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1. Introduction

In this survey we are interested in the Modal µ-Calculus. This formalism,
introduced by Kozen in [42], is a powerful logic widely used in the area of spec-
ification and verification of computer systems, be they hardware or software. It
lies at the basis of the powerful technique called model checking, see [22]. The
importance of model checking in computer system verification is witnessed by
the Turing Award given in 2007 to its main authors: E. Clarke, E. A. Emerson
and J. Sifakis.

The Modal µ-calculus is obtained from modal logic by adding two operators
µ and ν for the least and greatest fixpoints of monotone operators on sets.

We mention that a general theory of µ-calculi (not necessarily related to
modal logic) is developed in [4].

Via Kripke semantics, the modal µ-calculus can be used to express proper-
ties of graphs. Intuitively, least fixpoints correspond to inductive definitions,
and greatest fixpoints correspond to coinductive definitions. For instance, with
least fixpoints one can express global liveness properties of a graph like “prop-
erty P is true in some reachable point”, and with greatest fixpoints one ex-
presses global safety properties of the kind “P is true in all reachable points”.
These properties are not modally expressible (at least on arbitrary graphs) due
to the local character of modal logic. Next, fixpoints can be nested, and by
one nesting of least and greatest fixpoints we capture fairness properties like
“P holds infinitely often”. Finally, with several nestings, one can express the
existence of a winning strategy in a parity game.

Fixpoint alternation is also related to what is arguably the most important
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open problem in the µ-calculus: the model checking problem. This problem has
a solution in polynomial time for formulas with bounded fixpoint alternation
depth. A general polynomial time algorithm is still out of reach. A substantial
part of the ongoing research on the µ-calculus is related to this problem.

Another major theme is the expressiveness of µ-calculus and its fragments
over various classes of graphs. It turns out that, on arbitrary graphs, the
number of nestings between different fixpoints gives a strict infinite hierarchy.
The situation may change if one considers special subclasses of graphs. A
first, fundamental example is the class of transitive wellfounded graphs (aka
the Gödel-Löb class or GL). From the celebrated de Jongh–Sambin Fixpoint
Theorem, it follows that the µ-calculus in GL collapses to modal logic. That
is, fixpoints in GL give no contribution to the expressiveness of µ-calculus.

The GL example shows that µ-calculus in subclasses of frames can be quite
different from arbitrary frames. As we will see in this survey, many recent
results on µ-calculus are focused on subclasses of frames.

Like all surveys, this one is not exhaustive. In particular, the choice of
the material presented here depends on the personal taste of the author. Two
predecessors of this survey are [19] and [20]. Here we concentrate (though not
exclusively) on results of the last ten years approximately. In order to make
the survey more accessible to non-experts, some more standard material is
also added.

The author thanks the referees for their careful reading and their
suggestions.

2. Preliminaries

2.1. Syntax

The formulas of Modal µ-Calculus are generated by the following grammar:

φ ::= P | ¬P | X | φ ∧ φ′ | φ ∨ φ′ | 2φ | 3φ | µX.φ | νX.φ,

where P ranges over an infinite set At of atoms and X ranges over an infinite
set V ar of variables. So, ¬ is negation (applied only to atoms for convenience),
∧ and ∨ are conjunction and disjunction, 2 and 3 are the universal and exis-
tential modal operators, µ is the least fixpoint operator, and ν is the greatest
fixpoint operator.

Sometimes, especially in applications, it is useful to have several modal
operators, corresponding to several relations in Kripke semantics. In this case,
for each relation R there are a box operator 2Rφ and a diamond operator 3Rφ.

Scopes of fixpoint variables, free and bound variables, etc. can be defined
in the µ-calculus in analogy with variables of first order logic. Note that the
formulas of the µ-calculus are not closed under negation. However, formulas
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without free variables can be negated by swapping P and ¬P , ∧ and ∨, 2 and
3, µ and ν.

Formulas of µ-calculus are closed under composition (also called replace-
ment or substitution). If P is an atom and φ(P ) is a formula containing P , we
can replace P in φ with ψ as long as there is no capture, that is, no P occurs
in the scope of a fixpoint operator µX or νX such that X is free in ψ. The
result of the replacement is a formula of the µ-calculus denoted by φ(ψ).

2.2. Semantics

The semantics of Modal µ-Calculus is an extension of Kripke semantics for
modal logic. We start with Kripke models M = (V,R, ‖P‖), where V is a set
of vertices, R is a relation on V , and ‖P‖ ⊆ V for every P ∈ At ∪ V ar. The
structure G = (V,R) is a graph, namely the underlying graph of the model M .

The semantics of a formula φ in a model M is a subset of V denoted by
‖φ‖M , or ‖φ‖ if no confusion is possible. For the boolean operators we let
‖¬P‖ = V \ ‖P‖, ‖φ ∧ ψ‖ = ‖φ‖ ∩ ‖ψ‖, and ‖φ ∨ ψ‖ = ‖φ‖ ∪ ‖ψ‖.

For the modal operators, ‖3φ‖ is the set of all points which have some
successor in ‖φ‖, and ‖2φ‖ is the set of all points which have every succes-
sor in ‖φ‖.

Finally, the set ‖µX.φ(X)‖ is the least solution of the equation E = ‖φ(E)‖,
where ‖φ(E)‖ is the semantics of φ in the model M modified so that ‖X‖ = E.
The set ‖νX.φ(X)‖ is the greatest solution of the equation above.

If v is a vertex, we write also M, v |= φ if v ∈ ‖φ‖M .

2.3. Examples

If P is an atom, the formula µX.P∨3X expresses the fact that a point verifying
property P is reachable. In fact, the set X of the points from where a P point
is reachable verifies the equation X = P ∨3X and is the least solution of the
equation. It may be convenient to call this formula LIV ENESS(P ).

Dually, the formula νX.P ∧ 2X says that every reachable point verifies
P . In fact, the set X of the points whose descendants satisfy P verifies the
equation X = P ∧ 2X and is the greatest solution. It may be convenient to
call this formula SAFETY (P ).

Also relevant for system verification is the formula µX.2X, which says that
the model has no infinite path. We call this formula TERMINATION .

To see nested fixpoints in action, consider the formula

νX.µY.(P ∧3X) ∨3Y.

Note that we can rewrite the formula as νX.LIV ENESS(P ∧3X).
This formula says that there is an infinite path where P occurs infinitely

often. In fact, the set X of the points which see such a path verifies
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X = LIV ENESS(P ∧ 3X) and is the greatest solution. We call the for-
mula FAIRNESS(P ).

2.4. The syntactical fixpoint hierarchy

Fixpoint alternation depth is a measure of complexity of a formula. The levels
of the alternation depth hierarchy Σn,Πn are usually so defined to be closed
under composition. Formally, one defines Σ0 = Π0 the set of all formulas with-
out fixpoints. Then, the set Σn+1 is the closure of Σn ∪Πn under composition
and µ; and dually, Πn+1 is the closure of Σn ∪Πn under composition and ν.

For instance, the formulas LIV ENESS(P ) and TERMINATION are
of level Σ1, the formula SAFETY (P ) is of level Π1, and the formula
FAIRNESS(P ) is of level Π2.

Finally, ∆n denotes the set Σn ∩Πn. So, the fact that a property is ∆n on
a class of graphs means that it is both Σn and Πn on that class.

The alternation depth of a formula φ is the smallest n such that φ ∈
∆n+1. This ensures that compositions of Σn and Πn have alternation
depth (at most) n.

2.5. Bisimulation

Recall that a bisimulation between two Kripke models M,N is a relation B ⊆
V (M)× V (N) such that, whenever vBw holds, we have:

• v |= P if and only if w |= P for every P ∈ At;

• if vRv′ there is w′ with wRw′ and v′Bw′;

• symmetrically, if wRw′ there is v′ with vRv′ and v′Bw′.

Two models with distinguished vertices (M, v) and (N,w) are called bisimilar
if there is a bisimulation B between M and N such that vBw.

Bisimulation can be also restricted to a set S of atoms: bisimulation with
respect to S is defined like bisimulation, but it is enough that v |= P if and
only if w |= P happens for every P ∈ S.

2.6. Parity Games

Parity games are played on countable graphs, vertex-labeled with an alphabet
of the form {E,O} × {1, . . . , n}. The players are called Even and Odd. The
game begins on an initial vertex v0. On E positions, Even moves, and on O

positions, Odd moves. If either player cannot move, the other wins. In the case
of an infinite play, Even wins if and only if the least index occurring infinitely
often is even. Otherwise, Odd wins.
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A strategy S of a player Pl is a function from finite sequences of vertices
v0, v1, . . . , vk, where vk is a Pl-vertex, to a successor of vk. A strategy S is
winning if Pl wins all the plays that are induced by the strategy S.

Since parity games are particular forms of Borel games in the sense of de-
scriptive set theory, from Martin’s Borel Determinacy Theorem [49] it follows
that parity games are determined: there is always a player who has a winning
strategy in the game. Actually we have the following strong form of determi-
nacy (positional determinacy, see [27]): If a player Pl has a winning strategy
in a parity game, then Pl has a positional winning strategy: that is, a winning
strategy S such that S(v0, v1, . . . , vk) depends only on vk. Note that in general,
unlike parity games, Borel games are not positionally determined on all graphs.

Parity games are tightly related with the alternation depth hierarchy. If φ
is a formula of level Σn, then the fact that M, v |= φ can be expressed by a
parity game with n indices on a suitable graph. Conversely, the fact that Even
has a winning strategy in a parity game with n indices can be expressed by a
formula Wn, due to Walukiewicz, of level Σn. Namely:

Wn = µX1.νX2 . . . θXn.
(
E → 3

∧

i

(i→ Xi)
)
∧
(
O → 2

∧

i

(i→ Xi)
)
,

where θ = µ if n is odd and θ = ν if n is even, and where i ranges from 1 to n.

2.7. Parity automata

For surveys on automata see [67] and [51]. Tree automata were introduced
in [59] as a “dynamic” counterpart of monadic second order logic over trees.
Several equivalent variants of tree automata can be given, where the most
important feature to choose is the acceptance condition. If we choose the
parity acceptance condition, we obtain parity automata. We give a definition
of them.

A parity automaton is a tuple A = (Q,Λ, δ, q0,Ω) where:

• Q is a finite set of states;

• Λ is a finite alphabet;

• q0 ∈ Q is the initial state;

• Ω : Q→ ω is the priority function;

• δ : Q × Λ → Mod(Q), where Mod(Q) is the set of all positive boolean
combinations of 2q and 3q, where q belongs to Q.

A semantic game (analogous to parity games) can be defined from an au-
tomaton A and a countable, pointed graph (G, v0) equipped with a function
color : V → Λ.



240 GIACOMO LENZI

The players are called Duplicator and Spoiler. Positions of the game are,
alternately, elements of Q × V and subsets of Q × V . Intuitively, Duplicator
wants to build a sequence of states with infinitely many small even priorities,
and Spoiler tries to build a sequence with infinitely many small odd priorities.

The initial position is (q0, v0). On a position (q, v), Duplicator chooses a
“marking” relation m ⊆ Q×succ(v) with the following “correctness” property.
Say that a successor w of v verifies a state q′ in m if (w, q′) belongs to m (and
for completeness, assign no state to v unless v is a successor of itself). This
makes the graph {v}∪ succ(v) a Kripke structure K. We say that m is correct
if this structure K verifies the modal formula δ(q, color(v)).

Once Duplicator has chosen a correct markingm, Spoiler moves by choosing
a pair (q′, v′) ∈ m, which becomes the current position, and so on.

If ever some player has no moves, the other wins. Otherwise, we have an
infinite sequence of pairs (q, v), and Duplicator wins if the least priority met
infinitely often in the sequence is even; otherwise, Spoiler wins.

Since parity automata can be encoded as parity games, they enjoy positional
determinacy. This is a good reason to choose parity automata rather than
other, expressively equivalent kinds of automata.

µ-calculus and parity automata have the same expressive power. This allows
one to reduce the satisfiability problem for the µ-calculus to the emptiness
problem for tree automata, which is decidable, see e.g. [59]. This idea gives
decision algorithms for the µ-calculus, among which an optimal one (running
in exponential time) is in [27].

2.8. Particular Automata

We have seen that parity automata correspond to µ-calculus formulas. Some
kinds of more restricted automata correspond to subclasses of µ-calculus for-
mulas. Here are some examples.

A Büchi automaton is a parity automaton where Ω : Q → {0, 1}. In this
case, Duplicator wins an infinite play if and only if the play meets zero states
infinitely often. In the fixpoint hierarchy of the µ-calculus, Büchi automata
correspond to the level Π2.

Dually, a coBüchi automaton is a parity automaton where Ω : Q → {1, 2}.
This time, Duplicator wins an infinite play if and only if the play meets states of
priority 2 always except for a finite number of times. In the fixpoint hierarchy
of the µ-calculus, coBüchi automata correspond to the level Σ2.

A parity automaton is called weak if for every (q, λ) ∈ Q × Λ and every
state q′ occurring in δ(q, λ), we have Ω(q′) ≤ Ω(q). So, along every transition,
the priority does not increase. This implies that in every infinite play, the
priority is eventually constant, and Duplicator wins if and only if this eventual
priority is even. In the µ-calculus, weak automata correspond to compositions
of formulas of level Σ1 and Π1.
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2.9. Tree Width

An important recent approach to computational complexity is fixed parameter
complexity, which consists in studying classes of structures where a certain
parameter is bounded, and trying to prove that intractable problems (e.g. NP-
hard ones) become feasible when the parameter is bounded. Fixed parameter
complexity works in the µ-calculus as well. A useful parameter for us (and for
many other situations) is tree width of graphs, as we will see.

Intuitively, the tree width of a graph measures how far the graph is from
being a tree. Intuitively, being close to a tree is a virtue, because many graph
theoretic problems become much easier when restricted to trees. As a matter of
fact, this analogy with trees does work, and many difficult graph problems be-
come solvable in polynomial time on graphs with bounded tree width, see [12].

Moreover, tree width is useful in software verification because, as argued
in [52], programs in many programming languages have control flow diagrams
with low tree width (as long as no goto command or similar is used).

Formally, a tree decomposition of a finite graph G is a pair (X , T ), where
X = {X1, . . . , Xn} is a family of subsets of V , and T is an undirected tree
whose nodes are the subsets Xi, satisfying the following properties:

• The union of X is V ;

• for every edge (v, w) in G, there is Xi containing both v and w;

• if Xi and Xj both contain a vertex v, then all nodes Xz of the tree in the
(unique) path between Xi and Xj contain v as well.

The width of a tree decomposition is the size of its largest node minus one.
The tree width of a graph G is the minimum width among all possible tree
decompositions of G.

For instance, trees have tree width 1, cycles of length 3 or more have tree
width 2, and cliques with n vertices have tree width n− 1.

3. Complexity of µ-Calculus Formulas

3.1. The Semantical Fixpoint Hierarchy

It turns out that, on arbitrary graphs, the number of nestings between different
fixpoints gives a strict infinite hierarchy, see [45], [14] and [3].

We note that the argument of [45] is purely syntactical and proves the
infinity of the hierarchy only for the µ-calculus without negation. [14] builds
upon a hierarchy theorem of [48] on fixpoint arithmetic. The proof has then
been simplified in [15]. [16] and [17] expand on the relations between modal
µ-calculus, fixpoint arithmetic and descriptive set theory.
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The relation between µ-calculus and parity games is the key to the hierarchy
result of [3]. In that paper, first it is shown that for every formula F of class
Σn there is a contraction GF on the complete metric space of all infinite binary
trees, such that T |= F if and only if GF (T ) |=Wn.

Now suppose that ¬Wn is equivalent to a formula F of class Σn, and consider
the fixpoint TF of the contraction GF . Then, TF |= F if and only if GF (TF ) |=
Wn, hence TF |= ¬Wn if and only if TF |=Wn, a contradiction. Therefore, Wn

is not Πn for every n, and the hierarchy is infinite.
The paper [3] settles the infinity of the hierarchy on arbitrary graphs. From

this one derives also the infinity of the hierarchy on finite graphs, because the
µ-Calculus has the finite model property: every formula which is true in some
graph is true in some finite graph, see [65].

Another point concerning the fixpoint hierarchy is the status of the inter-
mediate classes ∆n, also called ambiguous classes. In particular the question is
whether ∆n coincides with compositions of formulas of class Σn−1 and Πn−1.
Clearly every such composition belongs to ∆n (in any class of graphs). For
the converse, [43] shows, with a topological argument, that every ∆1 property
is expressible in modal logic (i.e. in the µ-calculus without fixpoints), and
[44] shows that ∆2 coincides with compositions of Π1 and Σ1 formulas. This
fragment of the µ-calculus is sometimes called the alternation-free fragment.
Then, somewhat unexpectedly, [5] shows that for n > 2, ∆n and compositions
of Σn−1 and Πn−1 differ. The argument is similar to the contraction argument
of [3].

3.2. The Hierarchy in some Subclasses

For proper subclasses of graphs, in general, the contraction argument of [3]
simply does not go through, and the semantical fixpoint hierarchy may collapse
or not. Here are some examples.

In [2], the class GL (see the introduction) is considered. Probably this is one
of the most studied subclasses of graphs, from the Seventies on, in view of its
relation with Gödel theorems and the logic of provability in Peano Arithmetic.
The authors of [2] reprove the classical De Jongh-Sambin Theorem, which states
that every guarded formula has a fixpoint in GL. Uniqueness of the fixpoint
was proved later by Bernardi, de Jongh and Sambin independently (see [63]).
The authors extend the syntax of the µ-calculus to a µ∼-calculus where fixpoint
variables can appear everywhere in the formula, also under negations, as long
as they are under modalities. The semantics of the µ∼-calculus in GL is given
via an evaluation game. By means of this game, the authors show that the µ∼-
calculus collapses to the modal fragment and provide an explicit translation.
This allows them to compute the fixpoints involved in the de Jongh-Sambin
Theorem. The collapse of µ-calculus in GL was already proved, using the de
Jongh-Sambin Theorem, by [69] and [70].
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Another example is given by transitive graphs, or in modal terms, the class
K4. This is clearly an interesting class: for instance, the relation “event A is
posterior to event B” is transitive. There are several papers on the status of the
hierarchy on transitive graphs. Probably the first is [46], whose proof contains
an error corrected in [24]. The upper bound of [46] is that in K4, the µ-calculus
is included in Büchi automata, that is, the level Π2 of the alternation hierarchy.
It turns out that one can do slightly better: in K4, the µ-calculus is included in
compositions of Σ1 and Π1. This is proven independently in [24], [25] and [1].
In particular, [1] perform an analysis of evaluation games in transitive graphs.
Their main technical result is that if a variable x of a formula φ(x) occurs only
once and is in the scope of a 2, then in K4 we have νx.φ(x) = φ(φ(true)).

[1] considers also transitive symmetric graphs, where the collapse property
is even stronger: the µ-calculus coincides with modal logic. Here the equality
νx.φ(x) = φ(φ(true)) holds identically. As a matter of fact, this proves that in
S5 (the class of all equivalence graphs), the µ-calculus collapses to modal logic.

A subclass where the collapse does not happen is T , the class of all reflexive
frames. This is again proven in [1] via game theoretic methods.

A quite trivial class, from the viewpoint of fixpoint alternation, is given by
finite trees. It is not difficult to see that on this class, the µ-calculus collapses
to ∆1 (in fact, µX.φ(X) always coincides with νX.φ(X)) but not to modal
logic. However, finite trees pose interesting problems in many other respects,
also in µ-calculus theory: for instance, [66] shows the completeness of a natural
proof system for the µ-calculus over finite trees.

In the same vein, a possible theme for further research is the hierarchy on
graphs of bounded tree width. It would be interesting to see if one can come
up with an upper bound on the alternation depth of the µ-calculus on graphs
of bounded tree width.

3.3. The Variable Hierarchy

Since model checking is polynomial time computable when the fixpoint alterna-
tion is bounded, we can probably say that fixpoint alternation is an important
measure of complexity of µ-calculus formulas. However it is not the only one
we can imagine. In descriptive complexity, a well known measure of complex-
ity, for instance in first order logic, is the number of variables of a formula.
This number, in descriptive complexity, is related to space complexity, see [35].
The equivalent measure in µ-calculus is the number of fixpoint variables. It is
intended that each variable can be declared several times in a formula, so for
instance the formula

µX.3X ∨ µX.2X ∨ νX.3X ∨ νY.23Y

has two variables X and Y .
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The results of [9], [11] and [10] show that the variable hierarchy of the µ-
calculus is infinite: for every n, there is a formula which is not expressible with
less than n variables.

The examples of formulas which require arbitrarily many variables are con-
cerned with description of a given finite Kripke structure. Specifically,we iden-
tify a parameter of directed graphs, called entanglement, which measures how
many variables are sufficient to describe, up to bisimulation, any Kripke struc-
ture over that graph. We prove that every directed graph of entanglement k
can be turned into a Kripke structure that cannot be described with fewer than
k variables.

The proof of the hierarchy theorem in [10] consists of two main parts. First,
as in [9], the strictness of the hierarchy is established for the case of existential
formulas, i.e., formulas built without using universal modalities. It is shown
that no existential formula with fewer than k variables can define the simulation
type of a Kripke structure of entanglement k, under a particular labelling (recall
that simulation is a kind of “one-sided” bisimulation). Entanglement of a graph
can be defined in combinatorial terms, but it can be also nicely characterized
with the following cop-robber game.

There are a robber and k cops. At the beginning, the robber is at the given
initial position u of G and the cops are outside the graph. In any round, the
cops may either stay where they are or place one of themselves on the current
position v of the robber. The latter, in turn, has to move to a successor w
of v that is not occupied by any cop. If no such position exists, the robber
is caught and the cops have won. Note that the robber sees the move of the
cops before he decides on his own move, and he is forced to leave his current
position, regardless of whether the cops move or not. Now the minimal number
k such that k cops have a strategy to catch the robber on a graph G starting
with a node u is called the entanglement of (G, u).

In the second part of [10], we have a preservation theorem stating that
every formula defining the simulation type of a strongly connected structure
can be transformed into an existential formula without increasing the number
of variables. Thus the strictness of the variable hierarchy for the full µ-calculus
follows from its strictness in the existential case.

Entanglement has been subsequently studied, for instance in [61], and suc-
cessfully applied to variable hierarchy results in other µ-calculi (in the sense
of [4]).

4. Fragments and Sublogics

4.1. Continuous µ-Calculus

A natural fragment of µ-calculus is the continuous one. A formula φ(P ) is
continuous in an atom P if it is monotonic in atom P , and φ(P ) implies that
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there is Q ⊆ P such that Q is finite and φ(Q) holds. This fragment is studied
in [30]. First, it is shown that continuity corresponds to the formulas built
using the operators ∧,∨,3 and µ. Second, it is shown to be decidable whether
a formula is continuous in P .

A related notion is constructivity. The constructive formulas are the for-
mulas whose fixpoint is reached in at most ω steps. Formally, a sentence φ(p)
is constructive in p if the least fixpoint of the semantic map Semφ sending the
set E to ‖φ(E)‖ is equal to the union of all finite iterations Semi

φ(∅).

It is folklore that if a formula is continuous, then it is constructive. The
other implication does not hold in general. A counterexample is φ(p) = νX.p∧
3X, a formula saying that there is an infinite path where a property p holds
always. The formula is constructive because φ(∅) = ∅; on the other hand, it
is not continuous because it is true in an infinite linear model where p holds
always, but it is false in any infinite linear model where p holds finitely often.

However, interesting questions concerning the link between constructiv-
ity and continuity remain. One due to Venema is the following: given a
constructive formula φ, does there exist a continuous formula ψ such that
µX.φ = µX.ψ?

Other interesting links exist between continuity and the program logic PDL
(Propositional Dynamic Logic), which can be considered as a sublogic of the
µ-calculus, see below.

4.2. Temporal Sublogics

It is notoriously hard to understand the meanings of µ-calculus formulas, es-
pecially when fixpoints are nested. However, there are several sublogics of the
µ-calculus which are more transparent and still quite expressive; so, if we need
to verify a property of a system, we can first express it in a sublogic and then
translate it in the µ-calculus.

Sublogics of the µ-calculus include temporal logics, program logics and game
logics. In this subsection we briefly recall the temporal logics CTL and CTL∗,
and in the next we recall the program logic PDL, and Parikh’s game logic
PGL (we use the name PGL rather than GL to avoid confusion with Gödel-
Löb Logic).

First, the logics CTL and CTL∗ are intended to reason about paths in a
tree model, which represent computations of a system. Every formula can hold
or not along a path; some formulas make sense also on nodes of the tree, and
are called node formulas.

The temporal operators available in these logics are the next operator X
and the until operator U . A path π satisfies Xφ if the subpath starting with
the second point of π verifies φ; and π satisfies φUψ if some subpath satisfies
ψ, and all subpaths inbetween verify φ.
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Useful abbreviations are Fφ = trueUφ andGφ = ¬F¬φ. So, a path satisfies
Fφ if φ is true in some subpath, and satisfies Gφ if φ is true in every subpath.

Moreover, we have the existential and universal path quantifiers E and A.
If φ is a formula, then Eφ is a node formula which holds on a node v if some
path starting with v satisfies φ, and similarly for Aφ.

In CTL∗, all the temporal operators and quantifiers can be used freely,
whereas in CTL, the combinations allowed are only EXφ, AXφ, E(φUψ)
and A(φUψ).

Note that CTL is quite simpler than CTL∗: for the µ-calculus translation,
the former can be translated in compositions of Σ1 and Π1, whereas for the
latter we need compositions of Σ2 and Π2.

For more on CTL and CTL∗ see [26].

4.3. Program and Game Sublogics

The propositional dynamic logic PDL is intended to reason about programs,
so it has two sorts of syntactic objects, programs and formulas, defined by
simultaneous induction. Starting with atomic programs, one can perform union
and concatenation of two programs, and finite iteration (Kleene star) of a
program; moreover, if φ is a formula, the program denoted by φ? performs a
test on whether the current state satisfies φ. Formulas are given by multimodal
logic over the programs (so, there is a modal operator 3π for every program
π). For more on PDL see [58] and [29].

Parikh’s game logic PGL, see [57], is a logic for two player games, seen as
generalizations of programs. The syntax of PGL is obtained from PDL by

adding a dualizing operator ‘d’ on games, whose meaning is to invert the role
of the two players.

For the convenience of the reader, we sketch formal syntax and semantics
of PGL. Formulas φ and games γ are defined by the syntax:

φ ::= p | ¬φ | φ ∨ φ′ | 3γφ

γ ::= g | φ? | γ; γ′ | γ ∪ γ′ | γ∗ | γd,

where p ranges over a set P0 of atomic propositions, and g ranges over a set Γ0

of atomic games.
The semantics of PGL can be given in terms of Angel-Demon games, to be

played on tuples M = (S, Vp, Eg), where S is a set, Vp ⊆ S for every p ∈ P0,
and Eg : S → P (P (S)) for every g ∈ Γ0. So we have Kripke structures together
with a map saying what sets can be reached from a given atomic game g starting
with a vertex s ∈ S.

Let us write sEγX for X ∈ Eγ(s). Intuitively, this means that Angel can
reach the set X starting with s and playing the game γ. Let us also write
Eγ(Y ) = {s ∈ S|sEγY }.
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The semantics of a formula in a model, denoted ‖φ‖, and the effectivity
map of a game in the model, denoted by Eγ , are defined inductively as follows.
The boolean clauses are as usual; the diamond clause is that s ∈ ‖3γφ‖ if and
only if sEγ‖φ‖; for concatenation we have Eα;β(Y ) = Eα(Eβ(Y )); for union
we have Eα∪β(Y ) = Eα(Y ) ∪ Eβ(Y ); for test we have Eφ?(Y ) = ‖φ‖ ∩ Y ; for
Kleene star we have Eα∗(Y ) = µX.Y ∪Eα(X); and finally, for duality we have

Eαd(Y ) = Eα(Y ), where the horizontal bar denotes complement.

It can be shown that PGL subsumes CTL∗ and the Walukiewicz game
formulas Wn, and that PGL can be translated into the µ-calculus with two
variables, see [6]. But the variable hierarchy of the µ-calculus is infinite, so
PGL is a proper fragment of the µ-calculus, and this result solves an open
question of [56].

5. Modal Logics, µ-Calculus and Bisimulation

5.1. Bisimulation Invariance

Like modal logic, the µ-calculus is invariant under bisimulation. In fact, µ-
calculus itself can be viewed as an infinitary modal logic, provided one defines
the semantics inductively via ordinal approximants.

Since every model M is bisimilar to its unfolding, which is a tree whose
vertices are the finite paths inM with a natural structure of a model, it follows
that every formula which has a model has a tree model as well.

Another observation is that the µ-calculus can be translated into monadic
second order logic. In fact, a vertex v verifies µX.F (X) if and only if v belongs
to every set E such that E = F (E); and v verifies νX.F (X) if and only if v
belongs to some set E such that E = F (E).

An interesting converse direction, with respect to the previous two ob-
servations, has been proven in [38]: every formula of monadic second order
logic which is invariant under bisimulation is equivalent to a formula of the
µ-calculus. The key point of the proof is that on trees, monadic second order
logic can be translated into tree automata.

Note that a similar result was achieved for first order logic by [68]:
modal logic is exactly the fragment of first order logic which is invariant
under bisimulation.

The [68] result was specialized to finite graphs by [60]. The parallel result
for the µ-calculus was settled in [25] together with quite a lot of results for
subclasses of frames. In particular, an unexpected outcome of [25] is concerned
with finite transitive graphs: in these graphs the bisimulation invariant frag-
ments of first order logic and monadic second order logic coincide, and they
are larger than modal logic.
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5.2. Deciding Modality

In studying expressiveness of logics or their fragments, an interesting question is
the following: given a larger logic and a smaller logic, decide whether a formula
in the larger logic is equivalent (with respect to a given class of structures) to
one in the smaller. This question may be difficult because it requires insight
in the structure of the sublogic. For instance in the µ-calculus, a natural
candidate sublogic is modal logic. An algorithm to decide modality of a µ-
calculus formula over arbitrary graphs was given in [55]. The idea was that a
modal formula looks only at the first few levels of a tree.

The same question was answered for transitive graphs in [13]. Equivalently,
the problem is to characterize regular tree languages definable in modal logic,
where modalities refer to the transitive closure of the tree (usually these modal-
ities are denoted by 2

+ and 3
+).

In this breakthrough paper, notions of forest algebra (with the operations
of disjoint union and grafting) and regular forest language are introduced, so
that µ-definable tree languages are particular cases. Then, among regular forest
languages, modally definable forest languages are characterized by bisimulation
invariance plus a suitable equation. Finally, both bisimulation invariance and
the equation (actually any possible equation in the algebra) are then shown to
be decidable.

5.3. Uniform Interpolation

A logic satisfies interpolation if whenever φ and ψ are formulas with φ |= ψ

(that is, ψ is a consequence of φ), there is an “interpolant” formula χ in the
common language of φ and ψ such that φ |= χ and χ |= ψ.

Since Craig’s proof of the interpolation for first order logic, it became nat-
ural, once a logic is introduced, to ask whether it satisfies the same property.
In [23] a strong form of interpolation is proved for µ-calculus: uniform inter-
polation. That is, the µ-calculus satisfies the following: if φ is a formula and
L is a language (i.e. a set of atoms), there is a “uniform interpolant” formula
I(φ,L) in L such that:

• φ |= I(φ,L);

• for every formula ψ such that L(ψ)∩L(φ) ⊆ L, if φ |= ψ then I(φ,L) |= ψ.

In this sense the µ-calculus is better behaved than first order logic (which has
ordinary interpolation but not the uniform one) and monadic second order logic
(which does not even have the ordinary version).

The key tool in [23] are bisimulation quantifiers. Recall that the existential

bisimulation quantifier, denoted ∃̃P.φ, has the following meaning: a model M
satisfies ∃̃P.φ if there is a model N , bisimilar to M on all atoms except for
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the atom P , which verifies φ. [23] shows, with automata theoretic methods,
that the µ-calculus is closed under bisimulation quantifiers. Then I(φ,L) is
obtained from φ by quantifying existentially over the atoms which are not in
L.

6. Axiomatization

6.1. Axioms for the Full µ-Calculus

In the paper where the modal µ-calculus is presented, [42], we have a very
natural Hilbert style axiom system for the logic. The system is given by the
system K for modal logic plus:

• the axiom schema α(µX.α(X)) → µX.α(X);

• the rule: from α(φ) → φ infer µX.α(X) → φ.

In [42], completeness of the system is proved only for aconjunctive formulas,
a class of formulas where conjunction is restricted. Full completeness is proved
in [72], where the key point is to reduce to a further subclass of aconjunctive
formulas, called the disjunctive formulas. Recall that disjunctive formulas,
introduced in [37], are generated by the following rules:

• P , ¬P and X are disjunctive;

• if α, β are disjunctive then α ∨ β is disjunctive;

• if α is a finite conjunction of atoms and negated atoms, and β1, . . . , βn
are disjunctive, then α∧2(β1 ∨ · · · ∨βn)∧3β1 ∧ · · · ∧3βn is disjunctive;

• if φ is disjunctive then also µX.φ and νX.φ are disjunctive.

It is still an open problem to find good cut-free proof systems for the modal
µ-calculus (this is not a completely precise question, since “cut free” here means
only that no modus ponens or similar rule is necessary for the system to work).
One difficulty is that intuitively, whereas a proof of µX.φ should be something
“wellfounded”, a proof of νX.φ should be allowed to be “circular”. However,
good proof systems do exist for related formalisms (µ-calculi in the sense of
[4]), see [61].

6.2. Common Knowledge

Common knowledge is an epistemic concept useful in many applications. Like
epistemic logic can be viewed as a multimodal logic (where a modality Kiφ

means that agent i knows the fact φ), common knowledge can be viewed as
a property expressible in a multimodal µ-calculus: if we have n agents, then
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the fact that φ is common knowledge among the agents can be expressed by a
greatest fixpoint

Cφ = νX.φ ∧K1X ∧ . . . ∧KnX.

Gerhard Jaeger and his school have been studying proof systems for com-
mon knowledge, and in particular, cut-free sequent systems. In [36] they find
such a system. They start with a natural infinitary system including an ω-rule,
and then they manage to replace the ω-rule with an infinite (but simple) set of
finitary rules.

7. Model Checking

The model checking problem for the µ-calculus is the following: given a finite
Kripke modelM , a point v ofM and a formula φ, decide ifM, v |= φ. It can be
seen that this problem is polynomial time equivalent to the problem of solving
a parity game.

It is known that the two problems are in the complexity class UP (standing
for Unique P ), that is, the problems solvable in polynomial time by a nonde-
terministic Turing machine having at most one accepting computation on each
input, see [39]. Note that UP is a class somewhere between P and NP , and a
co− UP bound follows by complementation.

Several algorithms have been proposed, starting with the first model check-
ing algorithm of [28]; the working time of this algorithm is O(m · nd+1), where
m is the size of φ, n is the size of M and d is the alternation depth of φ.

Subsequently, [47] improved the complexity of the Emerson-Lei algorithm
to O(m · n⌊d/2⌋+1); and as one referee points out, [62] further improved the
bound to O(m · nd/3) by reducing to parity games and combining ideas from
[40] and [41]. In turn, the algorithm of [40] has approximately the same time
complexity of [28], but features linear space complexity.

There also exists a polynomial time model checking algorithm on graphs of
bounded tree width, see [52]. Recall that Courcelle’s theory of monadic second
order logic implies that on graphs of bounded tree width k, the model checking
problem can be solved in linear time in the size of the graph, that is, the time
complexity is O(n). However, the constant hidden in the O (depending on the
formula and on the tree width) is large according to Courcelle’s bound. [52]

manages to reduce the complexity to O(n · (km)2 ·d2((k+1)m)2), so a little more
than exponential in dkm.

Intuitively, the idea of [52] for solving parity games is first to solve locally
the game in every node of the tree decomposition, and then to combine the
local solutions in a bottom up manner. This use of the tree decomposition
works for many other problems, see [12].

Like for tree width, feasibility results for parity games have been ob-
tained for other analogous measures, for instance, bounded entanglement [8],
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bounded DAG-width, see [7] and [53], bounded Kelly-width [34], or bounded
clique width [54].

For the general case, the best we have so far is a subexponential algorithm
(nO(

√
n)), see [41], building on algorithms of McNaughton [50] and Zielonka,

see [73] and [33]. A general polynomial algorithm is actively searched.

Despite the unsatisfactory asymptotic bounds, however, model checking
tools exist, see [32] for a recent one, and also (as one referee suggests) practical
model checking algorithms such as [71]. As a matter of fact, it has been a hard
task, done in [31], to show that the algorithm of [71] is not efficient, and Oliver
Friedmann received a Kleene award for this.

We mention that the model checking problem for particular classes of finitely
presented, infinite structures is treated, for instance, in [18] and [64]. In this
case one uses a proof system rather than an algorithm, and a property holds
of a system if and only if there is a proof that this is the case. In particular,
[64] considers a mutual exclusion algorithm modeled as a CCS process, and
[18] treats a Petri net example.

One referee adds the following remarks on infinite structures. Since the
µ-calculus is a fragment of Monadic Second Order Logic, µ-calculus model
checking is decidable whenever MSO model checking is so, see e.g. the Caucal
hierarchy, a class of infinite graphs obtained from finite graphs via unfoldings
and inverse rational mappings. Interestingly, there are structures where µ-
calculus model checking is decidable, but MSO model checking is not, see e.g.
[21]; and there are structures (e.g. grids) with decidable µ-calculus model
checking, whose version with back edges has an undecidable µ-calculus model
checking (in the case of grids, this is obtained by reduction from the termination
problem of two counter machines).
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[70] A. Visser, Löb’s logic meets the µ-calculus, LNCS volume 3838, Springer Berlin
(2005), 14–25.



RESULTS ON THE µ-CALCULUS 255

[71] J. Voge and M. Jurdzinski, A discrete strategy improvement algorithm for
solving parity games, LNCS volume 1855, Springer, Berlin (2000), 202–215.

[72] I. Walukiewicz, Completeness of Kozen’s axiomatization of the propositional
µ-calculus, Inform. and Comput. 157 (2000), 142–182.

[73] W. Zielonka, Infinite games on finitely coloured graphs with applications to
automata on infinite trees, Theoret. Comput. Sci. 200 (1998), 135–183.

Author’s address:

Giacomo Lenzi
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