, 33]. Their super-differentiability
was defined in terms of representing them words and phrases as a differen-
tiation which is real-linear, additive and satisfying Leibniz’ rule on an algebra
of phrases over Ar (see in details Chapter 1 §§2.1 and 2.2 in the book [28] or in
the articles [23, 29]). That is a weak version of a super-differentiability used in
super-analysis. Though such weak super-differentiability over Ar of a function
f on an open domain implies that f is locally analytic in an Ar-variable with
Ar-coefficients in power series with definite order of the multiplication in each
additive. A super-differentiable function on a domain U in Anr or l2(Ar) of
Ar-variables is also called Ar-differentiable (or weakly Ar-holomorphic). For
r ≥ 4 the Cayley-Dickson algebras are non-associative and non-alternative.
This approach appeared to be effective for investigations of problems of anal-
ysis, partial differential equations, operator theory, noncommutative geometry
[25], [26] - [32].
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This article is devoted to investigations ofAr-differentiable manifolds (weak-
ly holomorphic manifolds). Their embeddings and immersions are studied.
Results and notations of previous papers [23, 24, 29, 33] are used below.

Main results of this paper are obtained for the first time.

2. Manifolds over Cayley-Dickson algebras

Definition 2.1. An R linear space X which is also left and right Ar module
will be called an Ar vector space. We present X as the direct sum

(DS) X = X0i0 ⊕ ... ⊕ Xmim ⊕ ..., where X0,...,Xm, ... are pairwise
isomorphic real linear spaces, where i0, ..., i2r−1 are generators of the Cayley-
Dickson algebra Ar such that i0 = 1, i2k = −1 and ikij = −ijik for each k ≥ 1
and j ≥ 1 so that k 6= j, 2 ≤ r.

Let X and Y be two R linear normed spaces which are also left and right
Ar modules, where 1 ≤ r, such that

(1) 0 ≤ ‖ax‖X ≤ |a|‖x‖X and ‖xa‖X ≤ |a|‖x‖X and
(2) ‖axj‖X = |a|‖xj‖X and
(3) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X

for all x, y ∈ X and a ∈ Ar and xj ∈ Xj. Such spaces X and Y will be called
Ar normed spaces.

Suppose that X and Y are two normed spaces over the Cayley-Dickson
algebra Av. A continuous R linear mapping θ : X → Y is called an R linear
homomorphism. If in addition θ(bx) = bθ(x) and θ(xb) = θ(x)b for each b ∈ Av
and x ∈ X, then θ is called a homomorphism of Av (two sided) modules X and
Y .

If a homomorphism is injective, then it is called an embedding (R linear or
for Av modules correspondingly).

If a homomorphism h is bijective and from X onto Y so that its inverse
mapping h−1 is also continuous, then it is called an isomorphism (R linear or
of Av modules respectively).

Definition 2.2. We say that a real vector space Z is supplied with a scalar
product if a bi-R-linear bi-additive mapping <,>: Z2 → R is given satisfying
the conditions:

(1) < x, x > ≥ 0, < x, x >= 0 if and only if x = 0;
(2) < x, y >=< y, x >;
(3) < ax+ by, z >= a < x, z > +b < y, z > for each real numbers a, b ∈ R

and vectors x, y, z ∈ Z.
Then an Ar vector space X is supplied with an Ar valued scalar product, if

a bi-R-linear bi-Ar-additive mapping < ∗, ∗ >: X2 → Ar is given such that
(4) < f, g >=

∑
j,k < fj , gk > i∗j ik,

where f = f0i0 + ...+fmim+ ..., f, g ∈ X, fj , gj ∈ Xj, each Xj is a real linear
space with a real valued scalar product, (Xj , < ∗, ∗ >) is real linear isomorphic
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with (Xk, < ∗, ∗ >) and < fj , gk >∈ R for each j, k. The scalar product induces
the norm:

(5) ‖f‖ :=
√
< f, f >.

An Ar normed space or an Ar vector space with Ar scalar product complete
relative to its norm will be called an Ar Banach space or an Ar Hilbert space
respectively.

A Hilbert space X over Ar is denoted by l2(λ,Ar), where λ is a set of
the cardinality card(λ) ≥ ℵ0 which is the topological weight of X0, i.e. X0 =
l2(λ,R).

A mapping f : U → l2(λ,Ar) can be written in the form

f(z) =
∑
j∈λ

f j(z)ej ,

where {ej : j ∈ λ} is an orthonormal basis in the Hilbert space l2(λ,Ar), U
is a domain in l2(ψ,Ar), f j(z) ∈ Ar for each z ∈ U and every j ∈ λ. If
f is Frechét differentiable over R and each function f j(z) is differentiable by
each Cayley-Dickson variable kz on U , then f is called Ar-differentiable on U ,
where

z =
∑
k∈ψ

kzqk,

while {qk : k ∈ ψ} denotes the standard orthonormal basis in l2(ψ,Ar), kz ∈
Ar.

Definition 2.3. Let M be a set such that
(1) M =

⋃
j Uj, M is a Hausdorff topological space,

(2) each Uj is open in M ,
(3) φj : Uj → φj(Uj) ⊂ X are homeomorphisms, φj(Uj) is open in X for

each j,
(4) if Ui ∩Uj 6= ∅, the transition mapping φi ◦φ−1

j of charts is bijective and
is Ar-differentiable on its domain, while

(5) φi : M → X with φi ◦ φ−1
j being Ar-differentiable on φj(Uj) for each

i 6= j;
where X is either Amr with m ∈ N or a Hilbert space l2(λ,Ar) over the Cayley-
Dickson algebra Ar. Then M is called an Ar-differentiable manifold (or a
weakly holomorphic manifold).

Proposition 2.4. Let M be an Ar- differentiable manifold. Then there exists
a tangent bundle TM which has the structure of an Ar- differentiable manifold
such that each fibre TxM is the vector space over the Cayley-Dickson algebra
Ar.

Proof. The Cayley-Dickson algebra Ar has the real shadow, which is the Eu-
clidean space R2r

, since Ar is the algebra over R. Therefore, a manifold M
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has also a real manifold structure. Each Ar- differentiable mapping is infinite
differentiable in accordance with Theorems 2.15 and 3.10 in [33, 23]. Then the
tangent bundle TM exists, which is C∞-manifold such that each fibre TxM is a
tangent space, where x ∈M , T is the tangent functor. If At(M) = {(Uj , φj) :
j}, then At(TM) = {(TUj , Tφj) : j}, TUj = Uj × X, where X is the Ar
vector space on which M is modeled, T (φj ◦φ−1

k ) = (φj ◦φ−1
k , D(φj ◦φ−1

k )) for
each Uj ∩ Uk 6= ∅. Each transition mapping φj ◦ φ−1

k is Ar- differentiable on
its domain, then its (strong) differential coincides with the super-differential
D(φj ◦ φ−1

k ) = Dz(φj ◦ φ−1
k ), since ∂̃(φj ◦ φ−1

k ) = 0. Therefore, the super-
differential D(φj ◦ φ−1

k ) is R-linear and Ar-additive, hence it is an automor-
phism of the Ar vector space X. But Dz(φj ◦φ−1

k ) is Ar- differentiable as well,
consequently, TM is the Ar- differentiable manifold.

Definition 2.5. A C1-mapping f : M → N is called an immersion, if the
real rank of df is rang(df |x : TxM → Tf(x)N) = mM for each x ∈ M , where
mM := dimRM . An immersion f : M → N is called an embedding, if f is a
homeomorphism on its image.

Theorem 2.6. Let M be a compact Ar- differentiable manifold, dimAr
M =

m <∞, where 2 ≤ r ∈ N.
(I). Then there exists an Ar- differentiable embedding τ : M ↪→ A2m+1

r and
an Ar- differentiable immersion θ : M → A2m

r correspondingly.
(II). If M is a paracompact Ar- differentiable manifold with countable

atlas on l2(λ,Ar), where card(λ) ≥ ℵ0, then there exists a Ar- differentiable
embedding τ : M ↪→ l2(λ,Ar).

Proof. (I). For the proof of this theorem identities of Cayley-Dickson algebras
are used below. This permits to supply the unit sphere of suitable dimension
multiple of 2r with the structure of an Ar differentiable manifold (see below),
where 2 ≤ r ∈ N. Then charts of a suitable refined atlas with Ar- differentiable
transition mappings are used.

Let at first M be compact. Since M is compact, then it is finite dimen-
sional over the Cayley-Dickson algebra Ar, dimAr

M = m ∈ N, such that
dimRM = 2rm is its real dimension. Take an atlas At′(M) refining the ini-
tial atlas At(M) of M such that (U ′j , φj) are charts of M , where each U ′j is
Ar- differentiable diffeomorphic to an interior of the unit ball Int(B(Amr , 0, 1)),
where B(Amr , y, ρ) := {z ∈ Amr : |z − y| ≤ ρ}. In view of compactness of the
manifold M a covering {U ′j : j} has a finite subcovering, hence At′(M) can be
chosen finite. Denote for convenience the latter atlas as At(M). Let (Uj , φj)
be the chart of the atlas At(M), where Uj is open in M , hence M \Uj is closed
in M .

Consider the space Amr × R as the R-linear space R2rm+1, i.e. its real
shadow. The unit sphere S2rm := S(R2rm+1, 0, 1) := {z ∈ R2rm+1 : |z| = 1}
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in Amr × R can be supplied with two charts (V1, φ1) and (V2, φ2) such that
V1 := S2rm \ {0, ..., 0, 1} and V2 := S2rm \ {0, ..., 0,−1}, where φ1 and φ2 are
stereographic projections from poles {0, ..., 0, 1} and {0, ..., 0,−1} of V1 and
V2 respectively onto Amr . Then the transition mapping between two charts
φ2 ◦φ−1

1 : E \ {0} → E \ {0} is given by the formula φ2 ◦φ−1
1 (y) = y/|y|2 where

y = (y1, ..., y2rm) ∈ E \ {0}, E = R2rm (see §1.1.3 [20]). On the other hand
the Euclidean space E is the real shadow of Amr . We denote the unit sphere in
Am ×R by S2rm also.

To rewrite a function from the real variables zj in the z-representation or
vice versa the following identities are used:

zj =
1
2

[
−zij + ij(2r − 2)−1

(
−z +

2r−1∑
k=1

ik(zi∗k)

)]
(1)

for each j = 1, 2, ..., 2r − 1,

z0 =
1
2

[
z + (2r − 2)−1

(
−z +

2r−1∑
k=1

ik(zi∗k)

)]
(2)

where 2 ≤ r ∈ N, z is a Cayley-Dickson number decomposed as

z = z0i0 + ...+ z2r−1i2r−1 ∈ Ar (3)

with zj ∈ R for each j, i∗k = ĩk = −ik for each k > 0, i0 = 1, since ij(ijik) = −ik
and (ikij)ij = −ik for each j > 0, also ijik = −ikij for each j 6= k with j > 0
and k > 0, while ik(i0i∗k) = 1 for each k. Formulas (1)-(3) define the real-linear
projection operators πj : Ar → R so that

πj(z) = zj (4)

for each Cayley-Dickson number z ∈ Ar and every j = 0, 1, ..., 2r − 1.
The conjugation is given by the formula:

z∗ = −(2r − 2)−1
2r−1∑
p=0

(ipz)ip (5)

in Amr due to formulas (1)-(3), which provides z∗ in the z-representation, where
i0, ..., i2r−1 are the standard generators of the Cayley-Dickson algebra Ar.
Therefore the transition mapping φ2 ◦ φ−1

1 : Amr \ {0} → Amr \ {0} has the
form in the z-representation:

φ2 ◦ φ−1
1 (z) = − (2r − 2)z∑m

k=1[kz
∑2r−1
p=0 (ip kz)ip]

, (6)
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where z = (1z, ...,mz) with jz ∈ Ar for each j = 1, ...,m, z ∈ Amr \ {0}.
The transition mapping is presented as the fraction of two polynomials on
the domain on which the denominator is non-zero. The fraction of two Ar-
differentiable functions is Ar-differentiable on a domain where the denominator
is non-zero [24, 29]. Therefore, φ2 ◦ φ−1

1 (z) is the Ar-differentiable diffeomor-
phism in Amr \ {0}, i.e. the (weak) super-differential Dz(φ2 ◦φ−1

1 ) exists. Thus
in the Ar realization φl(Vl) = Amr \ {0} for l = 1 and l = 2 the unit sphere
S2rm is supplied with the structure of the Ar-differentiable manifold.

If g : M → ANr is a continuous mapping, then g(M) is compact, since M is
compact (see Theorem 3.1.10 [6]). Therefore, g(M) is bounded and closed in
ANr (see Theorems 3.1.8 and 3.1.23 [6]). Thus there exists a shift h(z) = z + q
on ANr such that h(g(M)) does not contain zero and hence inf{|z| : z ∈
h(g(M))} > 0.

We consider [Int(B(Amr , 0, 1))+q] ⊂ Amr \{0} with q ∈ Amr such that |q| > 1
and At′(M) as above. The finite union of such balls [Int(B(Amr , 0, 1)) + q] is
bounded in Amr \{0}. The shift mapping z 7→ z+ q is Ar-differentiable on Amr .
On the other hand, the manifold M is compact and each its atlas has a finite
subatlas, where an atlas of M satisfies Conditions 3(1− 5) above.

Simplifying the notation we can choose an atlas {(Ej , ξj) : j = 1, ..., n}
of M with mappings ξj satisfying the following properties: each ξj : Ej →
ξj(Ej) is the Ar-differentiable diffeomorphism onto the subset ξj(Ej) in the
ball B(Amr , q, b) with |q| > 4b > 0, whilst ξj : M → Amr is Ar-differentiable,
clM (Ej) ⊂ Hj , Ej ⊂ Hj , Hj is open in M for each j, the restriction ξj |Hj

is
bijective, ξj(M) ⊂ B(Amr , q, 2b),

inf{|x− y| : x ∈ ∂ξj(Ej), y ∈ ∂ξj(Hj)} > b/2,
where

⋃
j Ej = M , clM (E) denotes the closure of E in M , ∂V := clAm

r
(V ) \

IntAm
r

(V ) for a subset V in Amr .
The function of the form

fj(z) = exp

(
m∑
k=1

bk,j

[
(kz − kwj)

2r−1∑
p=0

(
ip(kz − kwj)

)
ip

])
(7)

with positive constants bk,j and a marked point wj ∈ Amr is positive Ar-
differentiable bounded on Amr and tending to zero when |z| tends to the infinity,
see (5). For each bounded canonical closed subset W in Amr and its open
covering W it is possible to choose a finite open covering {Wj : j = 1, ..., l}
of W which refines W, since W is compact. We take Wj being intersections
of open balls in Amr with W . There exist constants cj > 0 and bk,j > 0 and
wj ∈ Amr such that

gj(z) =
cjfj(z)∑l
j=1 cjfj(z)

(8)

is positive and Ar-differentiable on W and gj(z) < gj(y) for each z ∈ W \Wj
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and y ∈Wj . We can choose constants so that

c1gj(z) > c2gj(y) (9)

for each z ∈ ξj(Ej) and y ∈ ξj(M \Hj), where c1 = inf{|x| : x ∈ ξj(Ej)} and
c2 = sup{|x| : x ∈ ξj(M \Hj)}.

Evidently, g(z) =
∑l
j=1 gj(z) is identically unit on Amr . The product of

Ar-differentiable functions is Ar-differentiable.
Using charts (Ej , ξj) and of the atlas of M , the open covering {Hj : j} of

M as above and such functions gj one can choose Ar-differentiable mappings
ψj for each j so that ψj(M) ⊂ V mk , where either k = 1 or k = 2, Uj and Aj
are open subsets in M with Uj ⊂ Aj for each j = 1, ..., n,

⋃n
j=1 Uj = M , ψj |Aj

is bijective for each j, and

|φ̄k ◦ ψj(y)| < |φ̄k ◦ ψj(z)| (10)

for each z ∈ Uj and y ∈ M \ Aj , where φ̄k = (φk, ..., φk) : V mk → Amr , while
φk : Vk → Amr is given above.

The family of such component mappings ψj induces an Ar-differentiable
diffeomorphism: ψ : M → (S2rm)n with n equal to the number of charts,
where ψ(z) := (ψ1(z), ..., ψn(z)) for each z ∈M .

Then the mapping ψ(z) is the embedding into (S2rm)n and hence into
Arn(m+1), since the rank is rank[dzψ(z)] = 2rm at each point z ∈M . Indeed,
the rank is rank[dzψj(z)] = 2rm for each z ∈ Uj and the dimension is bounded
from above dimAr

ψ(Uj) ≤ dimAr
M = m. If y and z are two distinct points

in M , then there exists j so that z ∈ Uj . If y ∈ Aj , then ψj(z) 6= ψ(y), since
ψj |Aj is bijective. If y ∈ M \ Aj , then from inequality (10) it follows, that
ψj(z) 6= ψj(y). Therefore, ψ(z) 6= ψ(y) for each two distinct points z and y in
M , since a natural number j exists so that ψj(z) 6= ψj(y).

Let M ↪→ ANr be the Ar- differentiable embedding as above. There is also
the Ar- differentiable embedding of M into (S2rm)n as it is shown above, where
(S2rm)n is the Ar- differentiable manifold as the product of Ar- differentiable
manifolds.

Let PRn denote the real projective space formed from the Euclidean space
Rn+1, denote by φ : Rn+1\{0} → PRn the corresponding projective mapping.
Geometrically PRn is considered as Sn/τ , where Sn := {y ∈ Rn+1 : ‖y‖ = 1}
is the unit sphere in Rn+1, while τ is the equivalence relation making identical
two spherically symmetric points, i.e. points belonging to the same straight
line containing zero and intersecting the unit sphere.

We consider Anr as the algebra of all n× n diagonal matrices

A = diag(a1, ..., an)

with entries a1, ..., an ∈ Ar. It naturally has the structure of the left- and
right- Ar-module. Then Anr is isomorphic with the tensor product of algebras
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Anr = Ar⊗RRn over the real field, where Rn is considered as the algebra of all
diagonal n × n matrices C = diag(b1, .., bn) with entries b1, ..., bn ∈ R. Using
this realization of Anr we get an extension of φ from Rn+1 onto Ar ⊗R Rn+1

by the formulas:
φ(ax) = aφ(x) (11)

and
φ(xa) = φ(x)a (12)

for each a ∈ Ar with |a| = 1 and every x ∈ Rn+1 \ {0}, also

φ(x0i0 + ...+ x2r−1i2r−1) = φ(x0)i0α0 + ...+ φ(x2r−1)i2r−1α2r−1 (13)

for each non-zero vector x = x0i0 + ... + x2r−1i2r−1 ∈ An+1
r , where αj :=

‖xj‖/‖x‖, xj ∈ Rn+1 for each j, the norm is given by the usual formula

‖x‖2 = ‖x0‖2 + ...+ ‖x2r−1‖2 . (14)

Then we put by our definition PAnr = φ([Ar⊗R Rn+1]\{0}) to be the Cayley-
Dickson projective space.

If z ∈ PAnr , then by our definition φ−1(z) is the Ar straight line in An+1
r .

To each element x ∈ An+1
r we pose an Ar straight line < Ar, x} := φ−1(φ(x)).

That is the bundle of all Ar straight lines < Ar, x} in An+1
r is considered,

where x ∈ An+1
r , x 6= 0. Then < Ar, x} is the Ar vector space of dimension

1 over Ar due to formulas (11)-(14) above. Therefore, < Ar, x} has the real
shadow isomorphic with R2r

, since the standard generators i0, i1, ..., i2r−1 are
linearly independent over the real field R.

Fix the standard orthonormal base {e1, ..., eN} in ANr and projections on
Ar-vector subspaces relative to this base

PL(x) :=
∑
ej∈L

xjej (15)

for the Ar vector span L = spanAr
{ei : i ∈ ΛL}, ΛL ⊂ {1, ..., N}, where

x =
N∑
j=1

xjej , (16)

xj ∈ Ar for each j, ej = (0, ..., 0, 1, 0, ..., 0) with 1 at j-th place. This means
in particular that the projective space PAnr has the dimension n − 1 over the
Cayley-Dickson algebra Ar. In this base consider the Ar-Hermitian scalar
product

< x, y >:=
N∑
j=1

x∗jyj . (17)
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Let l ∈ PAN−1
r , take an Ar-hyperplane denoted by (AN−1

r )l and given by the
condition:

< x, y >= 0 for each x ∈ (AN−1
r )l and y ∈ l . (18)

We take a vector 0 6= [l] ∈ ANr as a representative characterizes the equiv-
alence class l =< Ar, [l]} of unit norm ‖[l]‖ = 1. Then the orthonormal
base {q1, ..., qN−1} in (AN−1

r )l and the vector [l] =: qN compose the orthonor-
mal base {q1, ..., qN} in ANr . This provides the Ar- differentiable projection
πl : ANr → (AN−1

r )l relative to the orthonormal base {q1, ..., qN}. Indeed, the
operator πl is Ar left πl(bx0) = bπl(x0) and also right πl(x0b) = πl(x0)b linear
for each x0 ∈ X0 and b ∈ Ar, but certainly non-linear relative to Ar. Therefore
the mapping πl is Ar- differentiable.

To construct an immersion it is sufficient, that each projection πl : TxM →
(AN−1

r )l has ker[d(πl(x))] = {0} for each x ∈ M . The set of all points x ∈ M
for which ker[d(πl(x))] 6= {0} is called the set of forbidden directions of the
first kind. Forbidden are those and only those directions l ∈ PAN−1

r for which
there exists a point x ∈ M such that l′ ⊂ TxM , where l′ = [l] + z, z ∈ ANr .
The set of all forbidden directions of the first kind forms the Ar- differentiable
manifold Q due to formulas (11)-(18) and (1)-(3).

This manifold Q consists of points (x, l) with x ∈ M and l ∈ PAN−1
r so

that [l] ∈ TxM . The manifold M is m-dimensional over the Cayley-Dickson
algebra Ar. The tangent bundle TM has the structure of an Ar- differentiable
manifold of dimension 2m over the Cayley-Dickson algebra Ar in accordance
with Proposition 4 above. Each point x in the manifold M has an open neigh-
borhood locally homeomorphic with an open neighborhood of zero in TxM .
Then dimAr

TxM = m and hence P (TxM)2 is isomorphic with PA2m−1
r . On

the other hand, the dimension of the projective space PA2m−1
r over the Cayley-

Dickson algebraAr is 2m−1 (see also Formulas (1−4)). Therefore, the manifold
Q has the Ar dimension (2m−1). Take the mapping g : Q→ PAN−1

r given by
g(x, l) := l. Then this mapping g is Ar- differentiable in view of Proposition 2.4
and formulas (11)-(18) and (1)-(3).

Each paracompact manifold A modeled on Apr can be supplied with the
Riemann manifold structure also. Therefore, on a manifold A there exists
a Riemann volume element. In view of the Morse theorem µ(g(Q)) = 0, if
N − 1 > 2m− 1, that is, 2m < N , where µ is the Riemann volume element in
PAN−1

r . In particular, g(Q) is not equal to the whole PAN−1
r and there exists

l0 /∈ g(Q), consequently, there exists πl0 : M → (AN−1
r )l0 . This procedure

can be prolonged, when 2m < N − k, where k is the number of the step of
projection. Hence M can be immersed into A2m

r .
Consider now the forbidden directions of the second type: l ∈ PAN−1

r ,
for which there exist x 6= y ∈ M simultaneously belonging to l after suitable
parallel translation [l] 7→ [l] + z, z ∈ ANr . The set of the forbidden directions
of the second type forms the manifold Φ := M2 \ ∆, where ∆ := {(x, x) :
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x ∈ M}. Consider ψ : Φ → PAN−1
r , where ψ(x, y) is the straight Ar-line

with the direction vector [x, y] in the orthonormal base. Then µ(ψ(Φ)) = 0 in
PAN−1

r , if 2m+1 < N . Then the closure cl(ψ(Φ)) coincides with ψ(Φ)∪g(Q) in
PAN−1

r . Hence there exists l0 /∈ cl(ψ(Φ)). Then consider πl0 : M → (Ar)N−1
l0

.
This procedure can be prolonged, when 2m+1 < N−k, where k is the number
of the step of projection. Hence M can be embedded into A2m+1

r .
(II). Let now M be a paracompact Ar- differentiable manifold with count-

able atlas on l2(λ,K). Spaces l2(λ,Ar) ⊕ Amr and l2(λ,Ar) ⊕ l2(λ,Ar) are
isomorphic as Ar Hilbert spaces with l2(λ,Ar), since card(λ) ≥ ℵ0. Take an
additional variable z ∈ Ar, when z = j ∈ N. Then it gives a number of a
chart. Each TUj is Ar- differentiably diffeomorphic with Uj × l2(λ,Ar). Con-
sider Ar- differentiable functions ψ on domains in l2(λ,Ar) ⊕ l2(λ,Ar) ⊕ Ar.
Then there exists an Ar- differentiable mapping ψj : M → l2(λ,Ar) such that
ψj : Uj → ψj(Uj) ⊂ l2(λ,Ar) is an Ar- differentiable diffeomorphism. Then
the mapping (ψ1, ψ2, ...) provides the Ar- differentiable embedding of M into
l2(λ,Ar).

Remark 2.7. Theorem 2.6 is the extension of the immersion and embedding
Whitney theorems to Ar-differentiable manifolds (see also Theorems 1, 2 and
Footnote 4 in [37]; or Theorems 1.3.4, 1.3.5 and Proposition 2.1.0 in [18]; or
Theorem in §11 Chapter II.2 [4]).
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