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1. Introduction

Scattering theory for wave equations with dissipative terms has been estab-
lished by professor Kiyoshi Mochizuki [7] in 1976, and since then many works
have appeared. In this report, we continue our paper [10] and survey some
results on dissipative wave equations based on [3] and [5]. We also give a slight
extension of our previous result on the principle of limiting absorption [9]. For
the background of these problems we refer to [4], for instance.

Firstly, we consider the following wave equation with a dissipative pertur-
bation of rank one:

wtt(x, t)− wxx(x, t) + (wt(·, t), ψ(·))ψ(x) = 0, (x, t) ∈ R1 × (0,∞), (1.1)

where (·, ·) denotes the usual L2- inner product, and ψ = ψ(·) ∈ L2,s(R1) for
some s > 1/2 and with the usual weighted L2-space defined by

L2,s(R1) = {f ; ||f ||s <∞} , ||f ||2s =
∫

R1
(1 + |x|2)s|f(x)|2dx.

For this equation, we want to characterize the function ψ for which the solutions
behave like free waves. The results are as follows:

Theorem 1.1. Consider the equation (1.1).

(1) If
∣∣∣∣∫

R1
ψ(x)dx

∣∣∣∣ ≤ √2, then the solutions become asymptotically free.
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(2) If
∣∣∣∣∫

R1
ψ(x)dx

∣∣∣∣ > √2, then the total energy of some solutions decays to

zero as t tends to infinity.

Next, we consider the following initial-boundary value problems:
wtt(x, y, t)−∆w(x, y, t) + b(x, y)wt(x, y, t) = 0, (x, y, t) ∈ Ω× (0,∞),
w(x, y, 0) = w1(x, y), wt(x, y, 0) = w2(x, y), (x, y) ∈ Ω,
w(x, 0, t) = w(x, π, t) = 0, (x, t) ∈ RN × (0,∞),

(1.2)
where Ω is given by

Ω = RN × (0, π) =
{

(x, y); x ∈ RN , 0 < y < π
}

for N ≥ 1 and where b(x, y) is a measurable function decaying as |x| → ∞.
Here the domain Ω is called wave guide or layered domain.

Under these settings, we shall study the behavior of solutions, i.e., the total
energy decay and the existence of scattering states. For the function b(x, y) we
consider the following two conditions:

• (some kind of long-range condition)

(L) : b1

[
m∏
k=0

log[k](em + r)

]−1

≤ b(x, y) ≤ b2

for some b1, b2 > 0 and r = |x|,

• (some kind of short-range condition)

(S) : 0 ≤ b(x, y) ≤ b3

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ

for some 0 < δ ≤ 1, b3 > 0, and r = |x|.

Here, m is non-negative integer and

e0 = 1, em = eem−1 , log[0] s = s, log[m] s = log log[m−1] s (m ≥ 1).

Our second result is given by the following theorem:

Theorem 1.2. Consider the equation (1.2).

(1) Under the assumption (L), the total energy of solutions decays to zero as
t goes to infinity.

(2) Under the assumption (S), the solutions become asymptotically free.
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It would be interesting to note whether the same approach could be used
to prove the above results if Ω is changed into wave guides of the form O×RN

in the above settings, where O ⊂ Rk is a bounded subset for some k ∈N with
sufficiently smooth boundary. However, it is unsolved at present.

Finally, we show the resolvent estimates for stationary dissipative wave
equations in an exterior domain:{

−∆u(x)− iκb(x)u(x)− κ2u(x) = f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω, (1.3)

where Ω is an exterior domain outside the bounded obstacle O ⊂ RN (N ≥ 3)
with smooth boundary ∂Ω and κ = σ+ iτ with τ = Imκ ≥ 0. We assume that
O = RN \ Ω is star shaped with respect to the origin x = 0 and the function
b(x) satisfies

0 ≤ b(x) ≤ b0

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−2δ

(1.4)

for some b0 > 0 and 0 < δ < 1.

Theorem 1.3. Assume that N ≥ 3 and (1.4). If u is a solution of (1.3),
then there exists a positive constant C independent of κ such that the following
inequality holds:

|κ|‖u‖a−1
0
≤ C‖f‖a0 ,

where
||f ||a = ||a1/2f ||L2(Ω)

and

a0(r) =

[
m−1∏
k=0

log[k](em + r)

] [
log[m](em + r)

]1+δ

.

Note that we do not assume smallness of b(x) because under assumption
(1.4) the complex upper-half-plane is contained in the set of κ ∈ C where the
bounded inverse of operator pencil −∆ − iκb(x) − κ2 exists. As corollary, we
can follow the same line as in [9] to prove the limiting absorption principle for
an exterior problem as τ = Imκ ↓ 0.

Corollary 1.4. Let κ = σ + iτ ∈ C+. Consider the equation (1.3). Then
there exists the limit

lim
τ↓0

u(σ, τ) = lim
τ↓0

(−∆− iκb(x)− κ2)−1f(x) ∈ L2
a−1
0

for f ∈ L2
a0

, where a0 = a0(r) is the same as in Theorem 1.3 and

L2
a = {f ; ||f ||a <∞} .
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Note that our result also holds for the case b(x) ≡ 0 or Ω = RN (N 6= 2). So
this result is an extension of the well-known resolvent estimate for Helmholtz
equations in an exterior domain.

The contents of the present paper will be outlined as follows. In section 2
we shall discuss the problem (1.1) and Theorem 1.1. In section 3 the problem
(1.2) is considered and explain Theorem 1.2. In the final section we shall prove
Theorem 1.3.

2. Wave equations with dissipative perturbation of rank
one

In this section, we consider the scattering problem for a wave equation with a
rank one dissipation (1.1) and we deal with this equation as a perturbation of

utt(x, t)− uxx(x, t) = 0, (x, t) ∈ R1 × (0,∞). (2.1)

The equations (1.1) and (2.1) can be reduced to the ordinary differential equa-
tion of Schrödinger type

i
dv(t)
dt

= Hv(t), v(0) ∈ E (2.2)

in the energy space E as follows. The energy space E = E(R1) is a Hilbert
space associated with energy conservation law, its inner product is given by((

f1

f2

)
,

(
g1

g2

))
E

=
∫

R1

{
∂xf1(x)∂xg1(x) + f2(x)g2(x)

}
dx.

The norm derived from this is denoted by || · ||E . For equation (1.1), the
perturbed operator H is defined by

H = i

(
0 1
∂2
x −(·, ψ)ψ

)
with domain

D(H) =
{
f =

(
f1

f2

)
∈ E ; ∂2

xf1 ∈ L2(R1), f2 ∈ H1(R1)
}
.

Similarly, for the free equation (2.1), unperturbed operator H0 is defined by

H0 = i

(
0 1
∂2
x 0

)
with the same domainD(H0) = D(H). It is well-known that σ(H0) = σc(H0) =
σess(H0) = R and σp(H0) = σr(H0) = ∅ hold. Since H is maximal dissipative
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and H0 is selfadjoint in E , we find by Reed and Simon [12, Theorem X-50] that
H and H0 generate a contraction semi-group {e−itH}t≥0 and unitary group
{e−itH0}t∈R, respectively. We want to know more detailed spectrum structure
of H under some assumption for the function ψ. To answer this, we assume
that the function ψ satisfies

(A1) ψ ∈ L2,s+1(R1) with s > 1/2,

(A2) Ψ(α) ≤ Ψ(β) if 0 ≤ β ≤ α,

where
Ψ(α) = |ψ̂(α)|2 + |ψ̂(−α)|2.

For example, the function ψ(x) = e−|x|
2/2 satisfies (A1) and (A2) since ψ̂(α) =

e−|α|
2/2. These assumptions are the condition to guarantee that the singularity

of the resolvent of H is simple.
We are interested in scattering theory and the resolution of modes for dis-

sipative systems (see e.g., [4]). To do so, we need to characterize some singular
points of the resolvent and after that, we have to show Parseval formula (Propo-
sition 2.7, below). Firstly, the following can be derived from applying the proof
in [7]:

Theorem 2.1. Under the assumption (A1) and (A2), the operator H does not
have real eigenvalues and the wave operator

W = s- lim
t→+∞

eitH0e−itH

exists in E as a non-trivial operator.

For z ∈ C \R, we define

r0(z) =
(
∂2
x − z2

)−1
.

For this, the principle of limiting absorption is valid, that is, for any λ ∈ R the
limits

λj∂kxr0(λ± i0) = lim
κ↓0

(λ± iκ)j∂kxr0(λ± iκ)
(

for (j, k) = (0, 1), (1, 0)
)

exist in the uniform operator topology from L2,s(R1) to L2,−s(R1) if s > 1/2.
Using this, we find that the free resolvent of H0 is represented as

R0(z)f = (H0 − z)−1
f =

(
r0(z)(zf1 + if2)

i∂xr0(z)∂xf1 + zr0(z)f2

) (
f =

(
f1

f2

)
∈ E
)

for z ∈ C \R. To obtain the perturbed resolvent of H, we define functions as

Γ (z) = 1− iz
(
r0(z)ψ,ψ

)
, Γ (λ± i0) = 1− iλ

(
r0(λ± i0)ψ,ψ

)
,
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where (·, ·) is interpreted as dual coupling of L2,s and L2,−s. The difficulty is
caused by the zero of these functions which is∑

±
= {z ∈ C±;Γ (z) = 0} ,

∑0

±
= {z ∈ R;Γ (λ± i0) = 0} .

Then it holds that

z 6∈
∑

+
(resp.

∑
−

) ⇔ z ∈ ρ(H) ∩C+ (resp. ρ(H) ∩C−)

and the perturbed resolvent R(z) has the representation

R(z)f = R0(z)f +
i
(
f, v(z)

)
E

Γ (z)
v(z)

(
f =

(
f1

f2

)
∈ E
)

where

v(z) =
(
ir0(z)ψ
zr0(z)ψ

)
.

Thus we obtain

Proposition 2.2. Assume (A1) and (A2). Then we have

(1) ∑
+

=
∑0

+
= ∅.

(2) There exists some κ0 < 0 such that∑
−

=
{
∅, (Γ (−i0) ≥ 0),
{iκ0}, (Γ (−i0) < 0),

and ∑0

−
=
{
∅, (Γ (−i0) 6= 0),
{0}, (Γ (−i0) = 0),

where

Γ (−i0) = 1− 1
2

∣∣∣∣∫
R1
ψ(x)dx

∣∣∣∣2 .
Moreover, in the case Γ (−i0) < 0 and Γ (−i0) = 0, it holds that Γ ′(iκ0) 6= 0
and Γ (−i0) 6= 0, respectively.

So we find out that the spectral structure depends on the size of ψ as follows.

Theorem 2.3. Assume (A1) and (A2) for function ψ. Then we have

σ(H) ∩C− =


∅

(∣∣∣∣∫
R1
ψ(x)dx

∣∣∣∣ ≤ √2
)
,

{iκ0}
(∣∣∣∣∫

R1
ψ(x)dx

∣∣∣∣ > √2
)

for some κ0 < 0. Moreover, iκ0 is an eigenvalue and its multiplicity is one.
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For example, the function ψ(x) = εe−|x|
2/2 satisfies

∣∣∣∣∫
R1
ψ(x)dx

∣∣∣∣ = ε
√

2π.

Thus, only one eigenvalue appears in the case of ε > (1/π)2, while no such
eigenvalue exists for ε ≤ (1/π)2.

If complex eigenvalue exists, we can define a projection Piκ0 with respect
to this eigenvalue iκ0 as follows.

(Piκ0f, g)E = − 1
2πi

∫
Γ

(R(z)f, g)Edz for any f, g ∈ E ,

where R(z) = (H − z)−1 is the resolvent of H and Γ(⊂ C−) is a closed curve
around iκ0.

Corollary 2.4. R(P ) ⊂ kerW .

Now we shall state the construction of a spectral representation for the free
(unperturbed) operator H0.

Proposition 2.5. For f =
(
f1

f2

)
∈ Es (s > 1/2), where

Es =
{
f =

(
f1

f2

)
;
∫

R1
(1 + |x|2)s

{
|∂xf1(x)|2 + |f2(x)|2

}
dx <∞

}
,

we define the operator F0 by

(F0f)(λ) =




λf̂1(λ) + if̂2(λ)√

2
λf̂1(−λ) + if̂2(−λ)√

2

 (λ > 0),


−λf̂1(−λ)− if̂2(−λ)√

2
−λf̂1(λ)− if̂2(λ)√

2

 (λ < 0).

Then

(1) F0 is extended to a unitary operator from E onto L2(R; C2).

(2) For any f ∈ D(H0) and g ∈ E,

(H0f, g)E =
∫ ∞
−∞

λ
(

(F0f)(λ), (F0g)(λ)
)

C2
dλ

holds, where (·, ·)C2 denotes the usual inner product in C2.
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We call F0 the spectral representation for H0. For the spectral representa-
tion of the perturbed operator H we have the following proposition.

Proposition 2.6. For f =
(
f1

f2

)
∈ Es (s > 1/2), define the two operators F

and G by

(Ff)(λ) = (F0f)(λ) +
i
(
f, v(λ− i0)

)
E

Γ (λ+ i0)

(
F0

(
0
ψ

))
(λ),

(Gf)(λ) = (F0f)(λ)−
i
(
f, v(λ− i0)

)
E

Γ (λ− i0)

(
F0

(
0
ψ

))
(λ).

Then F is extended to a bounded operator from E to L2(R; C2) and satisfies
F = F0W . Moreover, we have∫ ∞

−∞

(
(FHf)(λ), g̃(λ)

)
C2
dλ =

∫ ∞
−∞

λ
(

(Ff)(λ), g̃(λ)
)

C2
dλ (2.3)

for any f ∈ D(H) and g̃ ∈ L2(R; C2).

Therefore, we call the operator F the spectral representation of H. The
operator G is the formal spectral representation of the adjoint operator H∗.
Now we shall state the generalized Parseval formula.

Proposition 2.7. Assume (A1) and (A2).

(1) If
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ < √2, then

(f, g)E =
∫ ∞
−∞

(
(Ff)(λ), (Gg)(λ)

)
C2dλ

for any f, g ∈ E.

(2) If
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ > √2, then

(f, g)E =
∫ ∞
−∞

(
(Ff)(λ), (Gg)(λ)

)
C2dλ+ (Pf, g)E

for any f, g ∈ E.

(3) If
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ =
√

2, then

(f, g)E =
∫ ∞
−∞

(
(Ff)(λ), (Gg)(λ)

)
C2dλ
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for any f ∈ H, g ∈ Ẽ, where Ẽ ⊂ E is defined by

Ẽ =
{
g ∈ S(R)× S(R)

∣∣∣ (v(−i0), g)E = 0
}
.

Remark 2.8. We may consider the above Proposition 2.7 as the spectral de-
composition theorem for the dissipative operator H. For instance, in the case∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ > √2, it holds by (2.3) that

(
Hf, g

)
E =

∫ ∞
−∞

λ
(
(Ff)(λ), (Gg)(λ)

)
C2dλ+ iκ0

(
Pf, g

)
E

for any f ∈ D(H) and g ∈ E .

Theorem 2.9. Assume (A1) and (A2).

(1) If
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ ≤ √2, then kerW = {0}.

(2) If
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ > √2, then kerW = R(P ).

Proof. (1) Consider the case
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ < √2. By Corollary 2.4, we may

show Wf = 0 implies f = 0. Since F0 is unitary in E , we have Ff = 0 by
F = F0W in Proposition 2.6. By Proposition 2.7 (1), we have (f, g)E = 0 for

any g ∈ E , hence we obtain the desired result. In the case
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ =
√

2,

similar arguments show that Wf = 0 implies (f, g)E = 0 by Proposition 2.7
(3) since the space Ẽ is dense in E . This shows f = 0.

(2) In the same way, if
∣∣∣∣∫

R

ψ(x)dx
∣∣∣∣ > √2, we find Wf = 0 implies Ff = 0.

Hence (f, g)E = (Pf, g)E by Proposition 2.7 (2), from which the desired result
follows.

From the last theorem, we easily obtain the statements of Theorem 1.1.

3. Decay and scattering for wave equations with
dissipations in layered media

In this section we shall describe a result on wave equations with dissipation in
some layered media [5]. Consider the initial-boundary value problem (1.2) and
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assume conditions (L) or (S). Under these assumptions, we consider (1.2) as
perturbation of the free equation:{

utt(x, y, t)−∆u(x, y, t) = 0, (x, y, t) ∈ Ω×R,

u(x, 0, t) = u(x, π, t) = 0, (x, t) ∈ RN ×R.
(3.1)

Then (1.2) and (3.1) can be reduced to the ordinary differential equation (2.2)
in the energy space E , where E = H1

0 (Ω)×L2(Ω). Now we define two operators
H and H0 by

H = H0 + V, (3.2)

H0 = i

(
0 1
∆ 0

)
, V = i

(
0 0
0 −b(x, y)

)
(3.3)

with domain

D(H) = D(H0) =
{
f =

(
f1

f2

)
∈ E ;∆f1 ∈ L2(Ω), f2 ∈ H1

0 (Ω)
}
.

Then the operators H and H0 are maximal dissipative and selfadjoint in E ,
respectively, therefore, H and H0 generate a contraction semi-group {e−itH}t≥0

and unitary group {e−itH0}t∈R, respectively.
Now we shall explain the difficulties of our problem. To do so, we define a

selfadjoint operator L0 in L2(Ω) by

L0u = −∆u, D(L0) =
{
u ∈ H1

0 (Ω);∆u ∈ L2(Ω)
}
.

For z 6∈ R, we define its resolvent by R0(z) = (L0 − z2)−1. Then this has the
following integral representation:

(R0(z)ϕ)(x, y) =
2
π

∞∑
n=1

sinny
∫ π

0

sinny′(rn(z)ϕ)(x, y′)dy′

for ϕ ∈ C∞0 (Ω), where rn(z) =
(
−∆x − (z2 − n2)

)−1 with ∆x =
∑N
j=1 ∂

2/∂x2
j .

By this, we find σ(L0) = σc(L0) = ∪∞n=1[n2,∞) = [1,∞). The operator
rn(z) (therefore R0(z)) has a singularity at z2 = n2. The end point n2 of each
interval [n2,∞) is called thresholds of the operator L0. Then the free solution
of (3.1) is represented by

u(x, y, t) =
∞∑
n=1

un(x, t) sinny,

where un(x, t) is the solution of

untt(x, t)−∆xun(x, t) + n2un(x, t) = 0, (x, t) ∈ RN ×R.
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In the above settings, the operator
√
iV is in general not H0-smooth near

the threshold ±k, where k ∈ N . To relax these singularities we choose the
operator

√
iV (H0 − i)−2(H0 ± k) as smooth operators near the thresholds ±k.

In addition, we use the operator
∏n
k=1(H − i)−4(H2 − k2) instead of Simon’s

approximate operator (H − i)−2H [13] and we employ the density argument
using some approximate operators.

Now we shall start with Theorem 1.2 (1) on energy decay. As for the proof,
we have only to show the following

Proposition 3.1. Assume (L) for fixed m and the initial data w0 = (w1, w2) ∈
C∞0 (Ω)× C∞0 (Ω). Let ε be a positive number satisfying 0 < ε ≤ min{1, b1/2}.
Then

‖e−itHw0‖2E ≤ C1

{
log[m](em + t)

}−ε
holds for some positive constant C1 = C1(w1, w2, b1, b2, ε) > 0.

We omit the proof of the above proposition since it follows from the same
arguments as in [8].

On the other hand, to show Theorem 1.2 (2) on scattering, we need some
abstract results. Let H be a separable Hilbert space with inner product (·, ·)
and norm || · ||, and let iH be a maximal dissipative operator in H, so that
U(t) = e−itH (t ≥ 0) is the contraction semi-group generated by iH. Finally,
let Hb be the space generated by the eigenvectors of H with real eigenvalues.
The next lemma follows from a slight modification of the proof by Petkov [11,
Lemma 1.1.6].

Lemma 3.2. For a finite sequence {αn} ⊂ R, the following two sets Ψn (n =
0, 1) are dense in H⊥b , the orthogonal complement of Hb.

Ψ0 =

{
n∏
k=1

(H − αk)
{

(H − i)−1
}2
f ; f ∈ D(H) ∩H⊥b

}
,

Ψ1 =

{
n∏
k=1

(H − αk)(H − i)−1f ; f ∈ H⊥b

}
.

The results above are needed to prove Theorem 3.3 below. Especially,
denseness of Ψ1 in H⊥b means that the weak limit of U(t)f as t goes to infinity
vanishes. By this fact, the non-existence of real eigenvalues of H is shown by
the similar argument in Kadowaki [2].

Let H0 and V be selfadjoint operators in H and {U0(t)}t∈R be the unitary
group generated by H0. Let E(λ) be the spectral family of H0. Put

Fn(λ) =
{

(λ− an)(λ− i)−1
}{

(λ+ an)(λ− i)−1
}

= (λ2 − a2
n)(λ− i)−2.

Assume the following three conditions:
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(A1) σ(H0) = σac(H0) = (−∞,−m] ∪ [m,∞) for some m ≥ 0,

(A2) iV is non-negative and H0-compact,

(A3) there exists a sequence {an} satisfying m < a1 < a2 < · · · < an < · · · ,
limn→∞ an =∞ such that the operator

√
iV Fn(H0)Ean,an+1(H0) is H0-

smooth.

Here the operator K is called H0-smooth (Kato [6]) if there exists a positive
constant C such that ∫

R

||KU0(t)||2dt ≤ C||f ||2

and we put Eα,β(A0) = E ((−β,−α) ∪ (α, β)) for 0 < α < β.
To prove Theorem 1.2 (2), we need the following

Theorem 3.3. Assume (A1), (A2) and (A3) and put H = H0 + V . Then the
operator H does not have real eigenvalues and the wave operator

W = s- lim
t→+∞

U0(−t)U(t)

exists in H as a non-trivial operator.

This theorem is proven by the method similar to the arguments in Kadowaki
[2] (see the description just behind Lemma 3.2).

Now we give the outline of the proof of Theorem 1.2 (2). We only have
to show that the two operators H and H0 defined by (3.2) and (3.3) satisfy
(A1) and (A3), since assumption (A2) follows from Rellich’s theorem. Let us
start with following results on smooth operators which follow from the well-
known resolvent estimate for −∆x by Agmon [1] and the inclusion relations
on weighted L2-space having weights like Ym in Lemma 3.4 below and Besov
spaces [10: Corollary 3.1].

Lemma 3.4. Let n ∈ N and m ∈ {0} ∪N . Then for every λ ∈ (−∞,−n) ∪
(n,∞), there exist the limits

(rn(λ± i0)Ymu, Ymv) = lim
Imz→±0

(rn(z)Ymu, Ymv), (3.4)

where

Ym =

[
m∏
k=0

log[k](em + |x|)

]−1/2 [
log[m](em + |x|)

]−δ/2
and u, v ∈ L2(RN ). Moreover, there exists a positive constant C independent
of z such that

||Ymrn(z)Ymf || ≤ C|z2 − n2|−1/2||f || (3.5)

for z satisfying Re(z2 − n2) > 0.
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Using this, we obtain

Lemma 3.5. Let n ∈N and m ∈ {0}∪N . Assume that z = λ+iκ is a complex
number with λ ∈ (−n−1,−n)∪(n, n+1). Then there exists a positive constant
C independent of z such that

||YmR0(z)Ymf ||2 ≤ C
(
|λ2 − n2|−1 + |λ2 − (n+ 1)2|−1

)
||f ||2.

Noting this lemma, we have

Proposition 3.6. For the operator H0 defined by (3.3), assumption (A1) with
m = 1 is satisfied:

σ(H0) = σac(H0) = (−∞,−1] ∪ [1,∞).

To show that the operator H0 satisfies (A3), we need

Proposition 3.7. Let n ∈N , ε ∈ (0, 1) and f ∈ E.

(1) For any λ ∈ (−n− ε,−n)∪ (n, n+ ε), there exists a positive constant C1

independent of λ such that

d

dλ
||E(λ)

√
iV f ||2 ≤ C1(λ2 − n2)−1/2||f ||2.

(2) For any λ ∈ (−n − 1,−n − ε) ∪ (n + ε, n + 1), there exists a positive
constant C2 independent of λ such that

d

dλ
||E(λ)

√
iV f ||2 ≤ C2||f ||2.

[Proof of (A3)] By the above proposition, we may put an = n. Now we
choose ε ∈ (0, 1) and put z = µ + iκ ∈ C+ and we define the operator Kε(n)
by

Kε(n) =
√
iV Fn(H0)En,n+ε(H0).

Noting the following formulas

Im
(
(H0 − z)−1Kε(n)∗f,Kε(n)∗f

)
=
(∫ −n
−n−ε

+
∫ n+ε

n

)
× κ

(λ− µ)2 + κ2
|(λ− i)−2(λ2 − n2)|2 d

dλ
||E(λ)

√
iV f ||2dλ,∫ +∞

−∞

κ

(λ− µ)2 + κ2
dλ = π,
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we have

sup
Imz 6=0, f∈E

∣∣Im ((H0 − z)−1Kε(n)∗f,Kε(n)∗f
)∣∣ ≤ C||f ||2

for some positive constant C. So, the operator Kε(n) becomes H0-smooth.
Similarly with this, we can show that the operators

√
iV En,n+ε(H0), therefore√

iV Fn(H0)En+ε,n+1(H0) also become H0-smooth. Using the fact E±(n+ε) = 0
(σp(H0) = ∅), we conclude that (A3) holds.

4. Resolvent estimate for stationary dissipative wave
equations in an exterior domain

In the final section, we shall state some revised result of the resolvent estimate
in [9]. Let us consider the stationary problem (1.3) under the condition (1.4).

Similarly to [9], we define two operators D+ and D+
r as follows:

D+u = ∇u+
N − 1

2r
x

r
u− iκx

r
u (Imκ ≥ 0) ,

D+
r u =

x

r
· D+u = ur +

N − 1
2r

u− iκu (Imκ ≥ 0) .

Proposition 4.1. If u is a solution of (1.3), then the following inequality holds:

∫
Ω

[
log[m](em + r)

]−1−δ
[
m−1∏
k=0

log[k](em + r)

]−1

×

{
|κ|2|u|2 +

∣∣∣∣ur +
N − 1

2r
u

∣∣∣∣2
}
dx (4.1)

≤
∫

Ω

[
log[m](em + r)

]−1−δ
[
m−1∏
k=0

log[k](em + r)

]−1

|D+
r u|2dx

+
2
δ

∫
Ω

[
log[m](em + r)

]−δ
|fiκu|dx.

Proof. (cf.[9: Lemma 3.1, 3.2]) Let g be the function defined by

g(r) =
[
log[m](em + r)

]−δ
.

Multiplying both sides of the first equation of (1.3) by giκu, we have

−∇·(giκu∇u)+griκuur+iκg|∇u|2−|κ|2gb(x)|u|2+iκ|κ|2g|u|2 = gfiκu. (4.2)



WAVE EQUATIONS WITH DISSIPATION 179

Integrating both sides of (4.2) by parts on Ω, we have∫
Ω

griκuurdx+
∫

Ω

{
iκg|∇u|2 − |κ|2gb(x)|u|2 + iκ|κ|2g|u|2

}
dx

=
∫

Ω

gfiκudx. (4.3)

Note that the identity

Re(−iκuur) =
1
2
|D+
r u|2 −

1
2

(∣∣∣∣ur +
N − 1

2r
u

∣∣∣∣2 + |κ|2|u|2
)
− τ(N − 1)

2r
|u|2,

where Re means the real part and τ = Imκ. Taking the real part of both sides
of (4.3) and using the assumption b(x) ≥ 0 and τ ≥ 0, we obtain the desired
inequality since

gr(r) = −δ
[
log[m](em + r)

]−1−δ
[
m−1∏
k=0

log[k](em + r)

]−1

holds.

Lemma 4.2. Let ϕ = ϕ(r) be a non-negative real-valued C1-function. If u is a
solution of (1.3), then the following inequality holds:∫

Ω

{(
τϕ+

ϕr
2

)
|D+u|2 +

(ϕ
r
− ϕr

) (
|D+u|2 − |D+

r u|2
)}
dx

+
∫

Ω

b(x)ϕ
2

(
|D+
r u|2 + |κ|2|u|2 −

∣∣∣∣ur +
N − 1

2r
u

∣∣∣∣2
)
dx

+
∫

Ω

{
− (N − 1)(N − 3)

8

( ϕ
r2

)
r
|u|2 +

τ(N − 1)(N − 3)
4r2

ϕ|u|2
}
dx

≤
∫

Ω

∣∣∣fϕD+
r u
∣∣∣dx.

Proof. We can apply an almost similar argument as in [9: Lemma 3.3]. The
only difference is that the boundary integral appears. But noting the boundary
condition u = 0 on ∂Ω, we have

D+
n u =

(
D+u · n

)
= un, D+

r u = ur =
(x
r
· n
)
un, D+u = ∇u = unn,

where n is unit outer normal to the boundary ∂Ω. The boundary integral is
non-negative (see (3.11) in [9]) :∫

∂Ω

ϕ

{
D+
n uD+

r u−
|D+u|2

2

(x
r
· n
)}

dS = −1
2

∫
∂Ω

ϕ|un|2
(x
r
· n
)
dS ≥ 0
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since
(x
r
· n
)
≤ 0 holds by the assumption that the obstacle O is star shaped

with respect to the origin. Thus we have the desired inequality.

By this lemma, we obtain

Proposition 4.3. If u is a solution of (1.3), then the following inequality holds:∫
Ω

[
log[m](em + r)

]−1+δ
[
m−1∏
k=0

log[k](em + r)

]−1

|D+u|2

−δ
∫

Ω

b(x)
[
log[m](em + r)

]δ ∣∣∣∣ur +
N − 1

2r
u

∣∣∣∣2 dx (4.4)

≤ 2
δ

∫
Ω

[
log[m](em + r)

]δ ∣∣∣fD+
r u
∣∣∣dx.

Proof. Put

ϕ = ϕ(r) =
[
log[m](em + r)

]δ
in Lemma 4.2. Then since

ϕr = δ
[
log[m](em + r)

]−1+δ
[
m−1∏
k=0

log[k](em + r)

]−1

,

we have
ϕ

r
− ϕr ≥ 0 and

( ϕ
r2

)
r
≤ 0. Noting these relations, N 6= 2 , b(x) ≥ 0

and |D±r u| ≤ |D±u| we obtain the desired result.

Theorem 4.4. If u is a solution of (1.3), then there exist positive constants
C1, C2 and C3 independent of κ such that the following inequalities hold:

|κ|‖u‖a−1
0
≤ C1‖f‖a0 , (4.5)

‖D+u‖a1 ≤ C2‖f‖a0 , (4.6)∥∥∥∥ur +
N − 1

2r
u

∥∥∥∥
a−1
0

≤ C3||f ||a0 , (4.7)

where
||f ||a = ||a1/2f ||L2(Ω)

and

a0(r) =

[
m−1∏
k=0

log[k](em + r)

] [
log[m](em + r)

]1+δ

,

a1(r) =

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1+δ

.
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Proof. We may assume that

0 < δ < min {1, 1/b0} .

Then, we can choose a positive constant ϕ0 as

1 < ϕ0 <
1
b0δ

. (4.8)

Since ϕ0 > 1, we can choose ε > 0 as

0 < ε < min {ϕ0 − 1, 1} . (4.9)

Now adding (4.1) to (4.4) multiplied by ϕ0, we obtain

|κ|2
∫

Ω

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ
|u|2dx

+
∫

Ω

([
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ

−ϕ0δb(x)
[
log[m](em + r)

]δ)∣∣∣∣ur +
N − 1

2r
u

∣∣∣∣2 dx (4.10)

+
∫

Ω

[
m∏
k=0

log[k](em + r)

]−1(
ϕ0

[
log[m](em + r)

]δ
−
[
log[m](em + r)

]−δ)∣∣D+u
∣∣2 dx

≤ 2
δ

∫
Ω

[
log[m](em + r)

]−δ
|fiκu|dx+

2ϕ0

δ

∫
Ω

[
log[m](em + r)

]δ
|fD+

r u|dx.

Note that by the Schwarz inequality, we have the following two inequalities:

2
δ

∫
Ω

[
log[m](em + r)

]−δ
|fiκu|dx

≤ 1
εδ2

∫
Ω

[
m−1∏
k=0

log[k](em + r)

] [
log[m](em + r)

]1+δ

|f |2dx (4.11)

+ε|κ|2
∫

Ω

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ
|u|2dx,
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2ϕ0

δ

∫
Ω

[
log[m](em + r)

]δ
|fD+

r u|dx

≤ ϕ2
0

εδ2

∫
Ω

[
m−1∏
k=0

log[k](em + r)

] [
log[m](em + r)

]1+δ

|f |2dx (4.12)

+ε
∫

Ω

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ
|D+u|2dx.

Then (4.10), (4.11) and (4.12) give

(1− ε)|κ|2
∫

Ω

[
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ
|u|2dx

+
∫

Ω

([
m−1∏
k=0

log[k](em + r)

]−1 [
log[m](em + r)

]−1−δ

−ϕ0δb(x)
[
log[m](em + r)

]δ)∣∣∣∣ur +
N − 1

2r
u

∣∣∣∣2 dx (4.13)

+
∫

Ω

[
m∏
k=0

log[k](em + r)

]−1{
(ϕ0 − ε)

[
log[m](em + r)

]δ
−
[
log[m](em + r)

]−δ}∣∣D+u
∣∣2 dx

≤ 1 + ϕ2
0

εδ2

∫
Ω

[
m−1∏
k=0

log[k](em + r)

] [
log[m](em + r)

]1+δ

|f |2dx.

Using (1.4), (4.8) and (4.9) for (4.13), we have the desired inequalities (4.5),
(4.6) and (4.7).

Remark 4.5. If we assume the smallness for the function b(x), then we can
show the same results as in Theorem 4.4 and Corollary 1.4 in the case κ ∈ C−.
Therefore, we can obtain the principle of limiting absorption for the matrix

type operator H = i

(
0 1
∆ −b(x)

)
(see [9: Theorem 5.1]).
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