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RH-regular transformation
of unbounded double sequences

Richard F. Patterson

Abstract. At the Ithaca meeting in 1946 it was conjectured that it
is possible to construct a two-dimensional regular summability matrix
A = {an,k} with the property that, for every real sequence {sk}, the
transformed sequence

tn =
∞∑

k=0

an,ksk

possesses at least one limit point in the finite plane. It was also counter-
conjectured that, for every regular summability matrix A, there exists
a single sequence {sk} such that the transformed sequence tn tends
to infinity monotonically. In 1947 Erdos and Piranian presented an-
swers to these conjectures. The goal of this paper is to present a mul-
tidimensional version of the above conjectures. The first conjecture
is the following: A four-dimensional RH-regular summability matrix
A = {am,n,k,l} can be constructed with the property that every double
sequence {sk,l} transformed into the double sequence

tm,n =
∞,∞∑

k,l=0,0

am,n,k,lsk,l

possesses at least one Pringsheim limit point in the finite plane. The
multidimensional counter-conjecture is the following. For every RH-
regular summability matrix A there exists a double sequence {sk,l} such
that the four-dimensional transformed double sequence {tm,n} tends to
infinity monotonically Pringsheim sense. This paper established that
both multidimensional conjectures are false.
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1. Definitions, Notations, and Preliminary Results

Definition 1.1. [Pringsheim, [4]] A double sequence x = [xk,l] has a Pring-
sheim limit L (denoted by P-lim x = L) provided that, given an ε > 0 there
exists an N ∈ N such that |xk,l − L| < ε whenever k, l > N . Such an x is
described more briefly as “P-convergent”.

Definition 1.2. [Patterson, [3]] A double sequence y is a double subse-
quence of x provided that there exist increasing index sequences {nj} and
{kj} such that, if xj = xnj ,kj

, then y is formed by

x1 x2 x5 x10

x4 x3 x6 −
x9 x8 x7 −
− − − −.

In [5] Robison presented the following notion of conservative four-dimen-
sional matrix transformation and a Silverman-Toeplitz type characterization of
such notion.

Definition 1.3. A four-dimensional matrix A is said to be RH-regular if it
maps every bounded P-convergent sequence into a P-convergent sequence with
the same P-limit.

This assumption of boundedness is made because a double sequence which
is P-convergent is not necessarily bounded. Along these same lines, Robison
and Hamilton presented a Silverman-Toeplitz type multidimensional charac-
terization of regularity in [2] and [5].

Theorem 1.4. (Hamilton [2], Robison [5]) The four dimensional matrix A is
RH-regular if and only if

RH1: P-limm,n am,n,k,l = 0 for each k and l;
RH2: P-limm,n

∑∞,∞
k,l=0,0 am,n,k,l = 1;

RH3: P-limm,n

∑∞
k=0 |am,n,k,l| = 0 for each l;

RH4: P-limm,n

∑∞
l=0 |am,n,k,l| = 0 for each k;

RH5:
∑∞,∞

k,l=0,0 |am,n,k,l| is P-convergent;
RH6: there exist finite positive integers ∆ and Γ such that∑

k,l>Γ |am,n,k,l| < ∆.

Definition 1.5. Let A be a four dimensional matrix with pairwise column
(m,n). Then the (i, j)-reverse L-string , denoted by, Lm,n

i,j is

{am,n,1,j , am,n,2,j , am,n,3,i, · · · , am,n,i,j , am,n,i,j−1, am,n,i,j−2, · · · , am,n,i,1, } .

Given a double sequence x the (i, j)-reverse L-string , denoted by, Li,j is

{x1,j , x2,j , x3,i, · · · , xi,j , xi,j−1, xi,j−2, · · · , xi,1, } .
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2. Main Results

Theorem 2.1. If A is a pairwise-row finite RH-regular summability matrix then
there exists a double sequence {sk,l} such that the corresponding transformed
double sequence |tm,n| tends to infinity, in the Pringsheim with arbitrary rapid-
ity.

Proof. Let A be a pairwise-row finite RH-regular summability matrix. If m0

and n0 are sufficiently large, then each pairwise index whose indices exceed m0

and n0, respectively, contains a non-zero element. For fixed pairwise column
index (m,n) let C-string denote the last column of the pairwise row whose sum
is non-zero, and R-string denote the last row of the pairwise row whose sum is
non-zero. Using the terms from C-string and R-string along with Definition 1.5
we can now construct a last reverse L-string whose sum is non-zero. Therefore
a terminal reverse L-string exists. Let α1, α2, α3, · · · and β1, β2, β3, · · · be the
indices of the pairwise-columns that contain terminal reverse L-string. Without
of loss of generality we may assume that α1 < α2 < α3 < · · · and β1 < β2 <
β3 < · · · . Define the terms of {sk,l} such that

k 6= α1, α2, α3, · · ·

and
l 6= β1, β2, β3, · · ·

be arbitrary. Since A is pairwise row finite, each pairwise-column contains at
most a finite number of pairwise-terminal reverse L-string of elements, that is,
for each pairwise column the pairwise-terminal reverse L-string of element are
bounded away from zero. If f(m,n) is any arbitrary real function the terms

sk1,l1 sk1,l2 · · ·
sk2,l1 sk2,l2 · · ·

· · · · · ·
. . .

can be chosen large enough so that |tm,n| > f(m,n); m > m0 and n > n0.

Theorem 2.2. If A is an RH-regular summability matrix then there exists a
double sequence {sm,n} such that the transformed double sequence {tm,n} has
no P-limit points in the finite plane.

Proof. Let c be a constant such that
∑∞,∞

k,l=0,0 |am,n,k,l| < c
5 for all (m,n). Such

a constant exists by RH5 of the RH-regularity conditions of A. We can choose
m0 = n0 sufficiently large such that, regularity conditions RH3, RH4, and RH5

of A assure us, that there exists a pair (α1, β1) such that∑
{(k,l):k>α1 or l>β1}

|am0,n0,k,l| <
1
c2

.
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Now choose m1 and n1 with m1 > m0 and n1 > n0 such that∑
{(k,l):0≤k≤α1;0≤l≤β1}

|am,n,k,l| <
1
5

for m > m1 and n > n1 by RH1. Let us construct the second stage. Conditions
RH3, RH4, and RH5 assure us that we can choose (α2, β2) with α2 > α1 and
β2 > β1 such that ∑

{(k,l):k>α2 or l>β2}

|am,n,k,l| <
1
c4

whenever m,n ≤ m1, n1, respectively. Using RH1, we can now choose m2 and
n2 with m2 > m1 and n2 > n1 such that∑

{(k,l):0≤k≤α2;0≤l≤β2}

|am,n,k,l| <
1
5

for m > m2 and n > n2. Using the RH-regularity conditions of A the general
stage is constructed as follows. Let (αr, βs)be such that αr > αr−1 and βs >
βs−1 with ∑

{(k,l):k>αr or l>βs}

|am,n,k,l| <
1

cr+s

where m,n ≤ mr−1, ns−1, respectively. Now we choose mr and ns with mr >
mr−1 and ns > ns−1 such that∑

{(k,l):0≤k≤αr;0≤l≤βs}

|am,n,k,l| <
1
5

for m > mr and n > ns, where r, s = 1, 2, 3, . . .. Let us now consider following
double sequence

sk,l =


(
1 + 1

c

)r+s if αr−1 < k ≤ αr and/or βs−1 < l ≤ βs

0 if otherwise
r, s = 1, 2, 3, . . .

.

Let us now partition the A transformation of {sk,l} into three parts with

mr−1 < m ≤ mr and/or ns−1 < n ≤ ns.

The first partition satisfy the following inequality

αr−1,βs−1∑
k,l=0,0

|am,n,k,l| <
1
5

(
1 +

1
c

)r+s−2

with r, s = 2, 3, 4, . . . (1)
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and the second satisfies the inequality

∞,∞∑
k,l=αr+1+1,βs+1+1

|am,n,k,l| (2)

<
1

cr+s+2

(
1 +

1
c

)r+s+4

+
1

cr+s+4

(
1 +

1
c

)r+s+6

+ · · ·

=
1

cr+s+2

(
1 +

1
c

)r+s+4
[
1 +

1
c2

(
1 +

1
c

)2

+
1
c4

(
1 +

1
c

)4

+ · · ·

]

=
1

cr+s+2

(
1 +

1
c

)r+s+4 ∞∑
i=0

1
c2i

(
1 +

1
c

)2i

=
1

cr+s+2

(
1 +

1
c

)r+s+4 1

1− 1
c2

(
1 + 1

c

)2

≤ 1
cr+s+2

(
1 +

1
c

)r+s+4 (
1

1− 4
25

)
≤ 1

cr+s+2

(
1 +

1
c

)r+s+4 25
21

≤ 1
21cr+s

(
1 +

1
c

)r+s+4

with r, s = 0, 1, 2, . . . .

The final partition satisfies the equality

αr+1,βs+1∑
k,l=αr−1+1,βs−1+1

am,n,k,lsk,l =
αr,βs∑

k,l=αr−1+1,βs−1+1

am,n,k,lsk,l

+
αr+1,βs+1∑

k,l=αr+1,βs+1

am,n,k,lsk,l

=
αr,βs∑

k,l=αr−1+1,βs−1+1

am,n,k,l

(
1 +

1
c

)r+s

+
αr+1,βs+1∑

k,l=αr+1,βs+1

am,n,k,l

(
1 +

1
c

)r+s+2

(3)
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In addition,the final partition also satisfies the following inequality

αr+1,βs+1∑
k,l=αr−1+1,βs−1+1

am,n,k,lsk,l =
(

1 +
1
c

)r+s
 αr,βs∑

k,l=αr−1+1,βs−1+1

am,n,k,l

+
(

1 +
1
c

)2 αr+1,βs+1∑
k,l=αr+1,βs+1

am,n,k,l


>

(
1 +

1
c

)r+s
 αr,βs∑

k,l=αr−1+1,βs−1+1

am,n,k,l

+
αr+1,βs+1∑

k,l=αr+1,βs+1

am,n,k,l

+
1
c

αr+1,βs+1∑
k,l=αr+1,βs+1

am,n,k,l

 .

Observe that, if m and n are sufficiently large the following is true by the
RH-regularity of A:

1
c

αr+1,βs+1∑
k,l=αr+1,βs+1

am,n,k,l <
1
5

(4)

and

∣∣∣∣∣∣
αr,βs∑

k,l=αr−1+1,βs−1+1

am,n,k,l +
αr+1,βs+1∑

k,l=αr+1,βs+1

am,n,k,l

∣∣∣∣∣∣ >
3
5
. (5)

Therefore, for m and n sufficiently large, inequalities (1) through (5) imply the
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following∣∣∣∣∣∣
∞,∞∑

k,l=0,0

am,n,k,lsk,l

∣∣∣∣∣∣ =

∣∣∣∣∣∣
αr−1,βs−1∑

k,l=0,0

am,n,k,lsk,l

+
αr+1,βs+1∑

k,l=αr−1+1,βs−1+1

am,n,k,lsk,l +
∞,∞∑

k,l=αr+1+1,βs+1+1

am,n,k,lsk,l

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
αr+1,βs+1∑

k,l=αr−1+1,βs−1+1

am,n,k,lsk,l

∣∣∣∣∣∣
−

αr−1,βs−1∑
k,l=0,0

|am,n,k,l|sk,l

−
∞,∞∑

k,l=αr+1+1,βs+1+1

|am,n,k,l|sk,l

>

(
1 +

1
c

)r+s
[

2
5
− 1

5(1 + 1
c )
− 1

21cr+s

(
1
1
c

)4
]

>
1

100

(
1 +

1
c

)r+s

.

Theorem 2.3. If A is a four-dimensional RH-regular summability matrix then
there exists a double sequence {sk,l} such that tm,n = ρm,neiθm,n , with

P− lim
m,n

ρm,n = ∞ and P− lim
m,n

θm,n = 0.

If the matrix A is also real then the double sequence sm,n can be chosen so that
the double sequence tm,n is real and positive.

In the proof of Theorem 2.2, replace 1
5 with a Pringsheim null double se-

quence and replace {sk,l} with the following sequence, or a sequence similar to
the following, with respect to order.

s
′

k,l =


(
1 + 1

c

)√r+s if αr−1 < k ≤ αr and/or βs−1 < l ≤ βs

0 if otherwise
r, s = 1, 2, 3, . . .

.

The result then follows from RH1, RH3, RH4, and RH5 of the RH-regularity
conditions of A.
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Theorem 2.4. If the double real valued function f(m,n) is such that

P− lim
m,n

f(m,n) = ∞

then there exists an RH-regular summability matrix A such that, for every
double sequence {sm,n} to which transformation A is applicable, the inequality

|tm,n| < f(m,n) (6)

is satisfied for infinitely many ordered pairs (m,n).

Proof. This asserts that there exists an RH-regular transformation that trans-
forms every double sequence to which it is summable either into a double
sequence with at least one finite Pringsheim limit point or else into a double
sequence whose terms tend to infinity at an arbitrary slow rate, independent
of the double sequence. The following four-dimensional summability matrix
satisfies the conditions of the theorem.

am,n,k,l =



1 if both m and n are even with k = m
2 and l = n

2
0 if both m and n are even with k 6= m

2 and l 6= n
2

1 if both m and n are odd with k = m−1
2 and l = n−1

2
0 if both m and n are odd with k < m−1

2 and l < n−1
2

0 if both m and n are odd with k > m−1
2 and l > n−1

2
except when k = k1, k2, k3, . . . and l = l1, l2, l3, . . .

2−(r+s) if both m and n are odd with k < m−1
2 and l < n−1

2
k = k1, k2, k3, . . . and l = l1, l2, l3, . . .

r, s = 1, 2, 3, . . . .

.

Suppose that the double sequence {sm,n} is such that inequality (6) does not
hold infinitely often in the Pringsheim sense. Choose index sequences {kr}, {ls}
such that f(kr, ls) > 2r+s; and if each element of (m,n) is odd and kr > m−1

2
and ls > n−1

2 , am,n,kr,ls = 1
2r+s .

Since A is such that its pairwise row contains only one nonzero element,
then |sm,n| > f(m,n) for all sufficiently large m and n. Therefore, for odd m
and n, the series

∞,∞∑
k,l=1,1

am,n,k,lsk,l

contains infinity many terms whose absolute value is 1. Therefore the four-
dimensional A transformation is not applicable to the double sequence {sm,n}.
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