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Fundamental Solutions for Hyperbolic
Operators with Variable Coefficients
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Abstract. In this article we describe a new method to construct fun-
damental solutions for operators with variable coefficients. That method
was introduced in [11] to study the Tricomi-type equation. More pre-
cisely, the new integral operator is suggested which transforms the fam-
ily of the fundamental solutions of the Cauchy problem for the equation
with the constant coefficients to the fundamental solutions for the op-
erators with variable coefficients.
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1. Introduction

In this article we describe a new method to construct fundamental solutions
for operators with variable coefficients. We also give a brief survey of some
results obtained by that method, which was introduced in [11] to solve the
Cauchy problem for the Tricomi-type equation. Later on it was applied to
several partial differential equations with variable coefficients containing some
equations arising in the mathematical cosmology. More precisely, a new integral
operator is suggested which transforms the family of the fundamental solutions
of the Cauchy problem for the equation with the constant coefficients to the
fundamental solutions for the operators with variable coefficients. The kernel
of that transformation contains Gauss’s hypergeometric function.

This method was used in [5, 6],[11]-[15] to investigate in a unified way sev-
eral equations such as the linear and semilinear Tricomi and Tricomi-type equa-
tions, Gellerstedt equation, the wave equation in Einstein-de Sitter spacetime,
the wave and the Klein-Gordon equations in the de Sitter and anti-de Sitter
spacetimes. The listed equations play an important role in the gas dynamics,
elementary particle physics, quantum field theory in the curved spaces, and
cosmology. For all above mentioned equations, we have obtained among other
things, fundamental solutions, the representation formulas for the initial-value
problem, the Lp − Lq-estimates, local and global solutions for the semilinear
equations, blow up phenomena, self-similar solutions and number of other re-
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sults.
The starting point of our approach is the Duhamel’s principle, which we

revise in order to prepare the ground for generalizations. It is well-known that
the solution of the Cauchy problem for the string equation with the source term
f , f(x, t) ∈ C∞(R2),

utt − uxx = f(x, t) in R2, u(x, t0) = 0, ut(x, t0) = 0 in R , (1.1)

can be written as an integral

u(x, t) =
∫ t

t0

v(x, t; τ) dτ

of the family of the solutions v(x, t; τ) of the problem without the source term,
but with the second initial datum

vtt − vxx = 0 in R2, v(x, τ ; τ) = 0, vt(x, τ ; τ) = f(x, τ) in R .

Our first observation is that we obtain the following representation of the
solution of (1.1)

u(x, t) =
∫ t

t0

dτ

∫ t−τ

0

w(x, z; τ) dz , (1.2)

if we denote
w(x; t; τ) :=

1
2

[f(x+ t, τ) + f(x− t, τ)] ,

where the function w = w(x; t; τ) is the solution of the problem

wtt − wxx = 0 in R2, w(x, 0; τ) = f(x, τ), wt(x, 0; τ) = 0 in R . (1.3)

This formula allows us to solve problems with the source term if we solve the
problem for the same equation without source term but with the first initial
datum. We claim that the formula (1.2) can be used also for the wave equation
with x ∈ Rn, for all n ∈ N. (See, e.g, [11].) More precisely, it holds also for
the problem

utt −∆u = f(x, t) in Rn+1, u(x, t0) = 0, ut(x, t0) = 0 in Rn ,

with the function w = w(x; t; τ) solving

wtt −∆w = 0 in Rn+1, w(x, 0; τ) = f(x, τ), wt(x, 0; τ) = 0 in Rn. (1.4)

Note that in the last problem the initial time t = 0 is frozen, while in the
Duhamel’s principle it is varying with the parameter τ .

The second observation is that in (1.2) the upper limit t − τ of the inner
integral is generated by the propagation phenomena with the speed which is
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equals to one. In fact, that is a distance function between the points at time t
and τ .

Our third observation is that the solution operator G : f 7−→ u can be
regarded as a composition of two operators. The first one

WE : f 7−→ w

is a Fourier Integral Operator (FIO), which is a solution operator of the Cauchy
problem with the first initial datum for wave equation in the Minkowski space-
time. The second operator

K : w 7−→ u

is the integral operator given by (1.2). We regard the variable z in (1.2) as a
“subsidiary time”. Thus, G = K ◦WE and we arrive at the diagram:

f
WE - w

u

K

?

G

-

Our aim is, based on this diagram, to generate a class of operators for which we
will obtain explicit representation formulas for the solutions. That means also
that we will have representations for the fundamental solutions of the partial
differential operator. In fact, this diagram brings into a single hierarchy several
different partial differential operators. Indeed, if we take into account the
propagation cone by introducing the distance function φ(t), and if we provide
the integral operator with the kernel K(t; r, b) as follows:

K[w](x, t) = 2
∫ t

t0

db

∫ |φ(t)−φ(b)|

0

K(t; r, b)w(x, r; b)dr, x ∈ Rn, t > t0, (1.5)

then we actually can generate new representations for the solutions of the
different well-known equations. Below we illustrate the suggested scheme by
several examples.

1.1. Klein-Gordon equation in the Minkowski spacetime

If we choose the kernel K(t; r, b) as

K(t; r, b) = J0

(√
(t− b)2 − r2

)
, (1.6)
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where J0(z) is the Bessel function of the first kind, and if we choose the distance
function as φ(t) = t, then we can prove (see Theorem 1.1 below) that the
function

u(x, t) =
∫ t

t0

db

∫ t−b

0

J0

(√
(t− b)2 − r2

)
w(x, r; b)dr, x ∈ R, t > t0,

solves the problem for the Klein-Gordon equation with a positive mass equals
to 1 in the one-dimensional Minkowski spacetime,

utt − uxx + u = f(x, t) in R2, u(x, t0) = 0, ut(x, t0) = 0 in R,

provided that w(x, r; b) is a corresponding solution of the problem for the wave
equation in the Minkowski spacetime. We emphasis that the function w =
w(x, t; b), with b regarded as a parameter, and the function u = u(x, t) solve
different equations. This is a fundamental distinction from the Duhamel’s
principle.

Now if we choose the kernel K(t; r, b) as

K(t; r, b) = I0

(√
(t− b)2 − r2

)
, (1.7)

where I0(z) is the modified Bessel function of the first kind, and the distance
function as φ(t) = t, then the function

u(x, t) =
∫ t

t0

db

∫ t−b

0

I0

(√
(t− b)2 − r2

)
w(x, r; b)dr, x ∈ Rn, t > t0,

solves the problem for the Klein-Gordon equation with an imaginary mass in
the one-dimensional Minkowski spacetime,

utt − uxx − u = f(x, t) in R2, u(x, t0) = 0, ut(x, t0) = 0 in R,

provided that w(x, r; b) is a corresponding solution of the problem (1.3) for
the wave equation in the one-dimensional Minkowski spacetime. According
to the next theorem the representation formulas are valid also for the higher
dimensional equations. The proof is by straightforward substitution.

Theorem 1.1. The functions u = uRe(x, t) and uIm(x, t) defined by

uRe(x, t) =
∫ t

t0

db

∫ t−b

0

J0

(
m
√

(t− b)2 − r2
)
w(x, r; b)dr, x ∈ Rn, (1.8)

uIm(x, t) =
∫ t

t0

db

∫ t−b

0

I0

(
m
√

(t− b)2 − r2
)
w(x, r; b)dr, x ∈ Rn, (1.9)

m = |M |, are solutions of the problems

utt −∆u+M2u = f(x, t) in Rn+1, u(x, t0) = 0, ut(x, t0) = 0 in Rn,

with M2 > 0 and M2 < 0, respectively. Here w(x, t; b) is a solution of (1.4).
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Definition 1.2. The integral operator (1.5) is said to be a generator of the
solution operator for some equation if the operator G = K◦WE gives a solution
operator for that equation.

1.2. Tricomi-type equations

The first example linking to the operator with the variable coefficient is gener-
ated by the kernel K(t; r, b) = E(0, t; r, b), where the function E(x, t; r, b) [11]
is defined by

E(x, t; r, b) := ck
(
(φ(t) + φ(b))2 − (x− r)2

)−γ
×F

(
γ, γ; 1;

(φ(t)− φ(b))2 − (x− r)2

(φ(t) + φ(b))2 − (x− r)2

)
, (1.10)

with γ := k
2k+2 , ck = (k + 1)−k/(k+1)2−1/(k+1), 2k = l ∈ N ∪ {0}, where N is

the set of natural numbers, and the distance function φ = φ(t) is

φ(t) =
1

k + 1
tk+1, (1.11)

while F
(
a, b; c; ζ

)
is the Gauss’s hypergeometric function. Here we assume that

2k ∈ N∪{0} but later on we consider the case of l ∈ R. It is proved in [11] that
for an integer non-negative l, for the smooth function f = f(x, t), the function

u(x, t) = 2cl
∫ t

0

db

∫ φ(t)−φ(b)

0

(
(φ(t) + φ(b))2 − r2

)−γ
×F

(
γ, γ; 1;

(φ(t)− φ(b))2 − r2

(φ(t) + φ(b))2 − r2

)
w(x, r; b)dr, t > 0,

solves the Tricomi-type equation

utt − tl∆u = f(x, t) in Rn+1
+ := {(x, t) |x ∈ Rn, t > 0}, (1.12)

and takes vanishing initial values

u(x, 0) = 0, ut(x, 0) = 0 in Rn. (1.13)

1.3. The wave equation in the Robertson-Walker
spacetime: de Sitter spacetime

The next interesting example we obtain if we set K(t; r, b) = E(0, t; r, b), where
the function E(x, t; r, b) [17] is defined by

E(x, t; r, b) :=
(
(e−b + e−t)2 − (x− r)2

)− 1
2

×F
(

1
2
,

1
2

; 1;
(e−t − e−b)2 − (x− r)2

(e−t + e−b)2 − (x− r)2

)
, (1.14)
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and φ(t) := e−t. For the sake of simplicity, in (1.14) we use the notation
x2 = x · x = |x|2 for x ∈ Rn. It is proved in [17] that defined by the integral
transform (1.5) with the kernel (1.14) the function

u(x, t) = 2
∫ t

0

db

∫ e−b−e−t

0

(
(e−b + e−t)2 − r2

)− 1
2

×F
(

1
2
,

1
2

; 1;
(e−t − e−b)2 − r2

(e−t + e−b)2 − r2

)
w(x, r; τ) dr

solves the wave equation in the Robertson-Walker spaces arising in the de Sitter
model of the universe (see, e.g. [8]),

utt − e−2t∆u = f(x, t) in Rn+1
+ ,

and takes vanishing initial data (1.13).

1.4. The wave equation in the Robertson-Walker
spacetime: anti-de Sitter spacetime

The third example we obtain if we set K(t; r, b) = E(0, t; r, b), where the func-
tion E(x, t; r, b) is defined by (see [18])

E(x, t; r, b) :=
(
(eb + et)2 − (x− r)2

)− 1
2

×F
(

1
2
,

1
2

; 1;
(et − eb)2 − (x− r)2

(et + eb)2 − (x− r)2

)
, (1.15)

while the distance function is φ(t) := et. In that case the function u = u(x, t)
produced by the integral transform (1.5) with t0 = 0 and the kernel (1.15),
solves the wave equation in the Robertson-Walker space arising in the anti-
de Sitter model of the universe (see, e.g. [8]),

utt − e2t∆u = f(x, t) in Rn+1
+ .

Moreover, it takes vanishing initial values (1.13).

1.5. The wave equation in the Einstein-de Sitter
spacetime

If we allow negative l ∈ R in (1.10) and, in that way, simplify the Gauss’s
hypergeometric function of the kernel of the integral transform, then we obtain
another way to get new operators of the above described hierarchy. In fact, in
the hierarchy of the hypergeometric functions F (a, b; c; ζ) there are functions
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which are polynomials. This is a case, in particular, of the parameter a = −m,
where m ∈ N. More precisely, if m ∈ N, then l = −4m/(2m + 1) > −2 and

F (−m,−m; 1; ζ) =
∑m
n=0

(
m(m−1)···(m+1−n)

n!

)2

zn. In that case we choose the

distance function φ(t) = (2m+ 1)t
1

2m+1 and the kernel K(t; r, b) as follows

K(t; r, b) = cm

m∑
n=0

(
m(m− 1) · · · (m+ 1− n)

n!

)2

×
(

(2m+ 1)2(t
1

2m+1 + b
1

2m+1 )2 − r2
)−m−n

×
(

(2m+ 1)2(t
1

2m+1 − b
1

2m+1 )2 − r2
)n

. (1.16)

Thus the integral transform K allows us to write the representation for the
solution of the equation

utt − t−
4m

2m+1 ∆u = f in Rn+1
+ .

Moreover, in the hierarchy of the hypergeometric functions the simplest non-
constant function is F (−1,−1; 1; ζ) = 1 + ζ. The exponent l leading to the
function F (−1,−1; 1; ζ) is exactly the exponent l = −4/3 of the wave equation
(and of the metric tensor) in the Einstein & de Sitter spacetime. In that case
of m = 1 the kernel K(t; r, b) of (1.16) is K(t; r, b) = 1

18

(
9t2/3 + 9b2/3 − r2

)
.

Consequently, the function

u(x, t) =
∫ t

0

db

∫ 3t1/3−3b1/3

0

1
18

(
(3t1/3)2 + (3b1/3)2 − r2

)
w(x, r; b)dr, (1.17)

x ∈ Rn, t > 0, solves (see [5]) the equation

utt − t−4/3∆u = f in Rn+1
+ , (1.18)

and takes vanishing initial data (1.13) provided that the function w is the
image of f , that is w = WE(f). Because of the singularity in the coefficient
of equation (1.18), the Cauchy problem is not well-posed. In order to obtain
a well-posed problem the initial conditions must be modified to the weighted
initial value conditions.

In fact, the operator of equation (1.18) coincides with the principal part
of the wave equation in the Einstein & de Sitter spacetime. We remind that
the Einstein & de Sitter model (EdeS model) of the universe was first proposed
jointly by Einstein and de Sitter in 1932. It is the simplest non-empty ex-
panding model with the line-element ds2 = −dt2 + a2

0t
4/3
(
dx2 + dy2 + dz2

)
.

The covariant linear wave equation with the source term f written in these
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coordinates is (
∂

∂t

)2

ψ − t−4/3
∑

i=1,2,3

(
∂

∂xi

)2

ψ +
2
t

∂

∂t
ψ = f.

The last equation belongs to the family of the non-Fuchsian partial differential
equations. There is very advanced theory of such equations (see, e.g., [7, 10]),
but according to our knowledge the weighted initial value problem suggested
in [5] (see (1.19) below) is the original one. Assume that f(x, t) ∈ C∞(Rn ×
(0,∞)), and that with some ε > 0 one has

|∂αx f(x, t)|+ |t∂t∂βxf(x, t)| ≤ Cαtε−2 for all x ∈ Rn, and for small t > 0,

and for every α, β, |α| ≤ [n2 ] + 2, |β| ≤ [n2 ] + 1. It is proved in [5] that the
function

ψ(x, t) =
1

18t

∫ t

0

db

∫ 3t1/3−3b1/3

0

b
(
9t2/3 + 9b2/3 − r2

)
w(x, r; b) dr

solves the problem{
ψtt − t−4/3 4 ψ + 2t−1ψt = f(x, t), t > 0, x ∈ Rn,

lim
t→0

tψ(x, t) = 0, lim
t→0

(tψt(x, t) + ψ(x, t)) = 0, x ∈ Rn,
(1.19)

provided that the function w is the image of f , that is w =WE(f).

2. The fundamental solutions of the operators

In this section we apply the method from the previous section to construct the
fundamental solutions of the operators for the above listed equations. They
are hyperbolic equations and therefore they have the fundamental solutions
with the support in the forward or backward light cones. First we consider the
string equation. In order to write the fundamental solution with the support
in the forward light cone we look for E ∈ D′(R2) such that

Ett − Exx = δ(x− x0)δ(t− t0) in R2, supp E ⊆ {(x, t) | t ≥ t0, x ∈ R}.

Then E(x, t;x0, t0) = E(x−x0, t−t0; 0, 0). For all n ∈ N we denote by D(x0, t0)
the forward light cone D(x0, t0) := {(x, t) ∈ Rn+1 | |x − x0| ≤ (t − t0)}. It is
well known that E(x, t;x0, t0) = 1/2 if (x, t) ∈ D(x0; t0) and E(x, t;x0, t0) = 0
otherwise. We follow the approach of the previous section and rewrite this
fundamental solution in the following way:

E(x, t;x0, t0) = H(t− t0)
∫ t−t0

0

Estring(x− x0, z) dz,
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where H(t− t0) is the Heaviside step function. The distribution

Estring(x, t) =
1
2
{δ(x+ t) + δ(x− t)}

is the fundamental solution of the Cauchy problem for the string equation:

Estringtt − Estringxx = 0, Estring(x, 0) = δ(x), Estringt (x, 0) = 0.

The string equation is partially, in direction of time, hypoelliptic, that implies
Estring ∈ C∞(Rt;D′(Rx)). Hence, for every test function ϕ ∈ C∞0 (R), we
have

< E(x, t; ·, t0), ϕ(·) > = H(t− t0)
∫ t−t0

0

< Estring(x− ·, z), ϕ(·) > dz.

Thus, the forward fundamental solution of the operator is given by the integral
transform of the fundamental solution of the Cauchy problem for the wave
equation corresponding to the first datum.

We can generate a class of equations which allows explicit representation
formulas for the fundamental solutions. Indeed, if we provide the integral
transform with a kernel as follows:

E(x, t;x0, t0) = H(t− t0)
∫ |φ(t)−φ(t0)|

0

K(t; r, b)Ewave(x− x0, r)dr,

x ∈ Rn, t ∈ R, then we get the representations for the fundamental solutions
of the wide class of partial differential equations equations. In particular, if
we plug in the integral transform the kernels used in the previous examples,
then we obtain the corresponding fundamental solutions with the support in
the forward light cone.

2.1. Klein-Gordon equation in the Minkowski spacetime

If we choose the kernelK(t; r, b) (1.6) and choose the distance function as φ(t) =
t, then it can be easily verified (see Theorem 2.1 below) that the distribution

E(x, t;x0, t0) = H(t− t0)
∫ t−b

0

J0

(√
(t− b)2 − r2

)
Ewave(x− x0, r)dr ,

x ∈ Rn, t ∈ R, is the forward fundamental solutions for the Klein-Gordon
operator with a positive mass equals to 1 in the Minkowski spacetime,(
∂2
t −∆ + 1

)
E(x, t;x0, t0) = δ(x− x0)δ(t− t0) in Rn+1, supp E ⊆ D(x0, t0),

provided that Ewave(x, t) is the fundamental solution of the Cauchy problem
corresponding to the first datum with the support at the origin, for the wave
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equation in the Minkowski spacetime. We emphasis that the distributions
E(x, t;x0, t0) and Ewave(x, t) solve different equations.

If we now choose the kernel K(t; r, b) (1.7) and the distance function as
φ(t) = t, then the distribution

E(x, t;x0, t0) = H(t− t0)
∫ t−t0

0

I0

(√
(t− b)2 − r2

)
Ewave(x− x0, r)dr,

x ∈ Rn, t ∈ R, is the forward fundamental solutions for the Klein-Gordon
operator with an imaginary mass in the Minkowski spacetime,(
∂2
t −∆− 1

)
E(x, t;x0, t0) = δ(x− x0)δ(t− t0) in Rn+1, supp E ⊆ D(x0, t0).

The following theorem can be easily proved by direct substitution.

Theorem 2.1. The distributions ERe(x, t;x0, t0) and EIm(x, t;x0, t0) defined
by

ERe(x, t;x0, t0) = H(t− t0)
∫ t−t0

0

J0

(
m
√

(t− b)2 − r2
)
Ewave(x− x0, r)dr,

EIm(x, t;x0, t0) = H(t− t0)
∫ t−t0

0

I0

(
m
√

(t− b)2 − r2
)
Ewave(x− x0, r)dr,

x ∈ Rn, t ∈ R, are forward fundamental solutions for the Klein-Gordon oper-
ators with a real and an imaginary mass

∂2
t −∆ +M2 in Rn+1,

with M2 > 0 and M2 < 0, respectively. Here m = |M | ≥ 0 and Ewave(x, t)
is the fundamental solution of the Cauchy problem corresponding to the first
datum with the support at the origin, for the wave equation in the Minkowski
spacetime.

2.2. Tricomi-type equations

If we now choose the kernel K(t; r, b) (1.10) and the distance function as (1.11),
then it is proved in [11] that E(x, t;x0, t0) is the forward fundamental solution
for the Tricomi-type equation (1.12):

E(x, t;x0, t0) = 2clH(t− t0)
∫ φ(t)−φ(t0)

0

(
(φ(t) + φ(t0))2 − r2

)−γ
×F

(
γ, γ; 1;

(φ(t)− φ(t0))2 − r2

(φ(t) + φ(t0))2 − r2

)
Ewave(x− x0, r)dr,

x ∈ Rn, t0 ≥ 0, with the support in the forward light cone

D(x0, t0) := {(x, t) ∈ Rn+1 | |x− x0| ≤ φ(t)− φ(t0)}.
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2.3. Klein-Gordon equations in the Robertson-Walker
spacetime

The integral transform and, in particular, its kernel and the Gauss’s hyper-
geometric function, open a way to establish a bridge between the wave equa-
tion (massless equation) and the Klein-Gordon equation (massive equation)
in the curved spacetime. Indeed, if we allow the parameter γ of the func-
tion F (γ, γ; 1; z) to be a complex number, γ ∈ C, then this continuation into
the complex plane produces the fundamental solutions E+(x, t;x0, t0) for the
Klein-Gordon operator in the de Sitter spacetime as follows

E+(x, t;x0, t0) = 2H(t− t0)
∫ e−t0−e−t

0

(4e−t0−t)iM
(
(e−t0 + e−t)2 − r2

)− 1
2−iM

×F
(1

2
+ iM,

1
2

+ iM ; 1;
(e−t0 − e−t)2 − r2

(e−t0 + e−t)2 − r2

)
Ewave(x− x0, r) dr,

where the distribution Ewave(x, t) is the fundamental solution of the Cauchy
problem for the wave equation, while the non-negative curved mass M ≥ 0 is
defined as follows: M2 := n2

4 −m
2 ≥ 0. The parameter m is mass of particle.

The fundamental solution E−(x, t;x0, t0) with the support in the backward light
cone admits a similar representation. The fundamental solutions E+(x, t;x0, t0)
and E−(x, t;x0, t0) are constructed in [17] for the case of the large masses m ≥
n/2. The integral makes sense in the topology of the space of distributions.
The fundamental solutions for the Klein-Gordon operator in the anti-de Sitter
spacetime can be obtained by time inversion, t → −t, from the fundamental
solutions for the Klein-Gordon operator in the de Sitter spacetime.

Moreover, the analytic continuation of this distribution in parameter M
into C allows us to use it also in the case of small mass 0 ≤ m ≤ n/2. The
corresponding equation

utt − e−2t 4 u−M2u = 0,

can be regarded as a Klein-Gordon equation with an imaginary mass. Equa-
tions with imaginary mass appear in several physical models such as φ4

field model, tachion (super-light) fields, Landau-Ginzburg-Higgs equation and
others.

More precisely, for small mass 0 ≤ m ≤ n/2 we define the distribution
E+(x, t;x0, t0) by

E+(x, t;x0, t0)

= 2H(t− t0)
∫ e−t0−e−t

0

(4e−t0−t)−M
(

(e−t0 + e−t)2 − r2
)− 1

2 +M

×F
(1

2
−M,

1
2
−M ; 1;

(e−t0 − e−t)2 − r2

(e−t0 + e−t)2 − r2

)
Ewave(x− x0, r) dr.
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2.4.

The above listed examples hint at some necessary condition on the pair φ,
K(t; r, b) in order for that pair to produce a generator of the solution operator
for some partial differential equation.

Theorem 2.2. Assume that the integral transform (1.5) with the distance func-
tion φ and the kernel K(t; r, b) generate the fundamental solution

E(x, t;x0, t0) = H(t− t0)
∫ |φ(t)−φ(t0)|

0

K(t; r, b)Ewave(x− x0, r)dr,

x ∈ Rn, t ∈ R, of the partial differential equation

utt −
n∑

i,j=1

(aij(x, t)uxi)xj +
n∑
i=1

(bi(x, t)u)xi + b(t)ut + c(t)u = f (2.1)

with the real-analytic coefficients. Denote by V1 = V1(t) and V2 = V2(t) two
linearly independent solutions of the ordinary differential equation

V ′′ + b(t)V ′ + c(t)V = 0, V1(0) = 1 = V ′2(0), V ′1(0) = 0 = V2(0).

Then the function K(t; r, b) satisfies the identity

2
∫ |φ(t)−φ(b)|

0

K(t; r, b)dr =
V1(b)V2(t)− V1(t)V2(b)
V1(b)V ′2(b)− V ′1(b)V2(b)

(2.2)

for all t > b > 0.

Proof. For every function f ∈ C∞(R × [0,∞)), which for any given instant
t ≥ 0 has a compact support in x, the function

v(x, t) =
∫ t

0

db

∫ |φ(t)−φ(b)|

0

K(t; r, b)w(x, r; b)dr,

where w(x, r; b) =< Ewave(x − ·, r), f(·, b) >, solves the equation (2.1) and
takes vanishing initial data. It follows

V (t) :=
∫
Rn

v(x, t)dx =
∫ t

0

db

∫ |φ(t)−φ(b)|

0

K(t; r, b)
(∫

Rn

w(x, r; b)dx
)
dr.

On the other hand,∫
Rn

w(x, r; b) dx = F (b), F (b) :=
∫
Rn

f(x, b) dx .
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Hence,

V (t) =
∫ t

0

F (b)

(∫ |φ(t)−φ(b)|

0

K(t; r, b) dr

)
db.

At the same time from the equation (2.1) we obtain

d2

dt2
V (t) + b(t)

d

dt
V (t) + c(t)V (t) = F (t).

Hence,

V (t) =
∫ t

0

F (b)
V1(b)V2(t)− V1(t)V2(b)
V1(b)V ′2(b)− V ′1(b)V2(b)

db.

Thus, for the arbitrary function f ∈ C∞(R× [0,∞)) for all t one has∫ t

0

(∫
Rn

f(x, b)dx
)(∫ |φ(t)−φ(b)|

0

K(t; r, b)dr− V1(b)V2(t)− V1(t)V2(b)
V1(b)V ′2(b)− V ′1(b)V2(b)

)
db = 0.

The theorem is proven.

Corollary 2.3. 1) For the Tricomi-type equation and for the wave equations
in the de Sitter and anti-de Sitter spacetime the following identities hold:

t− b = 2ck
∫ tk+1

k+1 −
bk+1
k+1

0

((
tk+1

k + 1
+
bk+1

k + 1

)2

− r2

)− k
2k+2

×F

 k

2k + 2
,

k

2k + 2
; 1;

(
tk+1

k+1 −
bk+1

k+1

)2

− r2(
tk+1

k+1 + bk+1

k+1

)2

− r2

 dr, t > b ≥ 0,

t− b = 2
∫ e−b−e−t

0

(
(e−b + e−t)2 − r2

)− 1
2 F

(
1
2
,

1
2

; 1;
(e−t − e−b)2 − r2

(e−t + e−b)2 − r2

)
dr,

t− b = 2
∫ et−eb

0

(
(eb + et)2 − r2

)− 1
2 F

(
1
2
,

1
2

; 1;
(et − eb)2 − r2

(et + eb)2 − r2

)
dr,

t > b, respectively.
2) For the Klein-Gordon equation in the de Sitter spacetime we have b(t) = 0,
c(t) = M2 and the following identities hold. If the mass term M2 is positive,
then

1
M

sinM(t− b) = 2
∫ e−b−e−t

0

(4e−b−t)iM
(

(e−b + e−t)2 − r2
)− 1

2−iM

×F
(1

2
+ iM,

1
2

+ iM ; 1;
(e−b − e−t)2 − r2

(e−b + e−t)2 − r2

)
dr.
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If the mass term M2 is negative, then

1
|M |

sinh |M |(t− b) = 2
∫ e−b−e−t

0

(4e−b−t)−|M |
(

(e−b + e−t)2 − r2
)− 1

2 +|M |

×F
(1

2
− |M |, 1

2
− |M |; 1;

(e−b − e−t)2 − r2

(e−b + e−t)2 − r2

)
dr.

These identities were used in [12] and [15] to prove a blow up phenomenon
for the semilinear Tricomi-type equation and the Klein-Gordon equation in the
de Sitter spacetime.

3. Estimate of the tail inside of the light cone. De Sitter
spacetime

In this section we consider the equation

utt − e−2t∆u = 0. (3.1)

The forward and backward fundamental solutions for the operator of this equa-
tion are constructed in [17]. By means of those fundamental solutions, the
fundamental solutions of the Cauchy problem are given as the Fourier integral
operators in the domain of hyperbolicity, t > 0, with the data prescribed at
t = 0,

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x), x ∈ Rn. (3.2)

The formula for the solution of this problem is given by Theorem 0.6 [17] with
M = 0. More precisely, the solution of equation (3.1) with the initial data ϕ0,
ϕ1 ∈ C∞0 (Rn), prescribed at t = 0 is:

u(x, t) = e
t
2 vϕ0(x, φ(t)) + 2

∫ 1

0

vϕ0(x, φ(t)s)K0(φ(t)s, t)φ(t) ds

+ 2
∫ 1

0

vϕ1(x, φ(t)s)K1(φ(t)s, t)φ(t) ds, x ∈ Rn, t > 0, (3.3)

where φ(t) := 1 − e−t. Here the function vϕ(x, t) is a solution of the Cauchy
problem vtt − 4v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0. The kernels K0(z, t)
and K1(z, t) are defined by K0(z, t) := −

[
∂
∂bE(z, t; 0, b)

]
b=0

and K1(z, t) :=
E(z, t; 0, 0), respectively, where E(x, t; r, b) is given by (1.14). Thus,

K0(z, t)

=
1

[(1− e−t)2 − z2]
√

(1 + e−t)2 − z2

[(
e−t − 1

)
F
(1

2
,

1
2

; 1;
(1− e−t)2 − z2

(1 + e−t)2 − z2

)
+
(
1− e−2t + z2

)1
2
F
(
− 1

2
,

1
2

; 1;
(1− e−t)2 − z2

(1 + e−t)2 − z2

)]
, 0 ≤ z < 1− e−t,
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and

K1(z, t) =
(
(1 + e−t)2 − z2

)− 1
2F

(
1
2
,

1
2

; 1;
(1− e−t)2 − z2

(1 + e−t)2 − z2

)
, 0 ≤ z ≤ 1− e−t.

It is important that the formula (3.3) regarded in the topology of the contin-
uous functions of variable t with the values in the distributions space D′(Rn),
is applicable to the distributions ϕ0, ϕ1 ∈ D′(Rn) as well.

Recall that a wave equation is said to satisfy Huygens’ principle if the solu-
tion vanishes at all points which cannot be reached from the initial data by a
null geodesic, that is there is no tail. An exemplar equation satisfying Huygens’
principle is the wave equation in n+1 dimensional Minkowski spacetime for odd
n ≥ 3. According to Hadamard’s conjecture this is the only (modulo transfor-
mations of coordinates and unknown function) huygensian linear second-order
hyperbolic equation. Counterexamples to Hadamard’s conjecture, which have
been found, do not change the fact that Huygens’ property is a very rare and
unstable, with respect to the perturbations, phenomenon. It is natural, there-
fore, to ask if there are other hyperbolic second-order equations which preserve
Huygens’ property approximately, in the sense that the tail which is left be-
hind the wave front is comparatively small. For the equation in the de Sitter
spacetime Huygens’ principle is not valid [17]. In this section we show the way
how our approach can be applied to derive the pointwise estimates of the tail.

We call the “tail” the part containing the integrals of (3.3), that is

T (x, t) := 2
∫ 1

0

vϕ0(x, φ(t)s)K0(φ(t)s, t)φ(t) ds

+ 2
∫ 1

0

vϕ1(x, φ(t)s)K1(φ(t)s, t)φ(t) ds, x ∈ Rn, t > 0.

Hence, T (x, t) = u(x, t)− e t
2 vϕ0(x, φ(t)). The tail is of considerable interest in

many aspects in the physics, and in particular, in the General Relativity [4],
[9].

In this section we restrict ourselves to the case of one-dimensional x. For the
one-dimensional wave equation in the Minkowski spacetime Huygens’ principle
is not valid, and, consequently, one can not anticipate it for one-dimensional
equation in the de Sitter spacetime. But the last one reveals all difficulties and
technical details allowing to overcome those difficulties in the case of x ∈ Rn

with n ≥ 2. The results for the case of n ≥ 2 will be published in a forthcoming
paper. We start with a simple example.

Example 3.1. Let ϕ0(x) = H(x), ϕ1(x) = 0, where H is the Heaviside step

function. Then u(x, t) = 1
2e

t
2
[
H(x+1−e−t)+H(x−1+e−t)

]
+
∫ 1−e−t

0

[
H(x−

z)+H(x+z)
]
K0(z, t) dz and, consequently, T (x, t) =

∫ 1−e−t

0
H(x−z)K0(z, t) dz+
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∫ 1−e−t

0
H(x+ z)K0(z, t) dz. Consider the point x0 such that 0 ≤ x0 < 1− e−t.

Then we have

u(x0, t) =
1
2
e

t
2 +

∫ x0

0

K0(z, t) dz +
∫ 1−e−t

0

K0(z, t) dz =
1
2

+
∫ x0

0

K0(z, t) dz

while T (x0, t) = 1
2 −

1
2e

t
2 +

∫ x0

0
K0(z, t) dz = u(x0, t)− 1

2e
t
2 . In particular,

|T (x0, t)|
|u(x0, t)− T (x0, t)|

= 1− e−t/2 − 2e−t/2
∫ x0

0

K0(z, t) dz ≤ 2(1− e−t/2),

lim
t→∞

lim
x→(1−e−t)−

|T (x, t)|
|u(x, t)− T (x, t)|

= 2.

Thus, the tail dominates the huygensian part of the solution. If x0 > 1, then
u(x0, t) = 1, while T (x0, t) = 1− et/2.

Suppose now that the initial data ϕ0 and ϕ1 are the homogeneous functions

ϕ0(x) = C0|x|−a, ϕ1(x) = C1|x|−b. (3.4)

The next theorem gives a pointwise estimate for the tail.

Theorem 3.2. Consider the Cauchy problem for the equation (3.1), (3.2) with
n = 1 and the data (3.4), where a, b ∈ (1/2, 1). Then in the light cone emitted
from the origin, that is on the set {(x, t) | |x| < 1 − e−t, t ≥ 0}, the solution,
and, consequently, the tail, satisfy

|T (x, t)| =
∣∣∣∣u(x, t)− 1

2
C0e

t
2

[
|x+ 1− e−t|−a + |x− 1 + e−t|−a

]∣∣∣∣
≤ |C0|C (1 + t) e

1
2 teat(1 + et(1− |x|))1/2−a

+|C1|C (1 + t) e−
1
2 tebt(1 + et(1− |x|))1/2−b.

Proof. The representation of the solution of the Cauchy problem for the one-
dimensional case (n = 1) of equation (3.1) is given by Theorem 0.4 from [17]
with M = 0. More precisely, the solution u = u(x, t) of the Cauchy problem

utt − e−2tuxx = 0, u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x),

with ϕ0, ϕ1 of (3.4), can be represented as follows:

u(x, t) =
1
2
e

t
2

[
ϕ0(x+ 1− e−t) + ϕ0(x− 1 + e−t)

]
+
∫ 1−e−t

0

[
ϕ0(x− z) + ϕ0(x+ z)

]
K0(z, t) dz

+
∫ 1−e−t

0

[
ϕ1(x− z) + ϕ1(x+ z)

]
K1(z, t)dz.
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Then, it is evident that the solution of the Cauchy problem with C1 = 0 is

u(x, t) = C0e
t
2

[
|x+ 1− e−t|−a + |x− 1 + e−t|−a

]
+C0

∫ 1−e−t

0

[
|x− z|−a + |x+ z|−a

]
K0(z, t) dz.

Consider for x ≥ 0 the first term in the last integral. It can be estimated as
follows: ∣∣∣∣∣

∫ 1−e−t

0

|x− y|−aK0(y, t) dy

∣∣∣∣∣ ≤
∫ 1−e−t

0

|x− y|−a|K0(y, t)| dy

=
∫ 1−e−t

0

|x− y|−a 1
[(1− e−t)2 − y2]

√
(1 + e−t)2 − y2

×

∣∣∣∣∣
[(
e−t − 1

)
F
(1

2
,

1
2

; 1;
(1− e−t)2 − y2

(1 + e−t)2 − y2

)
+
(
1− e−2t + y2

)1
2
F
(
− 1

2
,

1
2

; 1;
(1− e−t)2 − y2

(1 + e−t)2 − y2

)]∣∣∣∣∣ dy.
If we denote z = et and make a change y = e−tr in the last integral, then

∫ 1−e−t

0

|x− y|−a|K0(y, t)| dy

= za
∫ z−1

0

|zx− r|−a 1
[(z − 1)2 − r2]

√
(z + 1)2 − r2∣∣∣∣∣

[(
z − z2

)
F
(1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)
+
(
z2 − 1 + r2

)1
2
F
(
− 1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)]∣∣∣∣∣ dr. (3.5)

Define two zones Z1(ε, z) and Z2(ε, z) as follows:

Z1(ε, z) :=
{

(z, r)
∣∣∣ (z − 1)2 − r2

(z + 1)2 − r2
≤ ε, 0 ≤ r ≤ z − 1

}
, (3.6)

Z2(ε, z) :=
{

(z, r)
∣∣∣ ε ≤ (z − 1)2 − r2

(z + 1)2 − r2
, 0 ≤ r ≤ z − 1

}
, (3.7)
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respectively. Then we split the integral of (3.5) into the sum I1 + I2, where

Ik := za
∫
Zk(ε,z)

|zx− r|−a 1
[(z − 1)2 − r2]

√
(z + 1)2 − r2

×

∣∣∣∣∣
[(
z − z2

)
F
(1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)
+
(
z2 − 1 + r2

)1
2
F
(
− 1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)]∣∣∣∣∣ dr, k = 1, 2.

First, we restrict ourselves to the first zone Z1(ε, z). We follow the arguments
have been used in the proofs of Lemma 7.4 [17] and Proposition 10.2 [17]. In
the first zone we have

F
(1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)
= 1 +

1
4

(z − 1)2 − r2

(z + 1)2 − r2
+O

((
(z − 1)2 − r2

(z + 1)2 − r2

)2
)
,

F
(
− 1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)
= 1− 1

4
(z − 1)2 − r2

(z + 1)2 − r2
+O

((
(z − 1)2 − r2

(z + 1)2 − r2

)2
)
.

We use the last formulas to estimate the term containing the hypergeometric
functions ∣∣∣∣∣(z − z2

)
F
(1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)
+
(
z2 − 1 + r2

)1
2
F
(
− 1

2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣∣
≤ 1

2
[
(z − 1)2 − r2

]
+

1
8

(z − 1)2 − r2

(z + 1)2 − r2

∣∣−(r2 + z2 − 1) + 2(−z2 + z)
∣∣

+
( ∣∣z − z2

∣∣+
∣∣z2 − 1 + r2

∣∣ )O(( (z − 1)2 − r2

(z + 1)2 − r2

)2
)
.

In that zone the integral can be estimated by

I1 ≤ C

∫ z−1

0

|zx− y|−a
[

1√
(z + 1)2 − y2

{
1 + z2 1

(z + 1)2 − y2

}]
dy.

The last integral can be written as follows:∫ z−1

0

|zx− y|−a
[

1√
z
√
z + 1− y

{
1 + z

1
z + 1− y

}]
dy

=
∫ z

1

|z(1− x)− s|−a
{

1√
z

(1 + s)−1/2 +
√
z(1 + s)−3/2

}
ds. (3.8)
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Consider the first term of the last sum. Inside of the light cone |x| < 1− e−t,
that is, |zx| < z − 1, one has

1√
z

∫ z

1

|z(1− x)− s|−a(1 + s)−1/2 ds

=
1√
z

∫ z(1−x)

1

(z(1− x)− s)−a(1 + s)−
1
2 ds

+
1√
z

∫ z

z(1−x)

(s− z(1− x))−a(1 + s)−
1
2 ds.

On the other hand,

1√
z

∫ z(1−x)

1

(z(1− x)− s)−a(1 + s)−
1
2 ds =

1√
z

(1 + z(1− x))−a

×

(√
πΓ(1− a)

Γ
(

3
2 − a

) (1 + z(1− x))1/2 − 2
√

2F
(

1
2
, a;

3
2

;
2

1 + z(1− x)

))
,

while
1√
z

∫ z

z(1−x)

(s− z(1− x))−a(1 + s)−
1
2 ds

= − 1√
z

eiaπ
√
πΓ(1− a)

Γ
(

3
2 − a

) (1 + z(1− x))
1
2−a

+
2eiaπ√
z

√
1 + z (1 + z(1− x))−a F

(
1
2
, a,

3
2
,

1 + z

1 + z(1− x)

)
.

Thus,

1√
z

∫ z

1

|z(1− x)− s|−a 1√
1 + s

ds

≤ z−
1
2 (1 + z(1− x))−a

(
−
√
π
(
eiaπ − 1

)
(1 + z(1− x))

1
2

Γ(1− a)
Γ
(

3
2 − a

)
−2
√

2F
(

1
2
, a,

3
2
,

2
1 + z(1− x)

))

+2z−
1
2 (1 + z)

1
2 (1 + z(1− x))−aeiaπF

(
1
2
, a,

3
2
,

1 + z

1 + z(1− x)

)
. (3.9)

Here the arguments of the hypergeometric functions satisfy the inequalities
0 < 2

1+z(1−x) < 1 and 1 < 1+z
1+z(1−x) for all z(1 − x) > 1, x > 0, z > 1. Since

<( 3
2 −

1
2 − a) > 0 we have∣∣∣∣F (1

2
, a,

3
2
,

2
1 + z(1− x)

)∣∣∣∣ ≤ const for all z(1− x) > 1 .
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Then, to estimate the last term of (3.9) we use (4) of Sec.2.10 [2]: for all
z(1− x) ≥ 1, z > 1, x > 0,

F

(
1
2
, a;

3
2

;
1 + z

1 + z(1− x)

)
= A1

(
1 + z

1 + z(1− x)

)− 1
2

+A2

(
1 + z

1 + z(1− x)

)−1

×
(

1− 1 + z

1 + z(1− x)

)1−a

F

(
1,

1
2

; 2− a; 1− 1 + z(1− x)
1 + z

)
,

where A1 =
√
πΓ(1−a)

2Γ( 3
2−a)

, A2 =
√
πΓ(a−1)
2Γ(a) . Hence,

z−
1
2 (1 + z)

1
2 (1 + z(1− x))−aF

(
1
2
, a;

3
2

;
1 + z

1 + z(1− x)

)
= A1z

− 1
2 (1 + z)

1
2 (1 + z(1− x))−a

(
1 + z

1 + z(1− x)

)− 1
2

+A2z
− 1

2 (1 + z)
1
2 (1 + z(1− x))−a

(
1 + z

1 + z(1− x)

)−1

×
(

1− 1 + z

1 + z(1− x)

)1−a

F

(
1,

1
2

; 2− a; 1− 1 + z(1− x)
1 + z

)
.

Since a > 1/2 one has∣∣∣∣F (1,
1
2

; 2− a; 1− 1 + z(1− x)
1 + z

)∣∣∣∣ ≤ const( 1 + z

1 + z(1− x)

)a−1/2

for all z(1− x) ≥ 1. It follows∣∣∣∣z− 1
2 (1 + z)

1
2 (1 + z(1− x))−aF

(
1
2
, a;

3
2

;
1 + z

1 + z(1− x)

)∣∣∣∣
≤ Cz−

1
2 (1 + z(1− x))1/2−a.

Finally,

1√
z

∫ z

1

|z(1− x)− s|−a 1√
1 + s

ds ≤ Cz−
1
2 (1 + z(1− x))1/2−a.

From this inequality now we derive an estimate for the second integral of (3.8),

√
z

∫ z

1

|z(1− x)− s|−a 1
(1 + s)3/2

ds ≤ Cz 1
2 (1 + z(1− x))1/2−a.

In the second zone we have

ε ≤ (z − 1)2 − r2

(z + 1)2 − r2
≤ 1 and

1
(z − 1)2 − r2

≤ 1
ε[(z + 1)2 − r2]

,



FUNDAMENTAL SOLUTIONS FOR HYPERBOLIC OPERATORS 241

and due to the formula 15.3.10 of Chapter 15 from [1] we obtain∣∣∣∣F(1
2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣ ≤ C (1 + ln z) , for all (z, r) ∈ Z2(ε, z).

This allows us to estimate the integral over the second zone:

I2 ≤
∫

(z,r)∈Z2(ε,z)

|zx− r|−a z2

[(z − 1)2 − r2]
√

(z + 1)2 − r2
(1 + ln z) dr

≤ (1 + ln z)
∫

(z,r)∈Z2(ε,z)

|zx− r|−a z2

((z + 1)2 − r2)3/2
dr

≤ (1 + ln z)
∫ z−1

0

|zx− r|−a z2

((z + 1)2 − r2)3/2
dr

≤ (1 + ln z)
√
z

∫ z

1

|z(1− x)− s|−a(1 + s)−3/2 ds.

Then from the last inequality and (2.2) we obtain

I2 ≤ C (1 + ln z) z
1
2 (1 + z(1− x))1/2−a.

Now consider the case of C0 = 0. Then

T (x, t) = C1

∫ 1−e−t

0

[
|x− z|−b + |x+ z|−b

]
K1(z, t) dz ,

and

|T (x, t)| ≤ C1

∫ 1−e−t

0

[
|x− z|−b + |x+ z|−b

](
(1 + e−t)2 − z2

)− 1
2

×
∣∣∣∣F (1

2
,

1
2

; 1;
(1− e−t)2 − z2

(1 + e−t)2 − z2

)∣∣∣∣ dz.
Consider the case of x ≥ 0. Then make the change of variable z = re−t:

|T (x, t)| ≤ C1e
bt

∫ et−1

0

|etx−r|−b
(
(et+1)2−r2

)− 1
2

∣∣∣∣F (1
2
,

1
2

; 1;
(et − 1)2 − r2

(et + 1)2 − r2

)∣∣∣∣ dr.
Denote z = et. Then

|T (x, t)| ≤ Czb
∫ z−1

0

|zx−r|−b
(
(z+1)2−r2

)− 1
2

∣∣∣∣F (1
2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣ dr.
Since 1/2 < b < 1, for all z > 1 the following estimate∫ z−1

0

|zx− r|−b((z + 1)2 − r2)−
1
2F

(
1
2
,

1
2

; 1;
(z − 1)2 − r2

(z + 1)2 − r2

)
dr

≤ C(1 + ln z)z−1/2(1 + z(1− x))1/2−b
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is fulfilled. To prove the last estimate we rewrite the argument of the hyperge-
ometric function as follows (z−1)2−r2

(z+1)2−r2 = 1 − 4z
(z+1)2−r2 . If r ≥

√
(z + 1)2 − 8z,

then 4z
(z+1)2−r2 ≥

1
2 and 0 < 1− 4z

(z+1)2−r2 ≤
1
2 for such r and z imply∣∣∣∣F (1

2
,

1
2

; 1; 1− 4z
(z + 1)2 − r2

)∣∣∣∣ ≤ C.
Hence, we have∫ z−1

√
(z+1)2−8z

|zx− r|−b((z + 1)2 − r2)−
1
2F

(
1
2
,

1
2

; 1; 1− 4z
(z + 1)2 − r2

)
dr

≤ C
∫ z−1

√
(z+1)2−8z

|zx− r|−b((z + 1)2 − r2)−
1
2 dr

≤ Cz−1/2

∫ z−1

0

|zx− r|−b(z + 1− r)− 1
2 dr

≤ Cz−1/2(1 + z(1− x))1/2−b.

If r ≤
√

(z + 1)2 − 8z and z ≥ 6, then 8 < 8z ≤ (z+1)2−r2 ≤ (z+1)2 implies∣∣∣∣F (1
2
,

1
2

; 1; 1− 4z
(z + 1)2 − r2

)∣∣∣∣ ≤ C ∣∣∣∣ln( 4z
(z + 1)2 − r2

)∣∣∣∣ ≤ C(1 + ln z).

Hence,∫ √(z+1)2−8z

0

|zx− r|−b((z + 1)2 − r2)−
1
2F

(
1
2
,

1
2

; 1; 1− 4z
(z + 1)2 − r2

)
dr

≤
∫ √(z+1)2−8z

0

|zx− r|−b((z + 1)2 − r2)−
1
2C(1 + ln z)dr

≤ C(1 + ln z)z−1/2

∫ z−1

0

|zx− r|−b(z + 1− r)− 1
2 dr

≤ C(1 + ln z)z−1/2(1 + z(1− x))1/2−b.

The theorem is proven.
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