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1. Introduction

Solitary waves associated with the Hartree type equation in external Coulomb
potential are solutions of type

ψs(t, x) = χ(x)e−iωt, x ∈ R3, t ∈ R,

where χ satisfies the equation

∆χ+ ωχ = e2
(
q(|χ|2)− Z

|x|

)
χ, x ∈ R3, (1)∫

R3
χ2 = N. (2)

Here e > 0 is the electron charge,

V (x) = −e
2Z

|x|
, (3)

is the external potential and Z > 0 is the charge of the (external) nucleus.
Here and below

q(f)(x) =
∫
R3

f(y)
|x− y|

dy. (4)
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The solution ψ satisfies the Hartree type equation

i∂tψ(t, x) = −∆ψ(t, x) (5)

+
(
e2
∫
R3

|ψ(t, y)|2

|x− y|
dy + V (x)

)
ψ(t, x), (t, x) ∈ R+ ×R3.

The existence of solitary type solutions to the Hartree equation (5) is a well–
studied problem (see [4], [5]). Similar models where the external potential is
replaced by self-interacting term of type |χ|p−1 are studied in [3].

The natural functional associated with this problem is (see [4])

E(χ) =
1
2
‖∇χ‖2L2 (6)

+
e2

4

∫
R3
q(|χ|2)(x)|χ(x)|2dx− e2Z

2

∫
R3

|χ(x)|2

|x|
dx.

The corresponding minimization problem is associated with the quantity

IN = inf{E(χ);χ ∈ H1, ‖χ‖2L2 = N}. (7)

Denote by ω1 < 0 the first eigenvalue of the operator

−∆− Ze2

|x|
.

Assuming
ω1 < ω ≤ 0 (8)

we have the following result due to Lions-Casenave.

Lemma 1.1. (Theorem III.1 in [4]) For any ω satisfying (8) there exists a
unique positive solution χ(x) = χω(x) ∈ H1 of the equation (1), such that

i) for ω = 0 the corresponding positive solution χ0(x) satisfies

∆χ0 = e2
(
q(|χ0|2)− Z

|x|

)
χ0, x ∈ R3, (9)

and
‖χ0‖2L2 > Z;

ii) we have
lim
ω→ω+

1

‖χω‖H1 = 0;

iii) the function ω ∈ (ω1, 0) → ‖χω‖L2 is a strictly increasing one and
belongs to C1(ω1, 0).
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Remark 1.2. The result of Theorem III.1 in [4] treats more general cases of
potentials of type

V (x) = −
K∑
j=1

Z

|x− xj |
,

while in our case we have
V (x) = − Z

|x|
.

Therefore the energy functional E(χ) is rotationally invariant in our case. This
fact combined with the uniqueness of the positive solution to (1) implies that
the solutions χω(x) are radially symmetric.

Remark 1.3. As we shall see in the next section (see also section 7 in [5]) the
solution χω(x) is rapidly decreasing in x as |x| → ∞.

In particular the property iii) of the above lemma guarantees that to given
Z > 0 one can find a unique χ∗ satisfying the properties

χ∗ is radial positive function and
∫
R3 |χ∗|2 = Z;

χ∗ = χ∗(|x|) is a minimizer of IZ ;
there exists a unique ω∗ ∈ (ω1, 0), such that
∆χ∗ + ω∗ χ∗ = e2

(
q(|χ∗|2)− Z

|x|

)
χ∗.

The asymptotic stability of solitary waves are studied in several works (see
for example [8]). The starting point is a standard linearization around the soli-
tary solution. Making a similar linearization of the Hartree equation (5) around
the solitary solution leads to the necessity to use some spectral properties of
the following operator

H0 = −4+ bQ(|χ∗|2), Q(f)(x) = q(f)(x)− Z

|x|
.

More precisely, we need the following two properties:

(H1)
{

0 is not an eigenvalue of −4+ bQ(|χ∗|2),
0 is not a resonance of −4+ bQ(|χ∗|2).

It is well known (see [6] for example) that zero resonances are the main
obstacle to have dispersive and Strichartz type estimate. Moreover, some re-
solvent estimates depend essentially on the existence of the resonance at zero.
Otherwise, we need smallness assumptions on the perturbation (see [7] for ex-
ample). There are no positive eigenvalues of −4 + bQ(|χ∗|2) due to [2] for
example. Somehow, this fact is not sufficient to assure that 0 is not an eigen-
value.

The main goal of this work is to show that the assumptions (H1) can be
verified the special case of Hartree type equation in external Coulomb potential.
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2. Solitary waves: qualitative properties

Decay properties of the radial solutions to (1) satisfying the regularity property

χ ∈ H1(R3), (10)

can be established after the substitution

U(r) = rχ(r), W(r) = −rq(|χ|2)(r). (11)

From the first equation in (1) we have

U′′(r) + ωU(r) = e2K(r), (12)

where
K(r) =

W
r

U− Z

r
U. (13)

The function W(r) satisfies

W′′(r) =
U2(r)
4πr

. (14)

Then we have the following statements.

Lemma 2.1. If the assumption (10) is satisfied, then

U ∈ Hk((1,+∞)), W ′ ∈ Hk−1((1,+∞)), (15)

and
k∑
j=0

|U(j)(r)| ≤ C

rN
,

k∑
j=1

|W(j)(r)| ≤ C

rN
(16)

for each integers k ≥ 2, N ≥ 2, and for any real r ≥ 1.

Proof. The Sobolev embedding implies that∫ +∞

0

|U(r)|2dr +
∫ +∞

0

|U ′(r)|2dr ≤ C‖χ‖2H1(R3),∫ +∞

0

|W ′(r)|2dr ≤ C‖q(|χ|2)‖2
Ḣ1(R3)

≤ C‖χ‖4H1(R3). (17)

Note that we have used the Hardy inequality∫ +∞

0

|f(r)|2dr ≤ C
∫ +∞

0

|f ′(r)|2 r2dr (18)
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in the above estimates. The inequality

‖q(|χ|2)‖Ḣ1(R3) ≤ C‖χ‖
2
H1(R3)

follows from the relations

‖q(f)‖Ḣ1(R3) = c‖| · |−2 ∗ f‖L2(R3),

the Young inequality

‖| · |−2 ∗ f‖L2(R3) ≤ C‖f‖L6/5(R3)

and the Sobolev inequality

‖|χ|2‖L6/5(R3) ≤ C‖χ‖2H1(R3).

Hence,
U ∈ H1((0,+∞)), W ′ ∈ L2((0,+∞)).

Proceeding further inductively we find (15).
The above properties and the Sobolev embedding imply

lim
r→+∞

|U(r)| = 0, lim
r→+∞

|U ′(r)| = 0. (19)

In a similar way we get
lim

r→+∞
|W ′(r)| = 0. (20)

We can improve the last property. Indeed, integrating (14) we find

W′(r) =
∫ ∞
r

U2(τ)
τ

dτ. (21)

Since ∫ ∞
r

U2(τ)dτ ≤ C, (22)

we get

0 ≤W′(r) ≤ C

r
. (23)

Our next step is to obtain weighted Sobolev estimates. Since the initial
data for U are

U(0) = 0, U′(0) = a1, (24)

we have the following integral equation satisfied by U

U(r) = sinh(
√
−ω r)

a1√
−ω

+ e2
∫ r

0

sinh(
√
−ω (r − ρ))K(ρ)dρ. (25)
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It is easy to see that the function K satisfies the estimate

K(r) = O(r−1), r ≥ 1, (26)

due to (13). Then the condition (19) and a simple qualitative study of the
integral equation in (25) guarantee that

a1√
−ω

+ e2
∫ ∞

0

e
√
−ωρK(ρ)dρ = 0.

This fact enables one to represent U as follows:

U(r) = e−
√
−ωrb1 (27)

−e2
∫ ∞
r

e
√
−ω(r−ρ)K(ρ)dρ− e2

∫ r

0

e−
√
−ω(r−ρ)K(ρ)dρ.

The first term in the right side of (27) is exponentially decaying. The second
term we can represent as the following sum∫ 2r

r

e
√
−ω(r−ρ)K(ρ)dρ+

∫ ∞
2r

e
√
−ω(r−ρ)K(ρ)dρ.

It is clear that ∫ ∞
2r

e
√
−ω(r−ρ)K(ρ)dρ

is decaying exponentially, while∫ 2r

r

e
√
−ω(r−ρ)K(ρ)dρ ≤ C

r

∫ 2r

r

e
√
−ω(r−ρ)dρ =

C1

r

due to (26). In a similar way we can treat the last term∫ r

0

e−
√
−ω(r−ρ)K(ρ)dρ

in (27). This term now is a sum of type∫ r/2

0

e−
√
−ω(r−ρ)K(ρ)dρ+

∫ r

r/2

e−
√
−ω(r−ρ)K(ρ)dρ.

The term ∫ r/2

0

e−
√
−ω(r−ρ)K(ρ)dρ

decays exponentially in r and the property (27) implies that∫ r

r/2

e−
√
−ω(r−ρ)K(ρ)dρ = O(r−1).
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The above observation and (27) imply that

U = O(r−1)

and

K(r) = c

(
W
r

U− Z

r
U
)

= O(r−2).

This estimate implies a stronger version of (22)∫ ∞
r

U2(τ)dτ ≤ C

r
, (28)

and from (21) we improve (23) as follows:

0 ≤W′(r) ≤ C

r2
. (29)

This argument shows that combining (23) and (13) we can obtain inductively

k∑
j=0

|U(j)(r)| ≤ C

rN
(30)

and
k∑
j=1

|W(j)(r)| ≤ C

rN
(31)

for any integers k ≥ 1 and N ≥ 2. 2

3. The case of half line: 0 is not an eigenvalue.

Consider the operator

P (u)(r) = u′′(r) +W (r)u(r), r ∈ (0,∞). (32)

We shall assume that W (r) = W1(r) +W2(r), where

W1(r) = −α(α+ 1)
r2

, α ≥ 0, (33)

while W2(r) is a C1(0,∞) positive strictly decreasing function satisfying the
estimates {

|W2(r)| < C/r, for 0 < r < 1;
|W2(r)| < C/ra, for r > 1 and some a > 2α+ 3. (34)
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Definition 3.1. A real number λ is called an eigenvalue of P if there exists
u ∈ H1(0,∞) such that u(0) = 0, u(r) is not identically zero and P (u) = λu
in the distributional sense in (0,∞).

The first step is to obtain an asymptotic expansion of the solution.

Lemma 3.2. Assume a > 2α+ 3 in the assumption (34). If 0 is an eigenvalue
of P and Pu = 0 in the sense of Definition 3.1, then one can find a real number
C1 so that

u(r) =
C1

rα
+O

(
r−a+α+3

)
(35)

and
u′(r) = − C1α

rα+1
+O

(
r−a+α+2

)
(36)

as r > 1 tends to infinity.

Proof. One can rewrite the equation Pu = 0 as[
r−α

(
u′(r) +

α

r
u(r)

)]′
+ r−αW2(r)u(r) = 0. (37)

Note that the assumption W2(r) ∈ C1(0,∞) combined with the equation Pu =
0 imply that u ∈ C2(R1, R2) for any 0 < R1 < R2. Integrating (37) in the
interval (R1, R2), we find∣∣R−2α

2 (Rα2 u(R2))′ −R−2α
1 (Rα1 u(R1))′

∣∣ (38)

=

∣∣∣∣∣
∫ R2

R1

τ−αW2(τ)u(τ) dτ

∣∣∣∣∣ ,
so using the assumption (34) together with the fact that u is bounded and
taking R1 > 1, we find∣∣∣∣∣

∫ R2

R1

τ−αW2(τ)u(τ) dτ

∣∣∣∣∣ ≤ CR−a+2
1 .

In this way we conclude that the limit exists

∃ C0 ≡ lim
r→∞

r−2α (rαu(r))′ (39)

and we have the expansion

(rαu(r))′ = C0r
2α +O

(
r−a+2α+2

)
. (40)

Consider the function

g(r) = rαu(r)− C0
r2α+1

2α+ 1
.
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Then (40) implies that g′(r) = O(r−a+2α+2) ∈ L1(1,∞), since a > 2α+ 3 and
we see that g(r) has a limit (say C1) as r goes to ∞ and

g(r) = C1 −
∫ ∞
r

g′(τ)dτ = C1 +O(r−a+2α+3).

Then we obtain

u(r) = C0
rα+1

2α+ 1
+
C1

rα
+O

(
r−a+α+3

)
(41)

and

u′(r) = C0
(α+ 1)rα

2α+ 1
− C1α

rα+1
+O

(
r−a+α+2

)
(42)

as r > 1 tends to infinity.
Comparing these asymptotic developments with the fact that u is bounded,

we see that C0 = 0 and this completes the proof of the lemma.
The next step is to show that 0 is not an eigenvalue.

Lemma 3.3. Suppose a > 3α + 4 in the assumption (34). Then 0 is not an
eigenvalue of P.

Proof. Suppose that there exists a real valued function u(r) ∈ H1(0,∞),
so that P (u) = 0. Our goal shall be to show that u is identically zero. The
Sobolev embedding on (0,∞) implies that u(r) ∈ C([0,∞)). Then the equation
Pu = 0 guarantees that u ∈ H2(R,∞) ⊂ C1([R,∞)) for any R > 0. To analyze
the behavior of the solution at infinity, we integrate the equation Pu = 0 in
the interval (R,R1) and find

|u′(R)− u′(R1)| ≤

(∫ R1

R

W (r)2dr

)1/2

‖u‖L2 ≤ C

R3/2
.

The assumption u ∈ H1(0,∞) easily yields

|u′(R)| ≤ C

R3/2
, |u(R)| ≤ C

R1/2
. (43)

From the asymptotic expansion obtained in the previous lemma we have
also ∣∣∣u′(R) +

α

R
u(R)

∣∣∣ ≤ C

R−a+α+3
. (44)

Make the change of variables

r → s =
1
r
, u(r)→ v(s) = su(1/s). (45)



60 V. GEORGIEV, J. A. MAURO AND G. VENKOV

If u ∈ C1([R,∞)), then v ∈ C1([0, 1/R]) and the inequalities (43) imply

|v′(s)| ≤ Cs1/2, |v(s)| ≤ Cs3/2. (46)

We have also ∣∣∣∣v′(s)− (α+ 1)v(s)
s

∣∣∣∣ ≤ Csa−α−3.

Hence,
v(0) = 0, v′(0) = 0. (47)

Note that

|v(s)|2s−2(α+1) = 2
∫ s

0

τ−2(α+1)

(
v′(τ)− (α+ 1)v(τ)

τ

)
v(τ)dτ = O(sa−3α−3)

due to the assumption a > 3α+ 4. Hence,

|v(s)|2 ≤ Csa−2α−1, |v′(s)|2 ≤ Csa−2α−2. (48)

The equation for v is the following one:

v′′(s) +W ∗(s)v(s) = 0, (49)

where here and below

W ∗(s) =
W (1/s)
s4

. (50)

The assumption W (r) = W1(r) +W2(r), W1(r) = −α(α+ 1)/r2 shows that

W ∗(s) = W ∗1 (s) +W ∗2 (s), W ∗1 (s) = −α(α+ 1)
s2

.

One can rewrite (49) as follows:(
v′(s) +

α

s
v
)′
− α

s

(
v′(s) +

α

s
v
)

+W ∗2 (s)v(s) = 0. (51)

Recall that v(s) is a real-valued function. Multiplying this equation by s−2α(v′+
αv/s), one can use the relation(

f ′(s)− α

s
f(s)

)
s−2αf(s) =

1
2
(
s−2αf2(s)

)′
with f(s) = (v′ + αv(s)/s); so setting

Y (s) = sup
0≤τ≤s

1
2
τ−2α

(
v′(τ) +

α

τ
v(τ)

)2
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and integrate from 0 to s. Using the estimates (48), we obtain Y (0) = 0, and

Y (s) ≤
∫ s

0

W ∗2 (τ)v(τ)Y 1/2(τ)dτ. (52)

Note also that v(s) is real-valued function and we have the inequalities

|v(s)|2 = 2
∫ s

0

v′(τ)v(τ)dτ = 2
∫ s

0

(
v′(τ) +

α

τ
v(τ)

)
v(τ)dτ

−2(α)
∫ s

0

v(τ)2

τ
dτ ≤ 4sα

∫ s

0

√
Y (τ)|v(τ)|dτ

These inequalities easily imply

|v(s)|2 ≤ C s2+2α Y (s). (53)

Turning back to the estimate (52) we get the inequality

Y (s) ≤ C
∫ s

0

W ∗2 (τ)Y (τ)dτ. (54)

The assumption (34) shows that

|W ∗2 (s)| = s−4|W2(s−1)| ≤ Csa−4

and integrability of this function on any interval 0 < s < R is guaranteed by
the fact that a > 3.

An application of the Gronwall inequality shows that Y (s) ≡ 0, so from
(53) we deduce v ≡ 0. This completes the proof of the lemma.

4. The case of half line: asymptotic expansions of
resonance solution.

Our next step is to see if 0 is a resonance.

Definition 4.1. A real number λ is called resonance of

P =
(
d

dr

)2

+W (r)

if there exists u ∈ C([0,∞)), such that u(0) = 0, u(r) is not identically zero,
P (u) = λu in the distributional sense in (0,∞) and the solution u satisfies the
inequality

|u(r)| ≤ C rβ , r ≥ 1 (55)

with some 0 ≤ β < 1.
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Lemma 4.2. Assume a > 2α+ 3 in the assumption (34). If 0 is a resonance of
P and Pu = 0 in the sense of Definition 4.1, then one can find a real number
C1 so that

u(r) =
C1

rα
+O

(
r−a+α+3

)
(56)

and
u′(r) = − C1α

rα+1
+O

(
r−a+α+2

)
(57)

as r > 1 tends to infinity.

Proof. One can rewrite the equation Pu = 0 as[
r−α

(
u′(r) +

α

r
u(r)

)]′
+ r−αW2(r)u(r) = 0. (58)

Note that the assumption W2(r) ∈ C1(0,∞) combined with the equation Pu =
0 imply that u ∈ C2(R1, R2) for any 0 < R1 < R2. Integrating (58) in the
interval (R1, R2), we find∣∣R−2α

2 (Rα2 u(R2))′ −R−2α
1 (Rα1 u(R1))′

∣∣ (59)

=

∣∣∣∣∣
∫ R2

R1

τ−αW2(τ)u(τ) dτ

∣∣∣∣∣ ,
so using the assumption (34) together with (4.2) and taking R1 > 1 we find∣∣∣∣∣

∫ R2

R1

τ−αW2(τ)u(τ) dτ

∣∣∣∣∣ ≤ CR−a+2
1 .

In this way we conclude that the limit exists

∃ C0 ≡ lim
r→∞

r−2α (rαu(r))′ (60)

and we have the expansion

(rαu(r))′ = C0r
2α +O

(
r−a+2α+2

)
. (61)

Consider the function

g(r) = rαu(r)− C0
r2α+1

2α+ 1
.

Then (61) implies that g′(r) = O(r−a+2α+2) ∈ L1(1,∞), since a > 2α+ 3 and
we see that g(r) has a limit (say C1) as r goes to ∞ and

g(r) = C1 −
∫ ∞
r

g′(τ)dτ = C1 +O(r−a+2α+3).
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Then we obtain

u(r) = C0
rα+1

2α+ 1
+
C1

rα
+O

(
r−a+α+3

)
(62)

and

u′(r) = C0
(α+ 1)rα

2α+ 1
− C1α

rα+1
+O

(
r−a+α+2

)
(63)

as r > 1 tends to infinity.
Comparing these asymptotic developments with the assumption (55) we see

that C0 = 0 and this completes the proof of the lemma.

Lemma 4.3. Assume a > 2α + 3 in the assumption (34) and α > 1/2, then 0
is not a resonance of P in the sense of Definition 4.1.

Proof. The assertion is trivial, since the asymptotic expansions (56) and
(57) with α > 1/2 guarantee that the solution u of Pu = 0 belongs to H1 and
the Lemma 3.3 implies u = 0.

More interesting case is α = 0. Then we have the following eigenvalue
problem

u′′(r) +W2(r)u = µ2u, µ ≥ 0, r > 0, (64)

satisfying the boundary condition

u(0) = 0. (65)

For the case α = 0 we shall assume that

W2(r) =
∫ ∞
r

(
1
r
− 1
s

)
φ(s)ds, (66)

where φ(s) is a smooth exponentially decaying positive function, such that∫ ∞
0

φ(s)ds = 1. (67)

One can use Lemma 4.1 in [1] to verify that (66) is indeed satisfied for the
Hartree model studied here.

Lemma 4.4. Assume a > 3 in the assumption (34), α = 0 and W2(r) is defined
by (66). Then 0 is not a resonance of P in the sense of Definition 4.1.

Proof. We shall need the asymptotic expansions (62) and (63). Take any
smooth function g(r) on (0,∞) such that g(r) has at most polynomial growth
at infinity, is integrable near 0 and define G(r) =

∫ r
0
g(τ)dτ. Multiplying the

equation
P (u) ≡ u′′(r) +W2(r)u = 0
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by u′ and integrating over s ∈ (r,∞) and then multiplying again by the weight
function g(r) and integrating over r ∈ (0,∞), we find∫ ∞

0

g(r)|u′(r)|2

2
dr +

∫ ∞
0

g(r)W2(r)|u(r)|2

2
dr (68)

+
∫ ∞

0

G(r)W ′2(r)|u(r)|2

2
dr = 0.

Taking a smooth function h(r) on (0,∞) such that h(r) has at most poly-
nomial growth at infinity, is integrable near 0, h′′(r) is integrable over (1,∞),
we multiply the equation Pu = 0 by hu and integrate over (0,∞), so we get∫ ∞

0

h′′(r)|u(r)|2

2
dr −

∫ ∞
0

h(r)|u′(r)|2 dr (69)

+
∫ ∞

0

h(r)W2(r)|u(r)|2 dr = 0.

Choosing h = g/2 and summing the above two relations we obtain (modulo
factor 1/2) ∫ ∞

0

(2g(r)W2(r) +G(r)W ′2(r)) |u(r)|2 dr (70)

+
∫ ∞

0

g′′(r)|u(r)|2

2
dr = 0.

In the case g(r) = rN−1 for r < N3/3, where N > 2 is a large parameter, we
have G(r) = rN/N for r < N3/3, so we can rewrite (70) as∫ N3/3

0

(∫ ∞
r

(
(N − 2)(N − 1)

2r
− 1
N

+ 2− 2
r

s

)
φ(s)ds

)
rN−2|u(r)|2 dr

+O(N−M ) = 0, (71)

where M > 2 can be chosen arbitrary. Note that(
(N − 2)(N − 1)

2r
− 1
N

+ 2− 2
r

s

)
≥ C

N
, r < N3/3, s ≥ r.

So the integral in the left side of (71) can be estimated from below by

C

N

∫ 1

0

∫ ∞
1

φ(s)dsrN−3|u(r)|2 dr ≥ C1

N

∫ 1

0

∫ ∞
1

φ(s)dsrN−1dr ≥ C2

N2
,

where C,C1, C2 are positive constants independent of N. Comparing with (71)
we arrive at a contradiction.
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