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Abstract. The purpose of this paper is to provide a survey of an
approach to evolutionary problems originally developed in [5], [4] for
a special case. The ideas are extended to a much larger problem class
and the utility of the approach is exemplified by a Robin type initial
boundary value problem for acoustic waves. The paper concludes with
an outlook to open directions of further research.
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1. Introduction

In [5] a theoretical framework has been developed to discuss typical linear
evolutionary problems as they arise in various fields of applications. The suit-
ability of the problem class described for such applications has been demon-
strated by numerous examples of varying complexity. To briefly introduce
the ideas, we first recall that the time derivative ∂0 can be realized as a
normal operator in an exponentially weighted, Hilbert-space-valued L2−type
space H%,0 (R, H), which may be described by completing the space C̊∞ (R, H)
of smooth H−valued functions, H a (complex) Hilbert space, with compact
support in R with respect to the norm | · |%,0,0 induced by the inner product
〈 · | · 〉%,0,0 given by

(ϕ,ψ) 7→
∫

R
〈ϕ (t) |ψ (t)〉0 exp (−2%t) dt,

where 〈 · | · 〉0 denotes the inner product of H, % ∈ R>0. The real part of this
normal operator realization of the time-derivative is simply multiplication by
the parameter %:

Re ∂0 = %.

Consequently,
∂0,% := ∂0 − % = i Im ∂0
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is skew-selfadjoint. The Fourier-Laplace transform given as the unitary exten-
sion L% of the mapping

C̊∞ (R, H) ⊆ H%,0 (R, H) → L2 (R, H)

ϕ 7→ 1√
2π

∫
R

exp (−i · (t− i %)) ϕ (t) dt

is a spectral representation of the selfadjoint operator 1
i ∂0,% and so we find the

unitary equivalence
∂0 = L∗% (im0 + %)L% ,

where m0 denotes the multiplication-by-the-argument operator given as the
closure of

C̊∞ (R, H) ⊆ L2 (R, H) → L2 (R, H)
ϕ 7→ m0ϕ

with
(m0ϕ) (λ) := λ ϕ (λ) in H

for every λ ∈ R. This observation allows us to consistently define an operator
function calculus for operator-valued functions such as a uniformly bounded,
analytic function

BC

(
1
2%
,

1
2%

)
⊆ C → L (H,H)

z 7→ M (z)

mapping the ball BC

(
1
2% ,

1
2%

)
in C of radius 1

2% centered at 1
2% into the Banach

space L (H,H) of bounded linear operators in H by letting

M
(
∂−1

0

)
:= L∗%M

(
1

im0 + %

)
L%.

Here the linear operator M
(

1
im0+%

)
: L2 (R, H) → L2 (R, H) is determined

uniquely by (
M

(
1

im0 + %

)
ϕ

)
(λ) := M

(
1

i λ+ %

)
ϕ (λ) in H

for every λ ∈ R, ϕ ∈ C̊∞ (R, H). Considering the canonical extension of a
densely defined, closed linear operator A : D (A) ⊆ H → H to H%,0 (R, H)
denoted for simplicity again by A, we are led to the closure of the operator
sum M (∂0) ∂0 + A (with natural domain D (∂0) ∩ D (A)) for which again we



EVOLUTIONARY PROBLEMS IN HILBERT SPACE 187

utilize the same name (this notational simplification can be legitimized in the
framework of extrapolation spaces, which we shall, however, avoid to invoke
here). It has been shown in [5], [4], that the standard initial boundary value
problems of mathematical physics have the common form(

M
(
∂−1

0

)
∂0 +A

)
U = F, (1)

where A is in fact skew-selfadjoint and the so-called material law operator
M
(
∂−1

0

)
satisfies the following strict positivity constraint. There is a constant

c0 ∈ R>0 such that

Re
〈
M
(
∂−1

0

)
∂0U |U

〉
%,0,0

≥ c0 〈U |U〉%,0,0 ,

Re
〈
M
(

(∂∗0)−1
)
∂∗0U |U

〉
%,0,0

≥ c0 〈U |U〉%,0,0
(2)

for every sufficiently large % ∈ R>0 and every U ∈ D (∂0) = D (∂∗0 ).
Then the solution operator(

M
(
∂−1

0

)
∂0 +A

)−1
: H%,0 (R, H)→ H%,0 (R, H)

is well-defined for all sufficiently large % ∈ R>0.
A superficial look at (1) could lead to the misconception that this class

merely describes a class of evolution equations, which by simply solving for
∂0U would yield a more familiar form. A somewhat artifical example may
serve to avoid this misunderstanding (for physically relevant examples see [5]).
Consider the (on C \ 0) analytic operator-valued function

z 7→M (z) = P + (1− P ) z exp (−h/z) ,

where P is an arbitrary orthogonal projector in H, h ∈ R>0. Then (observing
(12) below) leads to a material law operator of the appropriate form

M
(
∂−1

0

)
= P + (1− P ) ∂−1

0 τ−h,

where τ−h denotes backwards time-translation by a time span h ∈ R>0. The
case P = 1 leads to solving (∂0 +A)U = F . This is a simple evolution equation,
but considered in our approach considered as an invertible equation involving
a normal operator ∂0 +A (in H%,0 (R, H) with real part given by multiplication
by the parameter % ∈ R>0. Note that, in particular, the concept of semi-groups
is completely by-passed here. If P differs from the identity then the resulting
equation (P∂0 + (1− P ) τ−h +A)U = F is not at all an evolution equation in
the usual sense. It involves a time delay term and there is no obvious way in
writing this in the form of an explicit ODE anyway. Indeed, the case P = 0
comfortably covered by our theory does not even contain a time-derivative!
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This observation indicates why we are speaking of evolutionary equations and
not of evolution equation in describing our problem class.

The central aim of this paper is in particular to extend the described solu-
tion theory to encompass an even larger class of problems allowing for certain
non-skew-selfadjoint operators A and to survey some specific aspects of this
generalization. The presentation will rest on a conceptually more elementary
version of this theory as presented in [4].

After briefly describing the corner stones of a general solution theory in
section 2 we shall discuss in section 3 the particular issues of causality and
memory, which are characteristic features of problems we may rightfully call
evolutionary. We will then conclude the presentation with a particular applica-
tion involving an implementation of a boundary condition of third kind (Robin
boundary condition) for acoustic wave propagation.

2. General Solution Theory

The basic solution theory of a problem of the form(
M
(
∂−1

0

)
∂0 +A

)
U = F (3)

in H%,0 (R, H), where A : D (A) ⊆ H%,0 (R, H) → H%,0 (R, H) is a closed,
densely defined, linear operator, rests on strict positive definite conditions of
the form

Re
〈
U |
(
M
(
∂−1

0

)
∂0 +A

)
U
〉
%,0,0

≥ β0 〈U |U〉%,0,0 , (4)

Re
〈
V |
(
M∗

(
(∂∗0 )−1

)
∂∗0 +A∗

)
V
〉
%,0,0

≥ β0 〈V |V 〉%,0,0 (5)

for some β0 ∈ R>0 and every U ∈ D (∂0) ∩ D (A) and V ∈ D (∂0) ∩ D (A∗).
Here

M
(
∂−1

0

)∗
= M∗

(
(∂∗0)−1

)
is the adjoint of the material law operator M

(
∂−1

0

)
. We recall from the intro-

duction the concept of a material law operator and for sake of reference give a
formal definition by paraphrasing our introductory description.

Definition 2.1. A material law operator M
(
∂−1

0

)
in H%,0 (R, H), % ∈ R>0, is

given via the Fourier-Laplace transform as

M
(
∂−1

0

)
:= L∗%M

(
1

im0 + %

)
L%.

Here M
(

1
im0+%

)
: L2 (R, H)→ L2 (R, H) is a multiplication operator (opera-

tor-valued) uniquely determined by(
M

(
1

im0 + %

)
ϕ

)
(λ) := M

(
1

i λ+ %

)
ϕ (λ) in H
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for every λ ∈ R, ϕ ∈ C̊∞ (R, H), where

BC

(
1
2%
,

1
2%

)
⊆ C → L (H,H)

z 7→ M (z)

is a uniformly bounded, analytic function mapping the ball BC

(
1
2% ,

1
2%

)
in C of

radius 1
2% centered at 1

2% into the Banach space L (H,H) of continuous linear
operators in H.

Remark 2.2. Note that M
(
∂−1

0

)
is strictly speaking depending on % ∈ R>0.

Since, however, BC (r, r) ⊆ BC (s, s) for s ≥ r, s, r ∈ R, we see that by this
definition the material law operators are continuous extensions of the same
operator family M restricted to C̊∞ (R, H), which is dense in every He% (R, H)
for %̃ ∈ R≥%. Thus, if M

(
∂−1

0

)
is defined for one % ∈ R>0 it is essentially the

same for every larger %̃.

Since in the general case the central issue of causality is still an open issue,
so far only the case of A being the canonical extension to H%,0 (R, H) of a
skew-selfadjoint operator in H has been considered more closely, [5, 4]. In the
following we want to go a step further and extend the theory to a class of
non-skew-selfadjoint operators A in H.

The essential requirement for A is that A and its adjoint A∗ are both
bounded below in the sense that there is a γ0 ∈ R such that

Re 〈U |AU〉0 ≥ γ0 〈U |U〉0 , (6)

Re 〈V |A∗V 〉0 ≥ γ0 〈V |V 〉0 (7)

for all U ∈ D (A), V ∈ D (A∗). Moreover, we must have

c0 > −γ0 ,

where c0 ∈ R>0 is a constant such that∫
]−∞,a]

Re
〈
M
(
∂−1

0

)
∂0U |U

〉
0

(t) exp (−2%t) dt ≥
≥ c0

∫
]−∞,a]

〈U |U〉0 (t) exp (−2%t) dt ,∫
]−∞,a]

Re
〈
M
(

(∂∗0 )−1
)
∂∗0U |U

〉
0

(t) exp (−2%t) dt ≥
≥ c0

∫
]−∞,a]

〈U |U〉0 (t) exp (−2%t) dt

(8)

for every sufficiently large % ∈ R>0 and every a ∈ R, U ∈ D (∂0) = D (∂∗0)
holds, in order to maintain (4), (5), (with β0 = c0 + γ0). This assumption
is slightly more restrictive than (2) to simplify later arguments. It should be



190 RAINER PICARD

noted, however, that a completely analogous reasoning to the presentation in
[4] would also lead to a proof of the following theorem 2.3.

Clearly, the skew-selfadjoint case, i.e. A = −A∗, is a special case with
γ0 = 0. We are now ready to formulate the basic solution theory of (3).

Theorem 2.3. Let M
(
∂−1

0

)
be a material law operator in H%,0 (R, H) and

A : D (A) ⊆ H → H a closed, densely defined, linear operator in a Hilbert
space H satisfying assumptions (4), (5). Then the solution operator of (3)(

M
(
∂−1

0

)
∂0 +A

)−1
: H%,0 (R, H)→ H%,0 (R, H)

exists for all sufficiently large % ∈ R>0.

Proof. We have for sufficiently large % ∈ R>0 and all U ∈ D (∂0) ∩ D (A) by
letting a→∞ in (8)

|U |%,0,0
∣∣(M (

∂−1
0

)
∂0 +A

)
U
∣∣
%,0,0

≥ Re
〈
U |
(
M
(
∂−1

0

)
∂0 +A

)
U
〉
%,0,0

= Re
〈
U |M

(
∂−1

0

)
∂0U

〉
%,0,0

+

+
∫

R
Re 〈U (t) |AU (t)〉0 exp (−2%t) dt

≥ c0 〈U |U〉%,0,0 +

+γ0

∫
R
〈U (t) |U (t)〉0 exp (−2%t) dt

≥ (c0 + γ0) 〈U |U〉%,0,0

and so in particular that
(
M
(
∂−1

0

)
∂0 +A

)
is invertible and its inverse, defined

on the range
(
M
(
∂−1

0

)
∂0 +A

)
[H%,0 (R, H)] of

(
M
(
∂−1

0

)
∂0 +A

)
(
M
(
∂−1

0

)
∂0 +A

)−1
:

:
(
M
(
∂−1

0

)
∂0 +A

)
[H%,0 (R, H)] ⊆ H%,0 (R, H)→ H%,0 (R, H)

is continuous. Indeed,∥∥∥(M (
∂−1

0

)
∂0 +A

)−1
∥∥∥ ≤ 1

c0 + γ0
.

By the spectral cut-off technique with

χ]−N+1,N+1]

(
1
i
∂0,%

)
:= χ]−∞,−N−1]

(
1
i
∂0,%

)
− χ]−∞,N+1]

(
1
i
∂0,%

)
, N ∈ N,

where
(
χ]−∞,λ]

(
1
i ∂0,%

))
λ∈R is the spectral family associated with the selfadjoint

Im ∂0 = 1
i ∂0,%, as utilized in [4], it follows that

(
M
(
∂−1

0

)
∂0 +A

)∗
is given by
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the closure of
(
M
(

(∂∗0 )−1
)
∂∗0 +A∗

)
. Recalling that we decided to drop the

closure bar in such a case, this is(
M
(
∂−1

0

)
∂0 +A

)∗
=
(
M
(

(∂∗0)−1
)
∂∗0 +A∗

)
.

By analogy we find that also(
M
(

(∂∗0 )−1
)
∂∗0 +A∗

)−1

:

:
(
M
(

(∂∗0 )−1
)
∂∗0 +A∗

)
[H%,0 (R, H)] ⊆ H%,0 (R, H)→ H%,0 (R, H)

is continuous with ∥∥∥∥(M (
(∂∗0 )−1

)
∂∗0 +A∗

)−1
∥∥∥∥ ≤ 1

c0 + γ0
.

Since in particular the null space of
(
M
(

(∂∗0)−1
)
∂∗0 +A∗

)
is trivially equal

to {0}, we have (
M
(
∂−1

0

)
∂0 +A

)
[H%,0 (R, H)] = H%,0 (R, H) .

Thus,
(
M
(
∂−1

0

)
∂0 +A

)−1
is a densely defined, (by construction and conven-

tion) closed, continuous linear operator. Therefore,
(
M
(
∂−1

0

)
∂0 +A

)−1
must

already be defined on H%,0 (R, H).

Now that we have a well-established solution operator, we address the ques-
tion of the dependence of the solution on the parameter % ∈ R>0.

We want to show that for suitable right-hand sides F in (3) the solution is
largely independent of % ∈ R>0. For this let

F ∈
⋂

%∈R>%0

H%,0 (R, H) (9)

for some %0 ∈ R>0.

Theorem 2.4. Let %0 ∈ R>0 be sufficiently large and let F satisfy condition
(9). Then, for %, %̃ ∈ R>%0 the solutions U% ∈ H%,0 (R, H) and Ue% ∈ He%,0 (R, H)
of (3) must coincide.

Proof. Let %0 be sufficiently large so that (8) is also satisfied for all % ∈ R>%0 .
Without loss of generality let %̃ ≤ %. Then, we have

ϕ (m0) [H%,0 (R, H)] ⊆ He%,0 (R, H)
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for any smooth cut-off function ϕ with ϕ (t) = 1 on ]−∞, a] and ϕ (t) = 0
on ] a+ 1,∞[ . Moreover, with the same cut-off technique as in the proof of
theorem 2.3 and noting that χ]−N+1,N+1]

(
1
i ∂0,%

)
U% ∈ D (A), see [4], we get

(
M
(
∂−1

0

)
∂0 +A

)
ϕ (m0)χ]−N+1,N+1]

(
1
i
∂0,%

)
U% =

= ϕ (m0)χ]−N+1,N+1]

(
1
i
∂0,%

)
F + ϕ (m0)Aχ]−N+1,N+1]

(
1
i
∂0,%

)
U% +

+M
(
∂−1

0

)
ϕ′ (m0)χ]−N+1,N+1]

(
1
i
∂0,%

)
U%.

From this together with (8) we obtain letting N →∞

Re
∫

]−∞,a]
〈U% (t) |F (t)〉0 exp (−2%̃t) dt ≥

≥ β0

∫
]−∞,a]

〈U% (t) |U% (t)〉0 exp (−2%̃t) dt,

which implies similar as in the proof of theorem 2.3 that

β2
0

∫
]−∞,a]

|U% (t)|20 exp (−2%̃t) dt ≤
∫

]−∞,a]

|F (t)|20 exp (−2%̃t) dt. (10)

Letting a→∞ in this yields

U% ∈ He%,0 (R, H) .

By uniqueness the solution Ue% ∈ He%,0 (R, H) must now coincide with U%.

3. Causality and Memory

Clearly, the basic solution theory can be generalized to more general situations.
Keeping in mind that the condition is actually a special case of monotonicity,
even the case of material law operators for which ∂0M

(
∂−1

0

)
is strictly mono-

tone appears accessible. Note that the monotonicity in the weighted space-time
spaces discussed here is not the monotonicity in H, which frequently occurs in
other frameworks. An extension in this direction is, however, not the topic we
want to persue here. In the solution theory described so far there is a more
subtle point to be considered, going beyond the issue of mere well-posedness.
For an “evolution” – in the intuitive meaning – to take place we also expect an
additional qualitative property securing “causality” for the solution operator.

To discuss this aspect rigorously, we first need to properly define, what we
should mean by “causality” of the solution operator. We utilize here again
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the multiplier notation for the cut-off by a characteristic function defining
χ
M

(m0)u by
(χ

M
(m0)u) (t) = χ

M
(t) u (t)

for (almost ) every t ∈ R and every u ∈ H%,0 (R, H), M ⊆ R. With this notation
we propose the following (in comparison with [5] somewhat simplified) version
of a mapping being causal.

Definition 3.1. A mapping W : H%,0 (R, H)→ H%,0 (R, H), % ∈ R>0, is called
causal if∧
a∈R

∧
u,v∈H%,0(R,H)

(
χ]−∞,a] (m0) (u− v) = 0 =⇒ χ]−∞,a] (m0) (W (u)−W (v)) = 0

)
.

This can be stated in somewhat heuristical terms as “the values of W (u)
and W (v) are equal as long as the data u, v are equal”. The assumptions on
the material law operator M

(
∂−1

0

)
have been specified to ensure that it is a

causal operator, as one would expect it to be, see [5, 4]. In the case which is our
current focus we have an additional feature that simplifies matters. We have
time-translation invariance and so it suffices to consider just one particular
a ∈ R, say a = 0. Time-translation τh is given by

(τhϕ) (t) = ϕ (t+ h)

for t, h ∈ R and ϕ ∈ H%,0 (R, H). We summarize this observation in the
following lemma.

Lemma 3.2. Let W : H%,0 (R, H)→ H%,0 (R, H), % ∈ R>0, commute with time-
translation τh for every h ∈ R, then W is causal if and only if∧
u,v∈H%,0(R,H)

(
χ]−∞,0] (m0) (u− v) = 0 =⇒ χ]−∞,0] (m0) (W (u)−W (v)) = 0

)
.

Proof. The result is immediate if one observes the commutator relations

τaχ]−∞,a] = χ]−∞,0]τa, τaW = Wτa , a ∈ R.

Note that in case W is linear and translationinvariant causality simplifies
further by specializing to v = 0∧

u∈H%,0(R,H)

(
χ]−∞,0] (m0) u = 0 =⇒ χ]−∞,0] (m0) Wu = 0

)
.

Causality of such a W clearly implies

χ]−∞,0] (m0) W χ]−∞,0] (m0) = χ]−∞,0] (m0) W. (11)
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3.1. Causality.

Noting that
τh = exp (h∂0) (12)

in the sense of the function calculus of normal operators, time-translation in-
variance of the solution operator is clear, see [4]. Moreover, causality follows
now very elementarily from (2.4) for % = %̃. We record this as the following
proposition:

Proposition 3.3. The solution operator
(
M
(
∂−1

0

)
∂0 +A

)−1
: H%,0 (R, H)→

H%,0 (R, H) is causal for all sufficiently large % ∈ R>0.

3.2. Memory.

Since the type of material law operators we consider may show “memory ef-
fects”, we also need to make precise, what this should mean. In a possibly
somewhat surprising analogy to causality we give the following definition.

Definition 3.4. We say W : H%,0 (R, H) → H%,0 (R, H), % ∈ R>0, has no
memory if∧
a∈R, u,v∈H%,0(R,H)

χ[a,∞[ (m0) (u− v) = 0 =⇒ χ[a,∞[ (m0) (W (u)−W (v)) = 0.

(13)
If this is not the case we say that W has memory or W is a memory term.

Remark 3.5. The case that W : H%,0 (R, H) → H%,0 (R, H), % ∈ R>0, is a
memory term is obviously characterized by a simple negation of (13) as∨
a∈R, u,v∈H%,0(R,H)

χ[a,∞[ (m0) (u− v) = 0 ∧ χ[a,∞[ (m0) (W (u)−W (v)) 6= 0.

(14)

Clearly ∂−1
0 is a linear and time-translation invariant memory term. So

we may expect that any non-constant family M generates in the above sense
a material law operator with memory for all sufficiently large % ∈ R>0. In
the case that M has a continuous extension to BC

(
1
2% ,

1
2%

)
∪ {0} and denot-

ing the continuous extension at zero as M (0), however, one usually says that(
M
(
∂−1

0

)
∂0 +A

)
has memory if the closureM1

(
∂−1

0

)
of ∂0

(
M
(
∂−1

0

)
−M (0)

)
is a memory term in H%,0 (R, H) for all sufficiently large % ∈ R>0. If M1 is con-
stant, then the material law operator is simply

M
(
∂−1

0

)
= M (0) + ∂−1

0 M1

and M
(
∂−1

0

)
∂0 +A = M (0) ∂0 +M1 +A.
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4. Some Observations and Special Cases

To illuminate the above abstract theory we shall inspect some special aspects.
Typical for initial boundary value problems of mathematical physics is that A
and −A∗ are extensions of the same skew-symmetric operator. In section 5
we shall have occasion to inspect such a case more closely. As stated in the
introduction the standard cases are indeed linked to the case of A being skew-
selfadjoint. It is in itself a remarkable fact that the skew-selfadjointness of A is
predominantly due to a specific block operator matrix structure of A namely
that

A =
(

0 −C∗
C 0

)
,

where C : D (C) ⊆ H0 → H1 is a closed, densely defined, linear operator
acting between Hilbert spaces H0 and H1. It is a straight-forward calculation
to confirm that an operator A of this structure is always skew-selfadjoint in
the Hilbert space H given by the direct sum H0 ⊕ H1 of the Hilbert spaces
H0, H1. In the simple case M

(
∂−1

0

)
= 1 we are led to the evolution operator

∂0 + A. Keeping in mind that the null space of A reduces A we may assume
without loss of generality that A is injective (the null space of A corresponds
to the static behavior ∂0 + A). The polar decomposition C = U |C| of C,
where now U : H0 → H1 is unitary, implies C∗ = |C| U∗ and shows that

A = U
(

0 − |C|
|C| 0

)
U∗ with U =

(
−U 0
0 1

)
: H0 ⊕H0 → H0 ⊕H1 unitary. In

other words, A is unitarily equivalent to
(

0 |C|
− |C| 0

)
, which is skew-selfadjoint

in the real Hilbert space H0 ⊕ H0. Thus, ∂0 + A is also unitarily equivalent

to ∂0 −
(

0 −1
1 0

)
|C|. The latter clearly shows the structure of a Hamiltonian

system1. Indeed, the functional H given by (p, q) → 〈p| |C| p〉H0
+ 〈q| |C| q〉H0

on D (|C|)⊕D (|C|) is the corresponding Hamiltonian. It is dpH = dqH = |C|
in the sense of Frechét derivatives.

Because of this remarkable connection we shall say that an operator A of
the above block operator matrix form has Hamiltonian structure. It is already
an interesting unifying feature that the typical linear evolutionary equations
of mathematical physics (acoustics, electrodynamics, visco-elastics etc.) show
this Hamiltonian structure. The more complex coupling mechanisms becoming
more recently of interest maintain – after suitable symmetric permutation of

1In this direction it may also be noteworthy that assuming without loss of generality
H0 to be a real Hilbert space and going over to its complexification H0 multiplication by„

0 −1
1 0

«
turns into multiplication by the imaginary unit i. Thus, ∂0 +A is transformed to

the Schrdinger type operator ∂0 − i |C|. Indeed, with C = |C| = −∆ we get the usual free
Schrdinger operator ∂0 + i∆.
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rows and colums – this Hamiltonian structure. The complexity resides solely
in the material law operator. This structural observation has been exemplified
by numerous examples in [5].

Although, the Hamiltonian structure is at the root of the derivation of
many evolution equations associated with classical physical phenomena it has
been customary to deal with initial boundary value problems as second order
equations. Historically, this appears to be motivated by the desire to get the
Laplacian as a well-studied operator as soon as possible into play. Consequently,
model modifications started from the second order case. For moderately more
complex materials it is, however, easy to see, that they do not correspond to a
second order partial differential equation.

Apart from the complexity of material properties being modelled into the
material law operator, it may also be surprising that the required positivity
conditions (8) also allow for the case that some equations in the system may not
contain any time-derivative. This situation leads to so-called partial differential
algebraic equation (PDAE). In the first order framework presented here, the
heat diffusion provides already a natural example of a PDAE.

The positive definiteness condition (8) is also general enough to include frac-
tional integrals in the material law operator. Here only the case of a material
law of the form

M
(
∂−1

0

)
= M0 + ∂

−1/2
0 M1/2 + ∂−1

0 M1

(
∂−1

0

)
has been considered so far and will be published in a forthcoming paper.
In all this we have ignored the issue of initial data. Restricting our atten-

tion to the case M
(
∂−1

0

)
= M0 +∂−1

0 M1

(
∂−1

0

)
with M1 analytic and uniformly

bounded in BC

(
1
2% ,

1
2%

)
, we recall that initial data are implemented in this set-

ting by cancelling the prescribed jump M0U0 of the term M0U at time zero,
compare [5]. Clearly, at this point we need to invoke the theory of Sobolev
lattices from [5] in order to argue rigorously. However, to avoid lengthy the-
oretical considerations for the purpose of this survey we shall rely on [5] for
the details. Based on the concepts developed in [5], we find that a solution
U ∈ H%,0 (R, H) of

∂0

(
M0U − χR>0

⊗M0U0

)
+M1

(
∂−1

0

)
U +AU = F,

where F = 0 on R<0 and U0 ∈ D (A) , would be such that

∂0

(
M0U − χR>0

⊗M0U0

)
∈ H%,0 (R,C)⊗H−1 (|A|+ i) ,

where H−1 (|A|+ i) is the completion of H%,0 (R,C) = H%,0 (R,C) ⊗ H with

respect to the norm
∣∣∣(|A|+ i)−1 ·

∣∣∣
0
. We may conclude that

M0U − χR>0
⊗M0U0 ∈ H%,1 (R,C)⊗H−1 (|A|+ i) .
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By a 1-dimensional (H−1 (|A|+ i)-valued) Sobolev imbedding result we obtain

(M0U) (0+) = M0U0 .

compare [5] for the details of the reasoning. This observation leads to U ∈
H%,0 (R, H) being found as given by

U = V + χR>0
⊗ U0 ,

where V ∈ H%,0 (R, H) is the solution of(
M0∂0 +M1

(
∂−1

0

)
+A

)
V = F −M1

(
∂−1

0

)
χR>0

⊗ U0 + χR>0
⊗AU0.

A related reformulation difficulty occurs for general memory problems. Al-
though here it is common to assume U0 = 0 leading to continuity at time
zero, which is exactly the case dealt with in the above, one usually assumes
a different perspective. Instead of looking for the solution U it is said that
U is supposed to be known prior to time zero and the solution we seek is the
future development of this known past. To consolidate this perspective with
our framework we can argue similarly as for the initial data case relying again
on [5] for the details of the arguments. Splitting up the past and the future in(

M
(
∂−1

0

)
∂0 +A

)
U = F

yields in a first cut-off step

χR>0
(m0)M

“
∂−1
0

”
∂0
““
χR<0

(m0)U + χR>0
⊗ U (0−)

”
+
“
χR>0

(m0)U − χR>0
⊗ U (0−)

””
+

+AχR>0
(m0)U = χR>0

(m0)F.

Restoring the full material law operator M
(
∂−1

0

)
on the left leads to

M
“
∂−1
0

”
∂0
““
χR<0

(m0)U + χR>0
⊗ U (0−)

”
+
“
χR>0

(m0)U − χR>0
⊗ U (0−)

””
+

+AχR>0
(m0)U =

= χR>0
(m0)F +

+χR<0
(m0)M

“
∂−1
0

”
∂0
““
χR<0

(m0)U + χR>0
⊗ U (0−)

”
+
“
χR>0

(m0)U − χR>0
⊗ U (0−)

””
=

= χR>0
(m0)F + χR<0

(m0)M
“
∂−1
0

”
∂0
““
χR<0

(m0)U + χR>0
⊗ U (0−)

””
.

The last simplification follows from the causality of the material law operator,
which is implied by its general assumptions. Separating future and past further
finally yields (

M
(
∂−1

0

)
∂0 +A

) (
χR>0

(m0)U − χR>0
⊗ U (0−)

)
=

= χR>0
(m0)F − χR>0

(m0) M
(
∂−1

0

)
∂0

((
χR<0

(m0)U + χR>0
⊗ U (0−)

))
+

−χR>0
⊗AU (0−) .



198 RAINER PICARD

So assuming that
(
χR<0

(m0)U + χR>0
⊗ U (0−)

)
is in D (∂0) for all suffi-

ciently large % ∈ R>0 and U (0−) ∈ D (A) makes this a problem of the above
type. Thus, the future development χR>0

(m0)U can be found as

χR>0
(m0)U = V + χR>0

⊗ U (0−) ,

where V ∈ H%,0 (R, H) is the solution of(
M
(
∂−1

0

)
∂0 + A)V =

= χR>0
(m0)F +

−χR>0
(m0) M

(
∂−1

0

)
∂0

((
χR<0

(m0)U + χR>0
⊗ U (0−)

))
+

−χR>0
⊗AU (0−) .

In conclusion of this chapter address a modelling aspect resulting from the
theory.

5. An Application: Acoustic Waves with Robin Type
Boundary Condition

We want to conclude our discussion with a more substantial utilization of the
theory presented. Let us consider a (time-translation invariant) linear system
operator of the form

∂0M
(
∂−1

0

)
+A

with
Re 〈U |AU〉0 ≥ 0

Re 〈V |A∗V 〉0 ≥ 0

for all U ∈ D (A), V ∈ D (A∗). This implies that (6) (7) are satisfied if the
material law is of the form

M
(
∂−1

0

)
= M0 + ∂−1

0 M1

(
∂−1

0

)
with M0 selfadjoint and strictly positive definite.

We have more specifically

A =
(

0 div
grad 0

)
with

D (A) :=
{(

p
v

)
∈ D

((
0 div

grad 0

)) ∣∣∣ ap− v ∈ H (d̊iv,Ω
)}

.
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Here we assume
a : L2 (Ω)→

(
L2 (Ω)

)n
and

div a : L2 (Ω)→ L2 (Ω)

and a is multiplicative in the sense that the product rule holds

div (a p) = (div a) p+ a · grad p .

Such an operator combined with a suitable material law yields an evolution-
ary problem of the stated type. Particular material law operators are in the
simplest case of the block diagonal form

M
(
∂−1

0

)
=
(
κ 0
0 q + %−1 ∂−1

0

)
,

where κ : L2 (Ω) → L2 (Ω) and q : L2 (Ω)3 → L2 (Ω)3 are suitable continuous,
selfadjoint, non-negative mappings and %−1 : L2 (Ω)3 → L2 (Ω)3 is continuous
and linear. Such material laws are suggested by models of linear acoustics, see
e.g. [3], or by the so-called Maxwell-Cattaneo-Vernotte law [1, 2] describing
heat propagation. For our purposes we may allow for more general material
laws merely constrained by the above conditions, in particular (8).

In order to confirm conditions (6), (7), we calculate

Re 〈U |AU〉0 =
= Re (〈p|div v〉0 + 〈grad p|v〉0)

= Re
(〈
p|d̊iv (v − ap)

〉
0

+ 〈p|div ap〉0 + 〈grad p|v〉0
)

= Re (−〈grad p| (v − ap)〉0 + 〈p|div ap〉0 + 〈grad p|v〉0)
= Re (〈grad p|ap〉0 + 〈p|div ap〉0)
= Re (〈grad p|ap〉0 + 〈p| (div a) p〉0 + 〈p|a · grad p〉0) +

= 2 Re

∫
R

∫
Ω

exp (−2%m0) div
(
a |p|2

)
= 2

∫
R

∫
Ω

exp (−2%m0) div
(
Re a |p|2

)
.

For this to be non-negative we assume that a is such that∫
Ω

div
(
Re a |ϕ|2

)
≥ 0 (15)

for every ϕ ∈ H (grad,Ω). It should be noted that in case of a smooth boundary
this amounts to ∫

∂Ω

(
n ·Re a |ϕ|2

)
≥ 0,
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which holds if
n ·Re a ≥ 0,

where n denotes the exterior normal field to ∂Ω. So, condition (15) generalizes
the latter to the case of non-smooth boundaries.

A re-formulating of the constraint (15) is to require that the quadratic
functional QΩ,a given by

p 7→ 〈grad p| (Re a) p〉0 + 〈(Re a) p| grad p〉0 + 〈(div Re a) p|p〉0

is non-negative on H (grad, Ω). Note that this functional vanishes on
H
(

˚grad,Ω
)

and therefore the non-negativity condition constitutes a boundary

constraint2 on a and on the underlying domain Ω. The implicit constraint on
Ω is that the requirement

QΩ,a [H (grad,Ω)] ⊆ R≥0

must be non-trivial, i.e. there must be an a for which this does not hold. For
this surely we must have H

(
˚grad,Ω

)
6= H (grad,Ω).

We need to find the adjoint of A, which must be a restriction of

−
(

0 div
grad 0

)
and an extension of

−
(

0 d̊iv
˚grad 0

)
.

2A boundary constraint is a non-trivial proposition P on a mathematical object expressed
in terms of its interaction with a function space over a domain Ω ⊆ Rn+1, n ∈ N, which
is required to be true and is true for all subspaces of elements with compact support. A
boundary condition is a non-trivial proposition imposed on elements u of a function space
over a domain Ω ⊆ Rn+1, n ∈ N, which is also satisfied for u + ϕ for all ϕ in the function
space having compact support in Ω. An example for a boundary constraint for an open set

Ω ⊆ Rn+1, n ∈ N, is: H
“

˚grad,Ω
”

is compactly embedded into L2 (Ω). This constraint is

non-trivial, since there are cases in which this is not true. On the other hand, the property

is true for every subspace
n
ϕ ∈ H

“
˚grad,Ω

”
| suppϕ ⊆ K ⊂⊂ Ω

o
.

Given f ∈ H (grad,Ω), imposing on u ∈ H (grad,Ω) the requirement u− f ∈ H
“

˚grad,Ω
”

is a boundary condition if H
“

˚grad,Ω
”
6= H (grad,Ω). Indeed, in this case the proposition

u−f ∈ H
“

˚grad,Ω
”

is non-trivial, since there are elements u ∈ H (grad,Ω) not satisfying the

proposition, and obviously u+ ϕ− f ∈ H
“

˚grad,Ω
”

for every ϕ ∈ H (grad,Ω) with compact

support in Ω, since such ϕ is in H
“

˚grad,Ω
”

.
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We suspect it is

D (A∗) :=
{(

p
v

)
∈ D

((
0 div

grad 0

)) ∣∣∣ ap+ v ∈ H
(

d̊iv,Ω
)}

.

Indeed,

U ∈ D (A)

implies (
1 0
−a 1

)
U ∈ H (grad,Ω)⊕H

(
d̊iv,Ω

)
.

(
0 d̊iv

grad 0

)(
1 0

−a (m) 1

)
=
(

0 div
grad 0

)(
1 0

−a (m) 1

)
=
(

0 div
grad 0

)
+
(

0 div
0 0

)(
0 0

−a (m) 0

)
=
(

0 div
grad 0

)
−
(

(div a) (m) 0
0 0

)
+

−
(
a (m) · grad 0

0 0

)
=
(

1 −a (m)
0 1

)(
0 div

grad 0

)
−
(

(div a) (m) 0
0 0

)
.

Thus, we have

(
0 div

grad 0

)
U =

(
1 a (m)
0 1

)(
0 d̊iv

grad 0

)(
1 0

−a (m) 1

)
U +

+
(

1 a (m)
0 1

)(
(div a) (m) 0

0 0

)
U

=
(

1 a (m)
0 1

)(
0 d̊iv

grad 0

)(
1 0

−a (m) 1

)
U +

+
(

(div a) (m) 0
0 0

)
U.

Letting
(

1 0
−a (m) 1

)
U = W we have V ∈ D (A∗) and for every
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W ∈ D
((

0 d̊iv
grad 0

))
,

0 =
〈(

0 div
grad 0

)(
1 0

a (m) 1

)
W |V

〉
0

+
〈(

1 0
a (m) 1

)
W |
(

0 div
grad 0

)
V

〉
0

,

=
〈(

1 a (m)
0 1

)(
0 d̊iv

grad 0

)
W |V

〉
0

+

+
〈(

(div a) (m) 0
0 0

)
U |V

〉
0

+
〈(

1 0
a (m) 1

)
W |
(

0 div
grad 0

)
V

〉
0

,

=
〈(

0 d̊iv
grad 0

)
W |
(

1 0
a (m) 1

)
V

〉
0

+

+
〈
W |

(
(div a) (m) 0

0 0

)
V

〉
0

+
〈
W |
(

1 a (m)
0 1

)(
0 div

grad 0

)
V

〉
0

.

This implies that (
1 0

a (m) 1

)
V ∈ D

((
0 d̊iv

grad 0

))
,

which is the above characterization and also(
0 d̊iv

grad 0

)(
1 0

a (m) 1

)
V =

(
(div a) (m) 0

0 0

)
V+
(

1 a (m)
0 1

)(
0 div

grad 0

)
V.

As a consequence of the similarity between A and A∗ we find by analogous
reasoning that not only

Re 〈U |AU〉0 ≥ 0

for all U ∈ D (A) but also

Re 〈U |A∗U〉0 ≥ 0

for all V ∈ D (A∗). Thus we have indeed that

∂0M
(
∂−1

0

)
+A

is continuously invertible with inverse
(
∂0M

(
∂−1

0

)
+A

)−1
: H%,0,0 (R, H) →

H%,0,0 (R, H) for any % ∈ R>0.

6. Conclusion and Outlook

We have discussed a general class of evolutionary differential equations and
discussed a particular application to demonstrate the utility of the framework.



EVOLUTIONARY PROBLEMS IN HILBERT SPACE 203

Although, the solution idea appears to be quite powerful as far as providing
a unified set-up for various evolutionary problems is concerned, there are many
aspects begging for further investigation.

We have noted that the whole class shows time-translation invariance as
a characteristic feature. It is a largely open field of investigation to consider
systems lacking this property, i.e. so called time-dependent material law oper-
ators.

This is particularly important in order to consider non-linear problems.
First steps are in preparation to utilize the suggestive extension of the positivity
conditions (8) to include monotone operators in the material relation turning
the evolutionary equation into a differential inclusion. But there is still ample
to do to obtain a satisfactory understanding of a general solution theory.

It should be noted, that in particular with regards to non-linear lower order
perturbations, however, there is a simple mechanism to obtain a satisfactory
solution theory. In the simplest case, where M0 is strictly positive definite the
constant c0 ∈ R>0 is actually a lower bound for the parameter % ∈ R>0 and can
be chosen as large as needed as long as % is sufficiently large. In other words, by
choice of the parameter % the solution operator

(
∂0M

(
∂−1

0

)
+A

)−1
has arbi-

trarily small operator norm. Thus any globally Lipschitz continuous right-hand
side U 7→ f (U) leads to a fixed point problem for a contractive mapping. This
basic mechanism is frequently utilizes for numerous non-linear problems if only
in a somewhat obscured way, probably finds his most transparent description
in the framework presented here.

Since for non-linear problems there is the issue of local-in-time versus global-
in-time solutions, it is worth noting that, although, we have presented a global
solution theory it is easy to interpret the results as local-in-time. This is due to
causality since the solutions do not change up to a point in time if the operator
is modified after this point in time. Still, this observation needs to be explored
and employed.

A final direction of further investigation we would like to mention is partial
differential-algebraic equations (PDAE). Such equations appear in their sim-
plest form already if a material law operator M

(
∂−1

0

)
is merely a first order

polynomial in ∂−1
0 and the zero order coefficient M0 has a non-trivial null space.

Such cases have been called (P)-degenerate in [5]. There, however, only a few
special cases have been studied.
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