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Abstract. In this note we present some recent results for Kirchhoff
equations in generalized Gevrey spaces. We show that these spaces are
the natural framework where classical results can be unified and ex-
tended. In particular we focus on existence and uniqueness results for
initial data whose regularity depends on the continuity modulus of the
nonlinear term, both in the strictly hyperbolic case, and in the degen-
erate hyperbolic case.
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1. Introduction

Let H be a separable real Hilbert space. For every x and y in H, |x| denotes
the norm of x, and 〈x, y〉 denotes the scalar product of x and y. Let A be a
self-adjoint linear operator on H with dense domain D(A). We assume that A
is nonnegative, namely 〈Ax, x〉 ≥ 0 for every x ∈ D(A), so that for every α ≥ 0
the power Aαx is defined provided that x lies in a suitable domain D(Aα).

Given a continuous function m : [0,+∞)→ [0,+∞) we consider the Cauchy
problem

u′′(t) +m(|A1/2u(t)|2)Au(t) = 0 ∀t ∈ [0, T ), (1.1)

u(0) = u0, u′(0) = u1. (1.2)

It is well known that (1.1), (1.2) is the abstract setting of the Cauchy-
boundary value problem for the quasilinear hyperbolic integro-differential par-
tial differential equation

utt(t, x)−m
(∫

Ω

|∇u(t, x)|2 dx
)

∆u(t, x) = 0 ∀(x, t) ∈ Ω× [0, T ), (1.3)

where Ω ⊆ Rn is an open set, and ∇u and ∆u denote the gradient and the
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Laplacian of u with respect to the space variables. Let us set

µ := inf
σ≥0

m(σ).

Equation (1.1) or (1.3) are called strictly hyperbolic if µ > 0, and weakly
(or degenerate) hyperbolic if µ = 0.

From the mathematical point of view, (1.3) is probably the simplest example
of quasilinear hyperbolic equation. From the mechanical point of view, this
Cauchy boundary value problem is a model for the small transversal vibrations
of an elastic string (n = 1) or membrane (n = 2). In this context it was
introduced by G. Kirchhoff in [18].

We refer to [1] for a sketch of the deduction of (1.3) from the system of (local)
equations of elasticity, and to [3] for the standard arguments in functional
analysis leading from (1.3) to (1.1).

This equation has generated a considerable literature after the pioneering
paper by S. Bernstein [5]. For more details on previous works we refer to
the introductions of the following sections. In this note we focus on the basic
analytic questions for a partial differential equation, namely local existence,
uniqueness, and global existence.

Section 2 is devoted to local existence. We show that a local solution of
(1.1) exists provided that the initial data (1.2) are regular enough, depending
on the continuity modulus of m. This result is an interpolation between the
two extreme cases, namely the classical local existence results for analytic data
and continuous m, or for Sobolev data and Lipschitz continuous m. We show
that these local solutions satisfy the expected properties of propagation of reg-
ularity and continuous dependence on the data. More important, we show with
some counterexamples that the spaces involved in the local existence results are
optimal.

Section 3 is devoted to uniqueness issues. We present a uniqueness result
in which the nonlinear term is not required to be Lipschitz continuous.

Section 4 is devoted to global existence. After reviewing the classical global
existence results, we state our result concerning “spectral gap” initial data.
This special class of initial data is small in the sense that it is not a vector
space, and it does not even contain all analytic data, but it is large in the
sense that every initial condition in the spaces involved in the local existence
result is the sum of two initial data for which the solution is actually global.
In particular, a solution can globally exist even if its initial data have only the
minimal regularity required by the local existence result.

Finally, Section 5 is devoted to open problems. We recall some old and
new unsolved questions which should inspire the future investigations in this
challenging research field.

We conclude by pointing out that there is a considerable literature on equa-
tion (1.1) or (1.3) with additional dissipative terms. The interested reader is
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referred to the survey [13].

2. Local existence

Previous works Local existence has been proved in the last century with
two opposite sets of assumptions.

(A) The case where m is Lipschitz continuous, the equation is strictly hyper-
bolic, and initial data have Sobolev regularity. Under these assumptions
a local existence result was first proved by S. Bernstein [5], and then
extended with increasing generality by many authors. The more gen-
eral form was probably stated by A. Arosio and S. Panizzi in [3], where
they proved that problem (1.1), (1.2) is well posed in the phase space
D(A3/4)×D(A1/4).

(B) The case where m is continuous, the equation is weakly hyperbolic, and
initial data are analytic. A local (and actually global, see Section 4) exis-
tence result under these assumptions was proved with increasing general-
ity by S. Bernstein [5], S. I. Pohozaev [22], A. Arosio and S. Spagnolo [4],
P. D’Ancona and S. Spagnolo [8, 9].

More recently, F. Hirosawa [16] considered equation (1.3) with Ω = Rn,
and proved a local existence result in classes of initial data depending on the
continuity modulus of m. The rough idea is that the less regular is the nonlinear
term, the more regularity is required on initial data. This result interpolates
(A) and (B).

Our contribution is twofold: in [11] we extended these intermediate results
from the special concrete case Ω = Rn to the general abstract setting, and we
provided counterexamples in order to show their optimality. Let us introduce
the functional setting needed in these statements.

Functional spaces and continuity moduli For the sake of simplicity we
assume that H admits a countable complete orthonormal system {ek}k≥1 made
by eigenvectors of A. We denote the corresponding eigenvalues by λ2

k (with
λk ≥ 0), so that Aek = λ2

kek for every k ≥ 1. Every u ∈ H can be written in a
unique way in the form u =

∑∞
k=1 ukek, where uk = 〈u, ek〉 are the components

of u. In other words, every u ∈ H can be identified with the sequence {uk} of its
components, and under this identification the operator A acts component-wise
by multiplication.

This simplifying assumption is not so restrictive. Indeed the spectral the-
orem for self-adjoint unbounded operators on a separable Hilbert space (see
[24, Chapter VIII]) states that any such operator is unitary equivalent to a
multiplication operator on some L2 space.
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More precisely, for every H and A there exist a measure space (M,µ),
a function a(ξ) ∈ L2(M,µ), and a unitary operator H → L2(M,µ) which
associates to every u ∈ H a function f(ξ) ∈ L2(M,µ) in such a way that Au
corresponds to the product a(ξ)f(ξ).

As a consequence, all the spaces we define in terms of uk and λk can be
defined in the general case by replacing the sequence of components {uk} of u
with the function f(ξ) corresponding to u, the sequence {λk} of eigenvalues of
A with the function a(ξ), and summations over k with integrals over M in the
variable ξ with respect to the measure µ. Similarly, there is no loss of generality
in proving our existence and uniqueness results (Theorems 2.1, 3.1, 4.3) using
components, as we did in [11, 14, 12]. On the contrary, existence of countably
many eigenvalues is essential in the construction of our counterexamples, as
stated in Theorem 2.5 and Theorem 2.6.

Coming back to functional spaces, using components we have that

D(Aα) :=

{
u ∈ H :

∞∑
k=1

λ4α
k u2

k < +∞

}
, D(A∞) :=

⋂
α≥0

D(Aα).

Let now ϕ : [0,+∞)→ [1,+∞) be any function. Then for every α ≥ 0 and
r > 0 one can set

‖u‖2ϕ,r,α :=
∞∑
k=1

λ4α
k u2

k exp
(
rϕ(λk)

)
, (2.1)

and then define the generalized Gevrey spaces as

Gϕ,r,α(A) := {u ∈ H : ‖u‖ϕ,r,α < +∞} . (2.2)

These spaces can also be seen as the domain of the operator Aα exp ((r/2)
ϕ(A1/2)

)
, and they are a generalization of the usual spaces of Sobolev, Gevrey

or analytic functions. They are Hilbert spaces with norm (|u|2 + ‖u‖2ϕ,r,α)1/2,
and they form a scale of Hilbert spaces with respect to the parameter r.

A continuity modulus is a continuous increasing function ω : [0,+∞) →
[0,+∞) such that ω(0) = 0, and ω(a + b) ≤ ω(a) + ω(b) for every a ≥ 0 and
b ≥ 0.

The function m is said to be ω-continuous if there exists a constant L ∈ R
such that

|m(a)−m(b)| ≤ Lω(|a− b|) ∀a ≥ 0, ∀b ≥ 0. (2.3)

We point out that the set of ω-continuous functions depends only on the
values of ω(σ) for σ in a neighborhood of 0, while when ϕ is continuous the
space Gϕ,r,α(A) depends only on the values of ϕ(σ) for large σ.
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Our local existence results The following statement sums up the state of
the art concerning existence of local solutions.

Theorem 2.1 (Local existence). Let H be a separable Hilbert space, and let A
be a nonnegative self-adjoint (unbounded) operator on H with dense domain.
Let ω be a continuity modulus, let m : [0,+∞) → [0,+∞) be an ω-continuous
function, and let ϕ : [0,+∞)→ [1,+∞).

Let us assume that there exists a constant Λ such that either

σω

(
1
σ

)
≤ Λϕ(σ) ∀σ > 0 (2.4)

in the strictly hyperbolic case, or

σ ≤ Λϕ

(
σ√

ω(1/σ)

)
∀σ > 0 (2.5)

in the weakly hyperbolic case. Let us finally assume that

(u0, u1) ∈ Gϕ,r0,α+1/2(A)× Gϕ,r0,α(A) (2.6)

for some r0 > 0, and some α ≥ 1/4.
Then there exist T > 0, and R > 0 with RT < r0 such that problem (1.1),

(1.2) admits at least one local solution u(t) in the space

C1 ([0, T ];Gϕ,r0−Rt,α(A)) ∩ C0
(
[0, T ];Gϕ,r0−Rt,α+1/2(A)

)
. (2.7)

Condition (2.7), with the range space depending on time, simply means
that

u ∈ C1 ([0, τ ];Gϕ,r0−Rτ,α(A)) ∩ C0
(
[0, τ ];Gϕ,r0−Rτ,α+1/2(A)

)
for every τ ∈ (0, T ]. This amounts to say that scales of Hilbert spaces are the
natural setting for this problem.

Admittedly assumptions (2.4) and (2.5) do not lend themselves to a simple
interpretation. The basic idea is that in the strictly hyperbolic case the best
choice for ϕ, namely the choice giving the largest space of initial data, is always
ϕ(σ) = σω(1/σ). In the weakly hyperbolic case things are more complex
because condition (2.5) is stated in an implicit form. In this case the best
choice for ϕ is the inverse of the function σ → σ/

√
ω(1/σ). Note that this

inverse function is always o(σ) as σ → +∞. Tables 1 and 2 provide examples
of pairs of functions m, ϕ satisfying (2.4) and (2.5).

As one could easily expect, assumption (2.5) is always stronger than as-
sumption (2.4). We remark that, since we are interested in local solutions,
assumption (2.4) is the relevant one also when the equation is degenerate but
the initial condition u0 satisfies the nondegeneracy condition

m(|A1/2u0|2) 6= 0.
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ω(σ) = m is . . . ϕ(σ) = Local existence with data in . . .

any continuous σ analytic functions (never optimal)

any continuous σω(1/σ) space larger than analytic functions

σβ β-Hölder cont. σ1−β Gevrey space of order (1− β)−1

σ| log σ| Log-Lipschitz cont. log σ D(Aα+1/2)×D(Aα) with α > 1/4

σ Lipschitz cont. 1 D(A3/4)×D(A1/4)

Table 1: Examples of relations between the regularity of m and the regularity
of initial data for local existence in the strictly hyperbolic case

ω(σ) = regularity of m ϕ(σ) = Local existence with data in . . .

any continuous σ analytic functions (never optimal)

any continuous o(σ) space larger than analytic functions

σβ β-Hölder cont. σ2/(β+2) Gevrey space of order 1 + β/2

σ Lipschitz cont. σ2/3 Gevrey space of order 3/2

Table 2: Examples of relations between the regularity of m and the regularity
of initial data for local existence in the weakly hyperbolic case

In this case problem (1.1), (1.2) is called mildly degenerate. As observed
in [2], in this situation it is enough to solve the problem with a different non-
linearity which is strictly hyperbolic and coincides with the given m in a neigh-
borhood of |A1/2u0|2. The solution of the modified problem is thus a solution
of the original problem for t small enough.

Assumption (2.5) is therefore the relevant one only when m(|A1/2u0|2) = 0.
This is usually called the really degenerate case.

The proof of Theorem 2.1 relies on standard techniques. The first step is
remarking that (1.1) admits a first-order conserved energy, namely the Hamil-
tonian

H(t) := |u′(t)|2 +M(|A1/2u(t)|2), (2.8)

where M(σ) is any function such that M ′(σ) = m(σ) for every σ ≥ 0. This is
the reason why D(A1/2)×H is called the energy space.

The second step is to consider the linearization of (1.1), namely equation

u′′(t) + c(t)Au(t) = 0, (2.9)

where now c(t) := m(|A1/2u(t)|2) is thought as a given coefficient. The the-
ory of such linear hyperbolic equations with time-dependent coefficients was
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developed by F. Colombini, E. De Giorgi and S. Spagnolo [6] in the strictly
hyperbolic case, and by F. Colombini, E. Jannelli and S. Spagnolo [7] in the
weakly hyperbolic case. The result is that a local solution exists provided that
the regularity of the initial data is related to the continuity modulus of c(t) as
in Theorem 2.1.

Unfortunately the boundedness of the Hamiltonian (2.8) is not enough to
control the oscillations of c(t). The main point is therefore to prove an a priori
estimate for

d

dt
|A1/2u(t)|2 = 2〈A1/2u(t), A1/2u′(t)〉 = 2〈A3/4u(t), A1/4u′(t)〉,

which in turn is achieved through an a priori estimate for the higher order
energy

|A1/4u′(t)|2 + |A3/4u(t)|2.

This a priori estimate provides an a priori control on the continuity modulus
of c(t). One can therefore apply the linear theory and obtain, for example, the
so called propagation of regularity, namely the fact that solutions belong to
the same space (or more precisely to the same scale of spaces) of the initial
condition. The precise statement is the following.

Theorem 2.2 (A priori estimate, Propagation of regularity). Let H, A, ω, m,
ϕ, Λ, u0, u1, r0, α be as in Theorem 2.1.

Then there exist positive real numbers T , K, R, with RT < r0, such that
every solution

u ∈ C1
(

[0, T ];D(A1/4)
)
∩ C0

(
[0, T ];D(A3/4)

)
(2.10)

of problem (1.1), (1.2) satisfies

|A1/4u′(t)|2 + |A3/4u(t)|2 ≤ K ∀t ∈ [0, T ],

and actually u belongs to the space (2.7).

The constants T , K, R depend only on ω, m, and on the norms of u0 and
u1 in the spaces Gϕ,r0,α+1/2(A) and Gϕ,r0,α(A), respectively.

In Theorem 2.2, as in every a priori estimate, we assumed the existence
of a solution. So the final step in the proof of Theorem 2.1 is proving that
a solution exists. Thanks to the a priori estimate this can be done in several
standard ways.

A first possibility is to use Galerkin approximations. In this case one ap-
proximates (u0, u1) with a sequence of data (u0n, u1n) belonging to A-invariant
subspaces of H where the restriction of A is a bounded operator. For such data
solutions exist, and thanks to the a priori estimate the corresponding coeffi-
cients cn(t) are relatively compact in C0([0, T ]). The conclusion follows from
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the fact that solutions of the linear problem depend continuously on the initial
data and on the coefficient c(t) (see [6] and [7]).

A second possibility is to apply Schauder’s fixed point theorem in the space
of coefficients. In this case one defines XK,T as the space of functions a :
[0, T ] → R such that a(0) = |A1/2u0|2, and with Lipschitz constant less than
or equal to K. For every a ∈ XK,T , one considers the solution u(t) of the
linear problem (2.9) with c(t) = m(a(t)), and initial data (1.2). Finally one
sets [Φ(a)](t) := |A1/2(t)|2. For suitable values of K and T (those given by
Theorem 2.2), Φ defines a continuous map from XK,T into itself which has
a fixed point due to Schauder’s theorem. This fixed point corresponds to a
solution of (1.1), (1.2).

The same techniques (a priori estimate + compactness + results for the
linear equation) lead to the continuity of the map

(initial data,m)→ solution.

Since the solution is not necessarily unique, this has to be intended in the
sense that “the limit of solutions is again a solution”. The precise statement is
the following.

Theorem 2.3 (Continuous dependence on initial data). Let H, A, ω, m, ϕ,
Λ, u0, u1, r0, α, T , R be as in Theorem 2.2.

Let {mn} be a sequence of ω-continuous functions mn : [0,+∞)→ [0,+∞)
satisfying (2.3) with the same constant L, and such that mn → m uniformly
on compact sets. Let {u0n, u1n} ⊆ Gϕ,r0,α+1/2(A) × Gϕ,r0,α(A) be a sequence
converging to (u0, u1) in the same space.

Let finally T1 ∈ (0, T ) and R1 > R be real numbers such that R1T1 < r0.
Then we have the following conclusions.

(1) For every n ∈ N large enough the Cauchy problem (1.1), (1.2) (with of
course mn, u0n, u1n instead of m, u0, u1) has at least one solution un(t)
in the space

C1 ([0, T1];Gϕ,r0−R1t,α(A)) ∩ C0
(
[0, T1];Gϕ,r0−R1t,α+1/2(A)

)
. (2.11)

(2) The sequence {un(t)} is relatively compact in the space (2.11).

(3) Any limit point of {un(t)} is a solution of the limit problem.

With minimal technicalities the theory can be extended in order to allow
time-dependent right-hand sides fn(t) with suitable regularity assumptions, for
example in L2

(
[0, T ],Gϕ,r0,1/4(A)

)
. We spare the reader from the details.



KIRCHHOFF EQUATIONS IN GEVREY SPACES 97

Derivative loss Our goal is now to prove the optimality of the spaces in-
volved in the local existence result. To this end we show that solutions with
less regular data can exhibit an instantaneous derivative loss. Let us introduce
the precise notion.

Definition 2.4. LetH andA be as in Theorem 2.1. Let ϕ : [0,+∞)→ [1,+∞)
be any function, and let α ≥ 1/4. We say that a solution u of problem (1.1),
(1.2) has instantaneous strong derivative loss of type

Gϕ,∞,3/4(A)× Gϕ,∞,1/4(A)→ D(Aα+1/2)×D(Aα) (2.12)

if the following conditions are fulfilled.

(1) Regularity of the solution. There exists T0 > 0 such that

u ∈ C1
(

[0, T0];D(A1/4)
)
∩ C0

(
[0, T0];D(A3/4)

)
. (2.13)

(2) High regularity at t = 0. We have that

(u0, u1) ∈ Gϕ,∞,3/4(A)× Gϕ,∞,1/4(A),

(3S) Low regularity for subsequent times. We have that

(u(t), u′(t)) 6∈ D(Aα+1/2+ε)×D(Aα+ε) ∀ε > 0, ∀t ∈ (0, T0].

We say that the same solution has instantaneous weak derivative loss of
type (2.12) if it satisfies (1), (2), and

(3W) Unboundedness as t→ 0+. There exists a sequence τk → 0+ such that∣∣∣Aα+1/2+εu(τk)
∣∣∣→ +∞ ∀ε > 0.

The second notion is weaker in the sense that what is actually lost is the
control on the norm of (u(t), u′(t)) in D(Aα+1/2+ε) × D(Aα+ε) as t → 0+.
We are now ready to state our counterexamples, the first one in the strictly
hyperbolic case, the second one in the weakly hyperbolic case.

Theorem 2.5 (Derivative loss: strictly hyperbolic case). Let A be a self-adjoint
linear operator on a Hilbert space H. Let us assume that there exist a countable
(not necessarily complete) orthonormal system {ek}k≥1 in H, and an increasing
unbounded sequence {λk}k≥1 of positive real numbers such that Aek = λ2

kek for
every k ≥ 1.

Let ω : [0,+∞) → [0,+∞) be a continuity modulus such that σ → σ/ω(σ)
is a nondecreasing function.
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Let ϕ : [0,+∞)→ [1,+∞) be a function such that

lim
k→+∞

λk
ϕ(λk)

ω

(
1
λk

)
= +∞. (2.14)

Then there exist an ω-continuous function m : [0,+∞)→ [1/2, 3/2], and a
solution u of the corresponding problem (1.1) with instantaneous strong deriva-
tive loss of type

Gϕ,∞,3/4(A)× Gϕ,∞,1/4(A)→ D(A3/4)×D(A1/4).

Theorem 2.6 (Derivative loss: weakly hyperbolic case). Let H, A, {ek}, {λk},
ω be as in Theorem 2.5. Let ϕ : [0,+∞)→ [1,+∞) be a function such that

lim
k→+∞

λk

[
ϕ

(
λk√

ω(1/λk)

)]−1

= +∞. (2.15)

Then there exist an ω-continuous function m : [0,+∞) → [0, 3/2], and a
solution u of the corresponding equation (1.1) with instantaneous strong deriva-
tive loss of type

Gϕ,∞,3/4(A)× Gϕ,∞,1/4(A)→ D(A)×D(A1/2),

and instantaneous weak derivative loss of type

Gϕ,∞,3/4(A)× Gϕ,∞,1/4(A)→ D(A3/4)×D(A1/4).

Note that assumptions (2.14) and (2.15) are the counterpart of (2.4) and
(2.5), respectively. Table 3 and Table 4 below present examples of functions
ω and ϕ satisfying the assumptions of Theorem 2.5 and Theorem 2.6 above.
They are the counterpart of Table 1 and Table 2, respectively.

These examples are based on the construction introduced in [6] and [7] in
the linear context. In those papers the authors gave examples of coefficients
c(t) and initial data (u0, u1) in such a way that the “solution” of the linear
problem has instantaneous derivative loss

Gϕ,∞,1/2(A)× Gϕ,∞,0(A)→ hyperdistributions.

This means that the solution is quite regular at time t = 0, but it is even
outside the space of distributions for t > 0. This is usually presented as a
nonexistence result in the space of distributions, but it is proved by showing
that the solution exists and is unique (since the equation is linear) in a space
of hyperdistributions (which in our notations is a space of the form Gϕ,r,0 with
r < 0), but exhibits an instantaneous derivative loss up to hyperdistributions.
In the quoted papers the derivative loss is always intended in the weak sense,
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m(σ) = m is . . . ϕ(σ) = Derivative loss for data in . . .

1
| log σ|1/2

just continuous
σ

log σ
quasi-analytic functions

σβ β-Hölder cont.
σ1−β

log σ
Gevr. sp. of order > (1− β)−1

σ| log σ|3 β-Höld. cont. ∀β ∈ (0, 1) log2 σ D(A∞)

Table 3: Pairs of functions m, ϕ for which a derivative loss example can be
found in the strictly hyperbolic case

m(σ) = m is . . . ϕ(σ) = Derivative loss for data in . . .

σβ β-Hölder cont.
σ2/(β+2)

log σ
Gevrey sp. of order > 1 + β/2

σ Lipschitz cont.
σ2/3

log σ
Gevrey sp. of order > 3/2

Table 4: Pairs of functions m, ϕ for which a derivative loss example can be
found in the weakly hyperbolic case

but those examples are quite flexible and can be modified in order to obtain
the derivative loss even in the strong sense.

Our strategy is similar. In the first step we modify the parameters in those
examples in order to stop the derivative loss up to the D(A3/4)×D(A1/4) level.
In the second step we find a function m in such a way that the coefficient c(t)
is actually equal to m(|A1/2u(t)|2). This can be easily done as soon as the
function t→ |A1/2u(t)|2 is invertible in a neighborhood of t = 0, and this can
be obtained by modifying just one dominant component of u(t). We refer to
[11] for the details.

3. Uniqueness

Previous works As one can easily guess, uniqueness holds whenever m is
(locally) Lipschitz continuous. In the strictly hyperbolic case a proof of this
result is contained for example in [3], of course for initial data in D(A3/4) ×
D(A1/4). In the weakly hyperbolic case a proof of the same result is given
in [4] for analytic initial data. Now from Theorem 2.1 we know that, when m
is Lipschitz continuous and the equation is degenerate, local solutions exist for
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all initial data in Gϕ,r0,3/4(A)×Gϕ,r0,1/4(A) with ϕ(σ) = σ2/3. The uniqueness
result under these assumptions has never been put into writing, but it can be
easily proved by standard arguments. The main tool is indeed always the same,
namely a Gronwall type lemma for the difference between two solutions.

As a general fact, uniqueness for a nonlinear evolution equation is much
more difficult to establish if the nonlinear term is not locally Lipschitz con-
tinuous. Therefore it is hardly surprising that also in the case of Kirchhoff
equations the non-Lipschitz case remained widely unexplored for a long time.
To our knowledge indeed uniqueness issues have been previously considered
only in section 4 of [4], where two results are presented.

The first one is a one-dimensional example (H = R) where problem (1.1),
(1.2) admits infinitely many local solutions. The second result is a detailed
study of the case where u0 and u1 are eigenvectors of A relative to the same
eigenvalue. In this special situation (which can be easily reduced to the two
dimensional case H = R2) the authors proved that uniqueness of the local
solution fails if and only if the following three conditions are satisfied:

(AS1) 〈Au0, u1〉 = 0,

(AS2) |A1/2u1|2 −m(|A1/2u0|2)|Au0|2 = 0,

(AS3) m satisfies a suitable integrability condition in a neighborhood of
|A1/2u0|2.

As a consequence, the local solution is unique if at least one of the conditions
above is not satisfied.

Our uniqueness result Our contribution is the extension of the first two
parts of the above result from the two dimensional case with equal eigenvalues
to the infinite dimensional case with arbitrary eigenvalues. In other words, we
prove that in the general case the solution is necessarily unique whenever either
(AS1) or (AS2) are not satisfied. The precise statement is the following.

Theorem 3.1 (Uniqueness). Let H, A, ω, m, ϕ, Λ be as in Theorem 2.1. Let
us assume that

(u0, u1) ∈ Gϕ,r0,3/2(A)× Gϕ,r0,1(A) (3.1)

for some r0 > 0, and

|〈Au0, u1〉|+
∣∣∣|A1/2u1|2 −m(|A1/2u0|2)|Au0|2

∣∣∣ 6= 0. (3.2)

Let us assume that problem (1.1), (1.2) admits two local solutions v1 and
v2 in

C2
(
[0, T ];Gϕ,r1,1/2(A)

)
∩C1 ([0, T ];Gϕ,r1,1(A))∩C0

(
[0, T ];Gϕ,r1,3/2(A)

)
(3.3)
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for some T > 0, and some r1 ∈ (0, r0).
Then we have the following conclusions.

(1) There exists T1 ∈ (0, T ] such that

v1(t) = v2(t) ∀t ∈ [0, T1]. (3.4)

(2) Let T∗ denote the supremum of all T1 ∈ (0, T ] for which (3.4) holds true.
Let v(t) denote the common value of v1 and v2 in [0, T∗].

Then either T∗ = T or

|〈Av(T∗), v′(T∗)〉|+
∣∣∣|A1/2v′(T∗)|2 −m(|A1/2v(T∗)|2)|Av(T∗)|2

∣∣∣ = 0.

Let us make some comments on the assumptions. Inequality (3.2) is equiv-
alent to say that either (AS1) or (AS2) are not satisfied. The space (3.3) is
the natural one when initial data satisfy (3.1). Indeed from the propagation of
regularity (see Theorem 2.2) it follows that any solution u(t) satisfying (2.10)
with initial data as in (3.1) lies actually in (3.3). Assumption (3.1) on the ini-
tial data is stronger than the corresponding assumption in Theorem 2.1. This
is due to a technical point in the proof. However in most cases the difference is
only apparent. For example if ω(σ) = σβ for some β ∈ (0, 1], then the following
implication

u ∈ Gϕ,r,0(A) =⇒ u ∈ Gϕ,r−ε,α(A)

holds true for every r > 0, ε ∈ (0, r), α ≥ 0. Therefore in this case every
solution satisfying (2.7) fulfils (3.3) with r1 = (r0 −RT )/2.

In the proof of Theorem 3.1, for which we refer to [14], we introduced a
technique which seems to be new, and hopefully useful to handle also differ-
ent evolution equations with non-Lipschitz terms. The main idea is to split
the uniqueness problem in two steps, which we call trajectory uniqueness and
parametrization uniqueness.

Trajectory uniqueness The first step of the proof consists in showing that
the image of the curve (A1/2u(t), u′(t)) in the phase space (for example in
D(A3/4)×D(A1/4)) is unique. To this end we introduce the new variable

s = ψ(t) := |A1/2u(t)|2 − |A1/2u0|2.

If the function ψ is invertible in a right-hand neighborhood of the origin,
then we can parametrize the curve using the variable s. If (z(s), w(s)) is this
new parametrization, then z and w are solutions of the following system

z′(s) =
A1/2w(s)

2〈A1/2z(s), w(s)〉
, w′(s) = −m

(
s+ |A1/2u0|2

) A1/2z(s)
2〈A1/2z(s), w(s)〉

,

(3.5)
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with initial data
z(0) = A1/2u0, w(0) = u1. (3.6)

What is important is that the non-Lipschitz term m(|A1/2u|2) of the original
equation has become the non-Lipschitz coefficientm(s+|A1/2u0|2) in the second
equation of system (3.5), and it is well known that nonregular coefficients do
not affect uniqueness. Therefore the solution of the system is unique.

Parametrization uniqueness The second part of the proof consists in show-
ing that the unique trajectory obtained in the previous step can be covered by
solutions in a unique way. To this end, we first show that the parametrization
ψ(t) is a solution of the Cauchy problem

ψ′(t) = F (ψ(t)), ψ(0) = 0, (3.7)

where F (σ) := 2〈A1/2z(σ), w(σ)〉. The function F is just continuous in σ =
0, and this in not enough to conclude that the solution of (3.7) is unique.
On the other hand, the differential equation in (3.7) is autonomous, and for
autonomous equations it is well known that there is a unique solution such that
ψ(t) > 0 for t > 0.

Proving that ψ(t) > 0 for t > 0, and more generally that ψ is invertible in
a right-hand neighborhood of t = 0 (as required in the first step), is the point
where the quite strange assumptions (AS1) and (AS2) play their role. Indeed
we have that

ψ′(0) = 0 ⇐⇒ (AS1) holds true,
ψ′′(0) = 0 ⇐⇒ (AS2) holds true.

If (3.2) is true, then either (AS1) or (AS2) are false, hence either ψ′(0) 6= 0
or ψ′′(0) 6= 0. In both cases ψ(t) is invertible where needed.

We conclude by pointing out that the denominators in (3.5) are actually
ψ′(t), hence they can vanish for t = 0. Since in that case we have that ψ′′(0) 6=
0, then for sure denominators are different from 0 for all t > 0 small enough,
and their vanishing in t = 0 is of order one. This kind of singularity doesn’t
affect existence or uniqueness for system (3.5), but it is in some sense the limit
exponent. For this reason we cannot deal with the same technique the case
where ψ′(0) = ψ′′(0) = 0 but ψ′′′(0) 6= 0, which originates denominators with
a singularity of order 2.

4. Global existence

Previous works Global existence for Kirchhoff equations has been proved
in at least five special cases.
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Analytic data This is the result we quoted as (B) in the history of local
existence results. We recall the main assumptions: the equation is weakly
hyperbolic, the nonlinearity is continuous, and initial data are analytic.

Quasi-analytic data K. Nishihara [21] proved global existence for a class of
initial data which strictly contains analytic functions. His assumptions are that
the equation is strictly hyperbolic, the nonlinearity is Lipschitz continuous, and

(u0, u1) ∈ Gϕ,r0,1/2(A)× Gϕ,r0,0(A),

where r0 > 0, and ϕ : [0,+∞) → [1,+∞) is an increasing function satisfying
suitable convexity and integrability conditions. He proves existence of a global
solution

u ∈ C1 ([0,+∞);Gϕ,r0,0(A)) ∩ C0
(
[0,+∞);Gϕ,r0,1/2(A)

)
.

We point out that, in contrast with our local existence results, this solution
lives in a Hilbert space, instead of a Hilbert scale.

The most celebrated example of function ϕ satisfying the assumptions is
ϕ(σ) = σ/ log σ, in which case one has global existence in a space which con-
tains non-analytic initial data. On the contrary, the function ϕ(σ) = σβ with
β < 1 never satisfies the assumptions. In other words, Nishihara’s spaces are
intermediate classes between Gevrey and analytic functions.

It would be interesting to compare Nishihara’s assumptions with∫ +∞

1

ϕ(σ)
σ2

dσ = +∞,

which is the usual definition of quasi-analytic classes.

Special nonlinearities In a completely different direction, S. I. Pohozaev [23]
considered the special case where m(σ) := (a+bσ)−2 for some a > 0 and b ∈ R.
He proved global existence for initial data (u0, u1) ∈ D(A)×D(A1/2) satisfying
the nondegeneracy condition a+ b|A1/2u0|2 > 0.

The main point is that in this case (and in a certain sense only in this case)
equation (1.1) admits the second order nonnegative invariant

P(t) :=
(
a+ b|A1/2u(t)|2

)
|A1/2u′(t)|2 +

|Au(t)|2

a+ b|A1/2u(t)|2
− b

4
〈Au(t), u′(t)〉2.

Exploiting that P(t) is constant, it is not difficult to obtain a uniform bound
on 〈Au(t), u′(t)〉2, from which global existence follows in a standard way.

Recently, some new results have been obtained along this path. The inter-
ested reader is referred to [27].
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Dispersive equations Global existence results have been obtained for the
concrete equation (1.3) in cases where dispersion plays a crucial role, namely
when Ω = R (see J. M. Greenberg and S. C. Hu [15]), Ω = Rn (see P. D’Ancona
and S. Spagnolo [10]), or Ω = exterior domain (see T. Yamazaki [26, 25] and
the references quoted therein).

The prototype of these results is global existence provided that the equation
is strictly hyperbolic, the nonlinearity is Lipschitz continuous, and initial data
have Sobolev regularity and satisfy suitable smallness assumptions and decay
conditions at infinity. We refer to the quoted literature for precise statements.

Spectral gap initial data More recently, R. Manfrin [20] (see also [19], [17])
proved global existence in a new class of nonregular initial data. In order
to describe the most astonishing aspect of his work, we need the following
definition.

Definition 4.1. Let M and F be two subsets of D(A1/2) ×H. We say that
M has the “Sum Property” in F if M⊆ F and M+M⊇ F .

In other words, for every (u0, u1) ∈ F there exist (u0, u1) ∈ M and
(û0, û1) ∈M such that u0 = u0 + û0, and u1 = u1 + û1.

Let us assume now that the equation is strictly hyperbolic, and the non-
linearity is of class C2. The main result of [20] is that there exists a subset
M⊆ D(A)×D(A1/2) such thatM has the “Sum Property” in D(A)×D(A1/2),
and problem (1.1), (1.2) admits a global solution for every (u0, u1) ∈M.

As a corollary, any initial condition (u0, u1) ∈ D(A) ×D(A1/2) is the sum
of two pairs of initial conditions for which the solution is global! Of course the
set M is not a vector space, but just a star-shaped subset (actually a cone).
We refer to the quoted papers for the definition of M.

Our global existence result In [12] we proved a result in the same spirit of
Manfrin’s one, but without assuming the strict hyperbolicity or the regularity
of the nonlinearity.

Let L denote the set of all sequences {ρn} of positive real numbers such
that ρn → +∞. Let ϕ : [0,+∞) → [1,+∞) be any function, and let α ≥ 0,
β ≥ 0. We can now define what we call generalized Gevrey-Manfrin spaces,
namely

GM(β)
ϕ,{ρn},α(A) :=

u ∈ H :
∑
λk>ρn

λ4α
k u2

k exp
(
ρβnϕ(λk)

)
≤ ρn ∀n ∈ N

 ,

(4.1)
and

GM(β)
ϕ,α(A) :=

⋃
{ρn}∈L

GM(β)
ϕ,{ρn},α(A). (4.2)
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Admittedly this definition has no immediate interpretation. Let us compare
(4.1) with (2.2) and (2.1). In the inequalities in (4.1) the weight ρn appears in
the right-hand side, and in the left-hand side in place of r. Moreover ρn appears
also in the summation, which is now restricted to eigenvalues λk > ρn. The
weight in the left-hand side is inside an exponential term, hence it dominates
on the weight in the right-hand side. It follows that the inequalities in (4.1)
are smallness assumptions on the “tails” of suitable series. More important,
the smallness is not required for all tails, but only for a subsequence.

It is easy to see that the space defined in (4.1) is actually a vector space,
while the space defined by (4.2) is a cone in Gϕ,∞,α(A), because its elements
may be defined starting from different sequences in L. This fact is crucial in
the proof of the “Sum Property” (see Proposition 3.2 in [12]).

Proposition 4.2 (Sum Property). For every ϕ : [0,+∞) → [1,+∞), α ≥ 0,
β > 0 we have that

GM(β)
ϕ,α+1/2(A)× GM(β)

ϕ,α(A)

has the “Sum Property” in

Gϕ,∞,α+1/2(A)× Gϕ,∞,α(A).

The proof of the “Sum Property” is based on the following idea. Let us
consider an increasing and divergent sequence sn of positive real numbers. Then
any u0 ∈ H can be written as the sum of u0 and û0, where u0 has the same
components of u0 with respect to eigenvectors corresponding to eigenvalues
belonging to intervals of the form [s2n, s2n+1), and components equal to 0 with
respect to the remaining eigenvectors, and vice versa for û0. If the sequence sn
grows fast enough, then it turns out that u0 and û0 lie in suitable generalized
Gevrey-Manfrin spaces corresponding to the sequences s2n and s2n+1. Note
that the spectrum of both u0 and û0 has a sequence of “big holes”, which
justify the term “spectral gap” initial data.

We are now ready to state our global existence result (see Theorem 3.1 and
Theorem 3.2 in [12]).

Theorem 4.3 (Global existence). Let H, A, ω, m, ϕ, Λ be as in Theorem 2.1.
Let {ρn} ∈ L, and let

(u0, u1) ∈ GM(β)
ϕ,{ρn},3/4(A)× GM(β)

ϕ,{ρn},1/4(A),

where β = 2 if the equation is strictly hyperbolic, and β = 3 if the equation is
weakly hyperbolic.

Then problem (1.1), (1.2) admits at least one global solution u with

u ∈ C1
(
[0,+∞);Gϕ,r,3/4(A)

)
∩ C0

(
[0,+∞);Gϕ,r,1/4(A)

)
for every r > 0.
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Combining Theorem 4.3 and Proposition 4.2 we obtain the following state-
ment: every pair of initial conditions satisfying (2.6) with r0 = ∞ is the sum
of two pairs of initial conditions for which the solution is global. We have thus
extended to the general case the astonishing aspect of Manfrin’s result.

The extra requirement that r0 = ∞ is hardly surprising. It is indeed a
necessary condition for existence of global solutions even in the theory of linear
equations with nonsmooth time-dependent coefficients.

We conclude by remarking that, in the concrete case, these spaces do not
contain any compactly supported function.

5. Open problems

The main open problem in the theory of Kirchhoff equations is for sure the
existence of global solutions in C∞. In the abstract setting it can be stated as
follows.

Open problem 1. Let us assume that equation (1.1) is strictly hyperbolic, that
m ∈ C∞(R), and (u0, u1) ∈ D(A∞)×D(A∞).

Does problem (1.1), (1.2) admit a global solution?

The same problem can be restated in all situations where a local solution
has been proved to exist (see Theorem 2.1). Up to now indeed we know no
example of local solution, with any regularity, which is not global.

Now we would like to mention some other open questions. The first one
concerns local (but of course also global) existence for initial data in D(A1/2)×
H, which is the natural energy space for a second order wave equation.

Open problem 2. Let us assume that equation (1.1) is strictly hyperbolic, that
m ∈ C∞(R), and (u0, u1) ∈ D(Aα+1/2)×D(Aα) for some α ∈ [0, 1/4).

Does problem (1.1), (1.2) admit a local solution? Of course in this case we
accept solutions

u ∈ C1([0, T0];H) ∩ C0([0, T0];D(A1/2)). (5.1)

Once again we know no counterexample, even with degenerate equations or
nonlinearities which are just continuous.

We stress that counterexamples are the missing element in all the theory.
We proved the optimality of our local existence results by showing examples of
solutions with derivative loss. These are actually counterexamples to propaga-
tion of regularity, but not counterexamples to existence. We can therefore ask
the following question.

Open problem 3. Do there exist a nonnegative continuous function m, and
initial data (u0, u1) ∈ D(A3/4)×D(A1/4), such that problem (1.1), (1.2) admits
no (local) solution u satisfying (2.13)?
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Do there exist a nonnegative continuous function m, and initial data (u0, u1) ∈
D(A1/2) ×H, such that problem (1.1), (1.2) admits no (local) solution u sat-
isfying (5.1)?

We conclude by mentioning three open questions related to uniqueness re-
sults. The first one concerns once again counterexamples. The motivation is
that we know no example where uniqueness fails apart from those given in [4].
So we ask whether different counterexamples can be provided.

Open problem 4. Let H, A, ω, m, ϕ, A, u0, u1 be as in Theorem 3.1, but
without assumption (3.2). Let us assume that problem (1.1), (1.2) admits two
local solutions.

Can one conclude that u0 and u1 are eigenvectors of A relative to the same
eigenvalue?

We stress that this problem is open even in the simple case H = R2, where
ω and ϕ play non role, and no regularity is required on initial data.

The second open problem concerns trajectory uniqueness, namely the key
step in the proof of our uniqueness result. One can indeed observe that, even
in the non-uniqueness examples of [4], all the different solutions describe (a
subset of) the same trajectory with a different pace. With our notations this
is equivalent to say that the solution of (3.5), (3.6) is unique. We ask whether
this property is true in general.

Open problem 5. Let H, A, ω, m, ϕ, A, u0, u1 be as in Theorem 3.1, but
without assumption (3.2). Let us consider system (3.5), with initial data (3.6).

Does this system admit at most one solution?

Note that in the case where 〈Au0, u1〉 = 0 it is by no means clear that
the system admits at least one solution, since this implicitly requires that
〈A1/2z(s), w(s)〉 6= 0 for every s ∈ (0, s0]. In any case the above question
doesn’t concern existence, but just uniqueness provided that a solution exists.

The last open problem concerns the regularity assumptions on initial data
and solutions required in the uniqueness result. Indeed in Theorem 3.1 we
proved that inequality (3.2) yields uniqueness provided that initial data sat-
isfy (3.1) and solutions satisfy (3.3). Similar assumptions are required in the
uniqueness result for Lipschitz continuous nonlinearities. On the other hand,
solutions of problem (1.1), (1.2) may exist also if (3.1) is not satisfied (this is
the case, for example, of our solutions with derivative loss). We ask whether
uniqueness results can be proved for these solutions.

Open problem 6. Is it possible to prove the known uniqueness results (namely
the Lipschitz case and our Theorem 3.1) with less regularity requirements on
initial data or for solution in the energy space?
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Just to give an extreme example, let us consider problem (1.1), (1.2) in the
strictly hyperbolic case, with an analytic nonlinearity m, and analytic initial
data. We know that there exists a unique solution in D(A3/4)×D(A1/4), which
is actually analytic. However, as far as we know, no one can exclude that there
exists a different solution in D(A1/2)×H with the same initial data!
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Università degli Studi di Pisa
Dipartimento di Matematica Applicata “Ulisse Dini”
Pisa, Italy
E-mail: m.gobbino@dma.unipi.it

Received December 21, 2009
Revised February 18, 2010


