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Abstract. We propose a decision procedure for a fragment of the
hyperset theory, HMLSS, which takes inspiration from a tableau satura-
tion strategy presented in [3] for the fragment MLSS of well-founded set
theory. The procedure alternates deduction and model checking steps,
driving the correct application of otherwise very liberal rules, thus sig-
nificantly speeding up the process of discovering a satisfying assignment
of a given HMLSS-formula or proving that no such assignment exists.
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1. Introduction

We present a result in the field of computable set theory relative to a tableau-
based decision procedure for the satisfiability problem for a fragment of the
hyperset theory. Specifically, the theory of our interest, HMLSS (Hyper Multi-
Level Syllogistic with Singleton), is a semantic generalization to the universe
of hypersets of the unquantified fragment MLSS, studied in the context of well-
founded sets [7].

The satisfiability problem for HMLSS consists in determining for any given
HMLSS-formula ϕ whether there exists an assignment of hypersets to the vari-
ables of ϕ such that the resulting interpreted formula expresses a true statement
about hypersets.

The decision problem for this fragment of hyperset theory has been already
solved in [8] by means of a unification algorithm, rather than by a tableau
calculus. Later, in [6], a unification algorithm for the blended case has been
provided. In [9], a tableau based decision procedure is presented for a language
containing the operators and relators of HMLSS with the exception of the sin-
gleton operator, {·}, plus a weak form of the powerset construct. Then, in [10],
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a tableau-like decision procedure is introduced for a set-theoretical fragment
admitting a restricted universal quantification, the powerset operator, but not
including the singleton operator. It is shown that the decidability result per-
mits to characterize several decidable modal logics such as K, T , S4, S5.

In this paper we propose a decision procedure for HMLSS that is inspired
to a tableau calculus and relative saturation strategy presented in [3] for the
MLSS fragment. Specifically, our tableau calculus contains rules for propagat-
ing positive and negative membership relations as well as equalities. Among the
rules of the latter type, we mention one which allows one to deduce equalities
between variables which are bisimilar in a suitable membership graph.

Roughly speaking, the overall behaviour of the procedure is the following.
When a non-closed tableau branch is selected, a partial assignment based on the
literals contained in it is constructed. If such an assignment already satisfies all
literals in the branch, the root formula is declared to be satisfiable; otherwise,
based on one of the non-satisfied literals, a suitable tableau rule is selected and
applied to the branch. The interplay between model checking and deduction
steps speeds up considerably the process of discovering a satisfying assignment,
if any exists, or proving that the given HMLSS-formula is unsatisfiable.

The paper is organized as follows. In Section 2 we recall some elementary
notions on hypersets according to [2]. In Section 3 we introduce the HMLSS
fragment, its syntax and semantics, based on hypersets, and we extend to
the hyperset case the notion of realization, reviewing some of its properties
which will be used in the rest of the paper. Section 4 describes the tableau
calculus for HMLSS together with the related decision procedure in the form
of a terminating tableau saturation strategy. In Section 5 we prove the total
correctness of the decision procedure, in Section 6 we give some examples of
tableaux constructed with the procedure presented and, finally, in Section 7 we
draw our conclusions.

2. Preliminaries on Hypersets

Hypersets have been represented by Barwise in [2] as elements of the solution
set of flat systems of equations and by Aczel in [1] by the notion of pointed
graphs. In this paper we mainly refer to the former representation. For this
reason we briefly recall it in what follows, together with some basic notions
that will be used later. We refer the reader to [2] for further details.

Definition 2.1 (Flat system of equations).

1. A flat system of equations is a tuple E = (X,A, e) consisting of two
disjoint sets X and A, and of a function x 7→ ex from X into P(X ∪A).

2. X is called the set of indeterminates of E, and A is called the set of
atoms of E. For every x ∈ X, ex ∩ X is the set of indeterminates on
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which x depends immediately. Analogously, ex ∩A is the set of atoms on
which x depends immediately.

3. A solution to E is a function s with domain X satisfying every equation

sx = {sy : y ∈ (ex ∩X)} ∪ (ex ∩A).

The anti-foundation axiom, in the form presented in [2, Chapter 6, Section
2], also called the (Flat) Solution Lemma, states that every flat system of
equations has a unique solution. Thus, we can designate the solution set of
any flat system E = (X,A, e) as

solution set(E) =Def {sx : x ∈ X} ,

where s is the solution to E .
The universe of hypersets is constituted by all the sets which are in the

solution set of some flat systems of equations. We denote by VH the universe
of hypersets.

2.1. Bisimulations and Bisimilarity

The axiom of extensionality does not always help in deciding if two given hy-
persets are identical. In what follows we introduce the notions of bisimula-
tion relation and of bisimilarity for hypersets together with the statement of
a theorem proved in [2], informally saying that bisimilar hypersets have to be
considered as being identical.

Definition 2.2. A bisimulation relation over hypersets is a binary relation B
over hypersets satisfying the following condition. If uBv, then

1. for every u′ ∈ u, there is a v′ ∈ v such that u′Bv′,

2. for every v′ ∈ v, there is a u′ ∈ u such that u′Bv′,

3. the set of atoms in u is equal to the set of atoms in v.

Hypersets u and v are bisimilar if there is a bisimulation relation B over hy-
persets such that uBv.

Theorem 2.3 ([2]). The identity relation between hypersets, ∼H , is the largest
bisimulation over hypersets, that is:

1. ∼H is a bisimulation,

2. if B is a bisimulation relation over hypersets, then B is a subrelation of
∼H . That is, if uBv, then u ∼H v.
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Identity of hypersets can be checked by employing the representation of
hypersets as flat systems of equations. For this purpose we give the notions of
bisimulation relation and of bisimilarity for flat systems and report an algorithm
that can be applied to check bisimilarity (i.e., identity) of hypersets in case they
are in the solution set of some finite flat systems of equations.

Definition 2.4. Let E = (X,A, e) and E ′ = (X ′, A′, e′) be two flat systems
of equations.

A bisimulation relation between E and E ′ is a relation B over X ×X ′ such
that the following conditions hold:

(a) If xBx′, then

– for each indeterminate y ∈ (ex ∩X) there is an indeterminate y′ ∈
(e′x′ ∩X ′) such that yBy′;

– for each indeterminate y′ ∈ (e′x′ ∩ X ′) there is an indeterminate
y ∈ (ex ∩X) such that yBy′.

(b) If xBx′, then ex and e′x′ contain the same atoms.

E and E ′ are bisimilar if there is a bisimulation relation between them such that:

(a) for every x ∈ X there is an x′ ∈ X ′ such that xBx′;

(b) for every x′ ∈ X ′ there is an x ∈ X such that xBx′.

In [2] the following result is proved.

Theorem 2.5. Let E and E ′ be flat systems of equations. They have the same
solution set if and only if they are bisimilar.

Next, it is convenient to introduce the following notion. A pointed flat
system of equations is a tuple Ex = (X,A, e, x), where E = (X,A, e) is a flat
system and x ∈ X. Intuitively, pointed flat systems are flat systems focusing
on an element of particular interest. Two pointed flat systems Ex1 and E ′x2

are
bisimilar if and only if there is a bisimulation relation B between Ex1 and E ′x2

such that x1Bx2.

Theorem 2.6. Let E = (X,A, e) and E ′ = (X ′, A′, e′) be two flat systems
of equations with solution s and s′, respectively. Then, the pointed flat
systems Ex1

= (X,A, e, x1) and E ′x2
= (X ′, A′, e′, x2) are bisimilar if and

only if sx1
= s′x2

.

Proof. Let us prove the sufficient condition first. Consider the relation B ⊆
X ×X ′ such that xBy if and only if sx = s′y, for every x ∈ X and y ∈ X ′.

We prove that B is a bisimulation for E and E ′ by showing that conditions
(a) and (b) of Definition 2.4 hold.
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(a) Suppose that xBy. Then for every u ∈ ex∩X, su ∈ sx and, by definition
of B, su ∈ s′y. Thus, there is a v ∈ e′y ∩ X ′ such that su = s′v, that is
such that uBv. Analogously, it can be shown that for every v ∈ e′y ∩X ′
there is an u ∈ ex ∩X such that uBv.

(b) Let xBy and suppose by contradiction that there is an atom a ∈ sx such
that a /∈ s′y. But then sx 6= s′y, which contradicts the hypothesis.

Since B is a bisimulation for E and E ′, it is also a bisimulation for Ex1
and E ′x2

.
By hypothesis sx1 = s′x2

, thus x1Bx2, and therefore Ex1 and E ′x2
are bisimilar.

The necessary condition is proved as follows. Let B be a bisimulation for
Ex1 and E ′x2

such that x1Bx2. Then, B is a bisimulation for E and E ′ too. We
prove that sx1 = s′x2

by showing that sx = s′y for every x ∈ X and y ∈ X ′

such that xBy. For this purpose, we construct a flat system E∗ whose set of
indeterminates, X∗, is constituted by the pairs (x, y), with x ∈ X and y ∈ X ′,
such that xBy. For every (x, y) ∈ X∗ we define

e∗(x,y) = {(u, v) ∈ X∗ : u ∈ ex and v ∈ e′y} ∪ (ex ∩A).

Notice that putting (ex ∩ A) instead of (e′y ∩ A′) as right term of the union
does not cause loss of generality. In fact, since xBy, (ex ∩A) and (e′y ∩A′) are
identical. Let us consider the following candidate solutions to E∗:

sa(x,y) = sx,

sb(x,y) = s′y,

for every (x, y) ∈ X∗. Thanks to the fact that B is a bisimulation, we prove
that these are both solutions of E∗. We limit ourselves to showing only that sa

is a solution of E∗, as the proof for sb is very similar.
Let us assume that (x, y) is an indeterminate in X∗. We have to show that

sa(x,y) = {sa(u,v) : (u, v) ∈ e∗(x,y)} ∪ (ex ∩A). (1)

Let us take a c ∈ sa(x,y). Since sa(x,y) = sx, then c ∈ sx, and therefore, either

c ∈ (ex ∩ A), or it is of the form sw1
, where w1 ∈ (ex ∩ X). In the first case

c plainly belongs to the right part of (1). In the second case there must be
some w2 ∈ (e′y ∩X ′) such that w1Bw2. This means that (w1, w2) ∈ X∗ (i.e.,
(w1, w2) ∈ e∗(x,y)). Thus c = sw1 = sa(w1,w2) belongs to the right part of (1) too.

Now, let v be an element belonging to the right part of (1). If v ∈ (ex ∩A),
then v ∈ sx = sa(x,y) and we are done. If v is equal to an element sa(w1,w2) from

the left part of the union in (1), where w1 ∈ ex and w2 ∈ e′y, we have to prove
that sa(w1,w2) ∈ s

a
(x,y). This can be easily verified by noting that sa(w1,w2) = sw1

and sx = sa(x,y). Moreover sw1
∈ sx holds, since s is a solution of E .
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Thus sa and sb are both solutions of E∗. By the antifoundation axiom
sa = sb, but then, for every (x, y) ∈ B, sx = sa(x,y) = sb(x,y) = s′y. This holds in

particular for the pair (x1, x2) which belongs to B by hypothesis.

Let h and h′ be two hypersets in the solution sets of some finite flat systems
of equations. An algorithm to verify if they are identical is described next.

We put h = sx1
and h′ = s′x2

, where x1 ∈ X, x2 ∈ X ′, and s
and s′ are the solutions of the flat systems of equations E = (X,A, e) and
E ′ = (X ′, A′, e′), respectively.

Then, let us construct a relation � ⊆ X × X ′ by executing the following
steps until the condition �n+1 =�n becomes true:

Step 1: Let �1 be the set of all pairs (x, y) ∈ X ×X ′ such that either ex and
e′y differ on some atoms or only one of them is nonempty.

Step n + 1: Given �n, let Pn be the set of all the pairs (x, y) such that either

• there is an u ∈ (ex ∩X) such that u �n v, for all v ∈ (e′y ∩X ′), or

• there is a v ∈ (e′y ∩X ′) such that u �n v, for all u ∈ (ex ∩X).

Then we put �n+1 =�n ∪ Pn.

We call the resulting relation � and call its complement ∼. It can easily be
proved that ∼ is a bisimulation relation for E and E ′. In fact, for every x ∈ X
and y ∈ X ′ it holds that

• if x ∼ y, then for every u ∈ (ex ∩X) there is a v ∈ (e′y ∩X ′) such that
u ∼ v, and for every v ∈ (e′y ∩X ′) there is a u ∈ (ex∩X) such that u ∼ v
(otherwise x � y);

• moreover, if x ∼ y, then the set of atoms in ex is equal to the set of atoms
in e′y (otherwise x � y).

This is enough to prove that ∼ is a bisimulation relation for E and E ′. Clearly,
if x1 ∼ x2, then the pointed flat systems Ex1

and E ′x2
are bisimilar.

It can be shown that ∼ coincides with the maximal bisimulation (∼H)
between E and E ′. The proof is carried out by induction over n by showing that
if x1 �n x2, then Ex1 and E ′x2

are not bisimilar. In addition, if �n=�n+1=�,
for all x ∼ y, then ∼ is a bisimulation relation between Ex and E ′y and sx = s′y.

3. The HMLSS Fragment

3.1. Syntax

The HMLSS language involves:

(i) a countably infinite collection of hyperset variables Vars = {x, y, z, . . .};
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(ii) the set predicate symbols ∈ (membership), = (equality), ⊆ (set inclusion);

(iii) the binary set operator symbols ∩ (intersection), ∪ (union), \ (set differ-
ence), {·} (singleton);

(iv) the null set constant ∅ (characterized by the relation ∅ = ∅ \ ∅);

(v) the constant Ω (characterized by the relation Ω = {Ω});

(vi) parentheses (to construct compound terms);

(vii) the propositional connectives ¬, ∧, ∨, →, ↔ (to construct compound
formulae).

HMLSS-terms and formulae are constructed in the standard way. Notice that
HMLSS does not admit any explicit quantification. Notice also that the collec-
tion of predicate, operator, and constant symbols we have adopted for HMLSS
is not minimal, resulting in a more natural language.

3.2. Semantics

HMLSS-formulae are interpreted by means of assignments in the hypersets uni-
verse. A (hyperset) assignment is a function M : Vars → VH . By the notions
introduced before, it can easily be shown that assignments extend naturally
to hyperset terms like x ∩ y or x \ y and that they evaluate atomic formulae
of type x ∈ y, x ⊆ y, x = y to a truth value true or false in the usual way.
Finally, evaluation of compound formulae plainly follows the standard rules of
propositional logic.

Let M be an assignment and let ϕ be a formula of HMLSS. We say that M
satisfies ϕ if M evaluates ϕ to true. In this case M is said to be a model for
ϕ. A formula ϕ of HMLSS is satisfiable if it has a model. Two formulae ϕ and
ψ are equisatisfiable, when ϕ is satisfiable if and only if ψ is also satisfiable.

The decision problem for HMLSS is then the problem of establishing for any
given formula of HMLSS whether or not it is satisfiable.

3.2.1. Realizations

An important tool for constructing candidate models is represented by realiza-
tions.

Definition 3.1 (Realization). Let G = (N, ∈̂) be a directed graph, let (V, T ) be
a partition of N , and let {vt : t ∈ T} be a collection of sets. The realization of
G relative to (V, T ) and to {vt : t ∈ T} is the unique assignment R over V ∪ T
satisfying the following equations:

• Rx = {Rz : z ∈ V ∪ T and z∈̂x}, for x ∈ V ,

• Rt = {vt}, for t ∈ T .
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Given G = (N, ∈̂), (V, T ), and {vt : t ∈ T} as in Definition 3.1, for x ∈ V , let
us put G(x) =Def {y ∈ N : y∈̂x} and define the function Ge : N →P(N ∪{vt :
t ∈ T}) as follows:

• Ge(x) = G(x), for x ∈ V ,

• Ge(t) = {vt}, for t ∈ T .

Then, consider the flat system of equations

E = (V ∪ T, {vt : t ∈ T}, Ge).

Plainly, the realization R of G relative to (V, T ) and to {vt : t ∈ T} is the
solution of E and solution set(E) = {Rx : x ∈ V ∪T}. Using the same technique
described in the algorithm of Section 2.1, we can construct from E the relation
�R⊆ (V ∪T )×(V ∪T ) whose complement, ∼R, is such that x ∼R y if and only
if the pointed flat systems of equations Ex = (V ∪ T, {vt : t ∈ T}, Ge, x) and
Ey = (V ∪ T, {vt : t ∈ T}, Ge, y) are bisimilar, that is if and only if Rx = Ry,
for every x, y ∈ V ∪ T .

The construction of the flat system E from V , T , {vt : t ∈ T}, and Ge

is basilar to the design of one of the rules of the calculus for HMLSS to be
presented in the next section.

The following result on realizations will be useful in the correctness proof
of our decision procedure.

Lemma 3.2. Let G = (V ∪T, ∈̂) be a directed graph, with V ∩T = ∅. Moreover,
let {vt : t ∈ T} be a collection of sets, let R be the realization of G relative to
(V, T ) and to {vt : t ∈ T}, and let us assume that:

(a) vt 6= vt′ , for all distinct t, t′ in T ,

(b) vt 6= Rx, for all t ∈ T and x ∈ (V ∪ T ).

Then,

(i) |{x ∈ (V ∪ T ) : x ∼R t}| = 1, for every t ∈ T ,

(ii) if G(x) = G(y) ∪G(z), then Rx = Ry ∪Rz, for x, y, z ∈ V ,

(iii) if G(x) = G(y) ∩G(z), then Rx = Ry ∩Rz, for x, y, z ∈ V ,

(iv) if G(x) = G(y) \G(z), then Rx = Ry \Rz, for x, y, z ∈ V ,

(v) if {y1, . . . , yk} ⊆ G(x) ⊆
⋃k
i=1{y ∈ V : y ∼R yi}, then Rx =

{Ry1, . . . , Ryk}, for x, y1, . . . , yk ∈ V .
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(1) x ∈ y (2) x /∈ y (3) x = y

(4) x 6= y (5) z = x ∪ y (6) z = x ∩ y

(7) z = x \ y (8) x = {y1, . . . , yk}

Table 1: Normalized HMLSS-literals.

Proof. (i) follows immediately from assumptions (a) and (b) and from the very
definitions of the realization R and of the relation ∼R.

Concerning (ii), at first we prove that Rx ⊆ Ry∪Rz. Let u ∈ Rx, then, by
definition of R, u = Rw, for some w ∈ V ∪ T such that w∈̂x. By definition of
G(x), w ∈ G(x) and, by hypothesis, either w∈̂y or w∈̂z. Thus, by definition of
R, either Rw ∈ Ry or Rw ∈ Rz, and finally Rw ∈ Ry∪Rz, that is u ∈ Ry∪Rz.
To prove the converse, Ry ∪Rz ⊆ Rx, let us pick a u ∈ Ry ∪Rz and suppose,
without loss of generality, that u ∈ Ry. Then, by definition of R, there is
a w ∈ V ∪ T such that Rw = u and w∈̂y. Thus w ∈ G(y) and hence, by
hypothesis, w ∈ G(x). By definition of G(x), w∈̂x, and finally Rw ∈ Rx, that
is u ∈ Rx, yielding (ii).

(iii) and (iv) can be proved in a similar way.

Concerning (v), assume that {y1, . . . , yk} ⊆ G(x) ⊆
⋃k
i=1{y ∈ V : y ∼R yi}.

We need to show that Rx = {Ry1, . . . , Ryk}. Let u ∈ Rx. Then, by definition
of R, u = Rw, for some w ∈ V ∪ T such that w∈̂x. Thus w ∈ G(x) and
therefore, for some i = 1, 2, . . . , k, either w = yi or w = y, for some y such
that y ∼R yi. In both cases w ∼R yi and thus Rw = Ryi, for some i =
1, 2, . . . , k. Hence Rx ⊆ {Ry1, . . . , Ryk}. Conversely, let u ∈ {Ry1, . . . , Ryk}.
Then u = Ryi. By hypothesis yi∈̂x and thus Ryi ∈ Rx. Since u = Ryi we
obtain {Ry1, . . . , Ryk} ⊆ Rx which, together with the previously established
inverse inclusion, yields Rx = {Ry1, . . . , Ryk}, completing the proof of (v).

4. A Tableau Calculus for HMLSS

In view of a normalization procedure of the type described for the MLSS context
in [3] (see Figure 1 below), without any loss of generality we can limit our
considerations to flat HMLSS-conjunctions, namely HMLSS-formulae that are
conjunctions of literals of the special forms illustrated in Table 1 (normalized
HMLSS-literals).

Indeed, let 〈ϕ1, . . . , ϕk〉 be the k-tuple returned by Normalize(ϕ), for a
given HMLSS-formula ϕ. Then it is easy to prove that every ϕi is a flat HMLSS-
conjunction and that ϕ is satisfiable if and only if at least one ϕi is satisfiable.
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procedure Normalize(ϕ)
– ϕ is a HMLSS-formula.

1. Φ := true;
2. ψ := ϕ;
3. let q0 and q1 be two new variables not occurring in ϕ;
4. Φ := Φ ∧ q0 = q0 \ q0 ∧ q1 = {q1};
5. replace in ψ each occurrence of the constant ∅ by q0

and each occurrence of Ω by q1;
6. while ψ contains terms of the form x ∪ y, x ∩ y, x \ y, {y1, . . . , yk} do
7. let t be any such term and let xt be a newly introduced variable;
8. replace in ψ each occurrence of the term t by the variable xt;
9. Φ := Φ ∧ (xt = t) ;

10. end while;
11. let ψ1 ∨ . . . ∨ ψk be a disjunctive normal form of ψ;

– At this point each ψi is a conjunction of literals
– of the form x ∈ y, x = y, x ⊆ y, or their negations.

12. for i = 1 to k do
13. for each conjunct of type ¬(x ⊆ y) in ψi do
14. let zxy be a newly introduced variable;
15. replace in ψi each occurrence of ¬(x ⊆ y) by (zxy ∈ x ∧ zxy /∈ x);
16. end for;
17. for each conjunct of type x ⊆ y in ψi do
18. replace in ψi each occurrence of x ⊆ y by y = x ∪ y;
19. end for;
20. end for;
21. return 〈ψ1 ∧ Φ, . . . , ψk ∧ Φ〉
end procedure

Figure 1: The normalization procedure.

Let S be a finite collection of normalized HMLSS-literals. An initial HMLSS-
tableau for S is a tree with just one branch whose nodes are labelled with the
literals in S.

An HMLSS-tableau for S is a tableau labelled with normalized HMLSS-
literals that can be constructed from the initial tableau for S by means of a
finite number of applications of the rules illustrated in Table 2.

We assume that no literal can occur more than once on any given branch;
that is we assume that a rule adding a literal which is already on the branch
has no effect.

Let T be an HMLSS-tableau for a given finite collection S of normalized
HMLSS-literals. A branch θ of T is:

• strict, if no rule has been applied more than once on θ to the same
occurrence of literal;
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z = y ∪ y′
x ∈ y
x ∈ z (1)

z = y ∪ y′
x ∈ y′
x ∈ z (2)

z = y ∪ y′
x ∈ z

x ∈ y|x ∈ y′ (3)

z = y ∩ y′
x ∈ z
x ∈ y
x ∈ y′

(4)

z = y ∩ y′
x ∈ y
x ∈ y′
x ∈ z (5)

z = y \ y′
x ∈ z
x ∈ y
x /∈ y′

(6)

z = y \ y′
x ∈ y
x /∈ y′
x ∈ z (7)

y = {x1, . . . , xk}
x1 ∈ y

...
xk ∈ y

(8)

y = {x1, . . . , xk}
z ∈ y

z = x1| · · · |z = xk
(9)

x = y
ϕ

ϕyx
ϕxy

(10)

x = y \ y′
w ∈ y

w ∈ y′|w /∈ y′ (11)
x = y w ∈ x w /∈ x

w /∈ y w ∈ y

(12)

x = y
(13)

Table 2: The tableau calculus for HMLSS.

• saturated with respect to a given rule, if the rule has been applied at least
once to each instance of its premises on θ;

• saturated with respect to a collection of rules, if θ is saturated with respect
to each rule of the collection;

• satisfiable, if the collection of normalized literals labelling the nodes of θ
is satisfiable in an assignment in the hyperset universe;

• closed, if either θ contains a contradictory literal of the form x 6= x or it
contains a pair of complementary literals;

• open, if it is not closed.

A tableau is:

• annotated, if some information is stored on its branches and/or its nodes;

• strict, or saturated with respect to a set of rules, or closed if so are all its
branches;
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• satisfiable, if at least one of its branches is satisfiable.

Notice that closed branches and closed tableaux are unsatisfiable.
It is convenient to recall some further terminology. Let θ be an open branch

of a tableau T for a finite collection S of normalized HMLSS-literals, con-
structed during the execution of the procedure HMLSS tableau test(S).

With VS , T , ∼θ, T ′, V ′, ∈̂θ, Gθ, Rθ we denote the following objects:

• VS : the set of the variables occurring in S;

• T : the collection of the variables occurring in θ different from VS ;

• ∼θ: the equivalence relation induced over VS ∪T by means of the literals
x = y in θ;

• T ′: the set {t ∈ T : t �θ x, for every x ∈ VS};

• V ′: the set (VS ∪ T ) \ T ′;

• ∈̂θ: the binary relation over V ′ ∪ T ′ defined by x∈̂θy if and only if x ∈ y
is in θ, for x, y ∈ V ′;

• Gθ: the direct graph (V ′ ∪ T ′, ∈̂θ), called dependency graph relative to θ;

• Rθ: the realization of Gθ relative to the partition (V ′, T ′) and to pairwise
disjoint sets ut, for t ∈ T ′ each of cardinality at least |V ′ ∪ T ′|.

Some comments on the rules of our tableau calculus and relative saturation
strategy are now in order. Rules (1)-(11) in Table 2 coincide with the ones
of the tableau calculus for MLSS presented in [3]; in particular, rules (1)-(9)
capture the semantics of the operators of the HMLSS language. We recall
that they allow to deduce new information about the membership and equality
relations on the current branch. Specifically, as will be clarified below, they
are applied in the saturation step of the decision procedure. Rule (12) has
been introduced for the first time in [3]. It is a cut rule whose application is
allowed during the model checking step (illustrated below) to variables of VS
only. Soundness proof of the rules (1)-(12) can be carried out as shown in [3],
that is by proving that if a tableau T is satisfiable, then any tableau obtained
from T by means of a finite number of their applications is still satisfiable.

Rule (13) is the new rule of the calculus. It can applied to a pair of variables
x, y ∈ VS on a branch θ only in the following two cases:

Case A. The following conditions must hold simultaneously:

• θ is saturated with respect to rules (1)-(11).

• It is possible to construct two pointed flat systems of equations Ex =
(X,A, e, x) and E ′y = (X ′, A′, e′, y) such that:
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a. X,X ′ ⊆ VS ,

b. for every u ∈ X and v ∈ X ′,
1. ∅ 6= eu ⊆ X and ∅ 6= e′v ⊆ X ′,
2. u = eu, v = e′v are literals occurring in θ,

c. Ex and E ′y are bisimilar.

Case B. The following conditions must hold simultaneously:

• θ is an open branch saturated with respect to rules (1)-(11), and
saturated with respect to rule (12) up to the ∼θ relation (i.e., if rule
(12) has been applied to x, y ∈ VS and there are z, w ∈ VS such that
z ∼θ x and w ∼θ y, then rule (12) is not applied to z, w). Moreover,
θ is not satisfied by Rθ.

• x ∼Rθ y, that is, Rθx = Rθy.

Let us spend some words on rule (13) and on its application constraints. Rule
(13) has been designed to detect and derive (making explicit) existing bisimi-
larity relations between the variables of the input formula. Lifting to non-well-
founded sets, the additional information provided by the application of this rule
is used in specific situations (see Sections 5 and 6) to deal with the presence
of cycles in the membership relation. During the tableau construction, how-
ever, the dependency graph Gθ and the realization Rθ are subject to evolution:
Gθ is enriched by the discovery of new dependencies among the variables of
the branch and, as a consequence, Rθ is modified. If rule (13) were applied
too liberally, the introduction of the literal x = y in θ might be a premature
commitment causing an unneeded contradiction.

If rule (13) is applied according to the restrictions of case A, we derive new
equalities from bisimilarity relations explicitly occurring on the branch. As it
is shown in Section 5, these relations are not modified as the dependency graph
evolves. On the other hand, if we apply rule (13) in case B to two variables x, y
on a branch θ, it is shown (see next section) that the equality Rθ̄x = Rθ̄y must
hold for every prolongation θ̄ of θ. Then we can apply Theorem 2.6 and derive
that the pointed flat systems of equations Ex and Ey introduced in Section
3.2.1 are bisimilar. Thus the literal x = y can be safely added to the branch.

More details on rule (13) and on its proof of correctness with the restrictions
introduced above and in the context of the procedure illustrated below are given
in Section 5.

Observe that our tableau calculus could be extended with further natural
rules as, for instance, a rule of the form

z = y ∪ y′
x /∈ y
x /∈ y′

x /∈ z
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procedure HSaturate(T , V )
1. Iterate till stability
2. strictly saturate the non-closed branches of T with respect

to rules (1)-(11) and then to rule (13) (case A).
3. Let T be the resulting annotated tableau, where it is assumed that during

saturation the attributes are inherited by the new branches.
4. for each branch θ of T do
5. To be diversifiedθ := {(x1, x2) ∈ V × V : xi ∈ z and x3−i /∈ z in θ,

for some z ∈ V and for some i ∈ {1, 2}, or
x1 6= x2 is in θ};

6. Diversifiedθ := {(x, y) ∈ V × V : (x′, y′) ∈ Diversifiedθ,
for some x′ ∼θ x, y′ ∼θ y};

7. end for;
8. return T
end procedure

Figure 2: The saturation procedure.

However, as follows immediately from the total correctness of our decision test
(which will be proved in Section 5), the tableau calculus in Table 2 is complete
and needs no further rules. We preferred to choose rules which allow to deduce
new memberships, rather than nonmemberships, since the former are used in
the construction of candidate models.

The decision procedure we present in the following is similar to the one
provided in [3] for the MLSS fragment. It relies upon a saturation strategy for
the given tableau calculus and is based on an alternation of calls to an auxiliary
procedure, HSaturate, with model checking steps attempting the construction
of a hyperset model for a branch which is still not closed. Candidate models are
constructed by means of the realization of the dependency graph obtained from
the information given by the literals present on the branch. If the realization
so obtained does not succeed in satisfying the branch, it will not satisfy some
of its literals of the “negative” forms x /∈ y, x = y \ z, or x 6= y.

Such negative information is used to select a pair of variables which, al-
though modeled by the same set, may need to be diversified. If (x1, x2) still
need to be diversified, rule (12) is applied. Once rule (12) has been applied
to every pair of variables that need to be diversified, there may still be some
pair of variables, already processed by an application of rule (12), that are still
modeled with the same set. At this point, any further application of rules (1)-
(12) to the branch would only bring redundant information to the dependency
graph, leading neither to satisfiability nor to the closure of the branch. Since
the constraints of case B are satisfied, we can safely apply rule (13) which,
after saturation w.r.t. rule (10), leads to the closure of all branches from θ.
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The procedure HSaturate(T , V ) saturates in a systematic way and un-
der strictness hypothesis the non-closed branches of the input tableau T
with respect to rules (1)-(11) and rule (13) of Table 2 (case A). Each
branch θ in the tableau T , constructed by procedures HMLSS tableau test(S)
and HSaturate(T , V ), is annotated with the attributes Diversifiedθ and
To be diversifiedθ. Roughly speaking, the set Diversifiedθ consists of all pairs
(x1, x2) of variables in VS for which there exists another variable u ∈ Vs ∪ T
such that u ∈ xi and u /∈ x3−i are in θ, for some i ∈ {1, 2}. On the other hand,
the set To be diversifiedθ consists of all pairs (x1, x2) of variables in VS such
that the branch θ contains either the literal xi 6= x3−i or the literals xi ∈ y and
x3−i /∈ y, for some y ∈ VS .

In view of what has just been said, it follows that the set ∆θ consists
of all those pairs (x1, x2) of variables which are mapped into the same set
by the realization Rθ but that need to be diversified in order for the branch
to be satisfiable.

5. Correctness of the Procedure HMLSS tableau test

We show that the procedure HMLSS tableau test described in Section 4 is
totally correct, by first proving its termination and then its partial cor-
rectness. This, in particular, entails immediately the completeness of our
tableau calculus.

5.1. Termination

Termination of the procedure HSaturate is carried out as in [3]. In particular,
to prove termination for HMLSS tableau test , we only need to show that its
while-loop can only be executed finitely many times. We call T ∗ the tableau
limit constructed by HMLSS tableau test . To begin with, we notice that T ∗
must be finite. Indeed, if T ∗ were infinite, then by König’s lemma it would
have an infinite branch θ∗. This is possible only if the branch θ∗ is processed
infinitely many times by instructions 9-21 with the consequence that the set
Diversifiedθ∗ would be properly incremented infinitely many times. But this
would lead to a contradiction, since Diversifiedθ ⊆ VS × VS and moreover for
each branch θ the value of the attribute Diversifiedθ is monotonic increasing,
during execution of HMLSS tableau test .

Having proved that T ∗ is finite, to show termination of the procedure
HMLSS tableau test , it is now enough to observe that at least one node is added
to the tableau at each iteration of the while-loop of HMLSS tableau test .
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5.2. Partial Correctness

We prove partial correctness of the procedure HMLSS tableau test under the
following assumptions, which will be discharged later:

A1. The assert statement ∆θ 6= ∅ of line 10 of the procedure
HMLSS tableau test is always true when encountered.

A2. If rule (13) is applied either in case A or in case B to a pair of variables
(x, y) on a branch θ, then Rθ̄x = Rθ̄y each time the realization Rθ̄ is
computed, for every prolongation θ̄ of θ.

Under assumptions A1 and A2, one can check that the procedure
HMLSS tableau test can only return its control either

• when it finds a realization Rθ satisfying one of the tableau branches (line
7); in this case the realization Rθ must in particular satisfy the input
collection S of HMLSS-literals, or

• when all tableau branches are closed (line 33); in this case, because of the
soundness of rules (1)-(12) and of rule (13) (guaranteed under assumption
A2), it follows immediately that the input set must be unsatisfiable.

Indeed, by Lemma 5.5 below, if there is a non-closed branch θ in T not satisfied
by Rθ (line 9), some of the literals of types x /∈ y, x = y \ z, or x 6= y are not
satisfied. As illustrated by Lemma 5.8, literals not satisfied by Rθ are used to
determine the pairs of variables (x1, x2) ∈ VS × VS that need to be diversified
in order to make θ satisfiable (these pairs belong to ∆θ).

For every pair (x1, x2) ∈ ∆θ, at most one attempt of diversification is
carried out with rule (12) (lines 11-12). If all the pairs of ∆θ have already been
processed by rule (12), namely all of them belong to Diversifiedθ as well, then
θ must be closed by an application of rule (13) case B (lines 22-27).

Assumptions A1 and A2 are discharged in Sections 5.2.1 and 5.2.2, respec-
tively. In Section 5.2.3 we provide some further information on the decision
procedure HMLSS tableau test in Fig. 3. In particular we show how to charac-
terize the pairs of variables that will never be diversified on the current branch
θ and that, therefore, cause its closure by an application of rule (13) case B
(Lemma 5.9). We also give a characterization of the pairs of variables that can
be diversified by rule (12) (Lemma 5.9). If all the pairs of variables in ∆θ are
of the latter type, the procedure behaves in the same way as the one in [3].

5.2.1. Proof of Assumption A1

We recall some notions and lemmas introduced in [3], which will be useful later.

Lemma 5.1. At any step during the construction of a tableau by means of pro-
cedures HMLSS tableau test and HSaturate, the following facts hold:
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(a) if a literal x ∈ y is added to a branch θ, then y ∼θ y′, for some y′ in VS.

(b) If Rθx = Rθy, with x and y distinct variables, then there exist x′, y′ in
VS such that x ∼θ x′ and y ∼θ y′.

Lemma 5.2. Let θ be a non-closed branch saturated w.r.t. to rules (1)-(11).
Then the realization Rθ defined as before satisfies all literals occurring in θ of
the following types:

x = y ∪ z, x = y ∩ z, x = {y1, . . . , yk},
x = y, x ∈ y.

Moreover, for each literal x = y \ z in θ, we have Rθy \Rθz ⊆ Rθx.

Let θ be a non-closed branch of the tableau T returned by some call to
procedure HSaturate during the execution of HMLSS tableau test(S), and let
VS , T , ∼θ, T ′, V ′, Gθ, and Rθ be defined as before. Let also To be diversifiedθ,
Diversifiedθ be the attributes of θ computed by procedures HMLSS tableau test
and HSaturate. Furthermore, for (u1, u2), (w1, w2) ∈ ∆θ, let us put (u1, u2) ≺θ
(w1, w2) if there exist i, j ∈ {1, 2} such that the literals ui ∈ wj and u3−i /∈ wj
are in θ. We have the following properties.

Lemma 5.3. If (w,w′) ∈ ∆θ ∩ Diversifiedθ, then there exists (u, u′) ∈ ∆θ such
that (u, u′) ≺θ (w,w′).

Proofs of Lemmas 5.1, 5.2, and 5.3 can be found in [3]. The next lemma
guarantees the correctness of rule (13) when applied in case A.

Lemma 5.4. Let θ be a non-closed branch and let x1, x2 be two variables of VS
satisfying the constraints of case A of rule (13). Then, for every non-closed
prolongation θ̄ of θ obtained from θ by saturating it w.r.t. to rules (1)-(11), it
holds that Rθ̄x1 = Rθ̄x2.

Proof. We recall that x1 and x2 satisfy case A of rule (13) if it is possible
to construct two pointed flat systems of equations Ex1 = (X,A, e, x1) and
E ′x2

= (X ′, A′, e′, x2) such that:

a. X,X ′ ⊆ VS ,

b. for every u ∈ X and v ∈ X ′

1. ∅ 6= eu ⊆ X and ∅ 6= e′v ⊆ X ′,
2. u = eu, v = e′v are literals occurring in θ,

c. Ex1
and E ′x2

are bisimilar.
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Let θ̄ be any prolongation of θ obtained according to the hypothesis. Then,
by Lemma 5.2, Rθ̄ satisfies all literals of type x = {y1, . . . , yk} occurring on θ̄.
Among these it satisfies the literals u = eu, v = e′v, for every u ∈ X and v ∈ X ′.

By saturation of θ̄ w.r.t. rules (8) and (9), for every u ∈ X and v ∈ X ′

it holds
Gθ̄(u) = {x̄ : x̄ ∼θ̄ x, x ∈ eu}

Gθ̄(v) = {ȳ : ȳ ∼θ̄ y, y ∈ e′v}.

We recall that for every x ∈ VS , Gθ̄(x) = Ge
θ̄
(x) holds, where Ge is the function

of the flat system of equations E = (V ∪ T, {vt : t ∈ T}, Ge) described in
Section 3.2.1. Then, under the hypothesis that Ex1

and E ′x2
are bisimilar, the

pointed flat systems Ex1
and Ex2

must be bisimilar too and, by Theorem 2.6,
Rθ̄x1 = Rθ̄x2.

The following variant of Lemma 5.2 can easily be proved using the same
procedure adopted in [3] to prove Lemma 5.2, and applying Lemma 5.4 to treat
literals of type x = y derived by the application of rule (13) case A.

Lemma 5.5. Let θ be a non-closed branch saturated by an application of the
procedure HSaturate. Then, the realization Rθ defined as before satisfies all
literals occurring in θ of the following types:

x = y ∪ z, x = y ∩ z, x = {y1, . . . , yk},

x = y, x ∈ y.

Moreover, for each literal x = y \ z in θ, we have Rθy \Rθz ⊆ Rθx.

The next lemma proves assumption A1.

Lemma 5.6. If θ is a branch saturated w.r.t. the procedure HSaturate but not
satisfied by Rθ, then ∆θ 6= ∅.

Proof. If θ is a branch saturated w.r.t. the procedure HSaturate but not satis-
fied by Rθ, we are in the “else” block of the first “if” condition of procedure
HMLSS tableau test . Let l be a literal on θ not satisfied by Rθ. Then, by the
preceding lemma, the literal l can only be of type x /∈ y, or x = y \ z, or x 6= y.
Thus we have the following cases.

Case: x /∈ y. If l is the literal x /∈ y, then our assumption that Rθ does not
satisfy l implies that Rθx ∈ Rθy. Thus either x ∈ y is in θ, or the
literal x′ ∈ y is in θ, for some variable x′ distinct from x and such that
Rθx

′ = Rθx . The first case cannot occur, since by hypothesis the branch
is not closed. Thus the latter case must hold. By Lemma 5.1 we can
assume w.l.o.g. that x, x′, y are in VS . Thus (x, x′) ∈ ∆θ and therefore
∆θ 6= ∅.



A TABLEAU SYSTEM 183

Case: x = y \ z. Rθ does not satisfy a literal of type x = y \ z, where we
can assume w.l.o.g. that x, y, z ∈ VS . By the preceding lemma Rθx  
Rθy \Rθz. Hence there must exist an s ∈ Rθx such that s /∈ Rθy \Rθz.
We have that s = Rθw, for some variable w for which the literal w ∈ x is
in θ. But then, by saturation w.r.t. rule (6), it would follow that w ∈ y
and w /∈ z are in θ, so that s = Rθw ∈ Rθy. Thus we must also have
s ∈ Rθz, which yields the existence of a variable w′ distinct from w
such that the literal w′ ∈ z is in θ and such that Rθw = Rθw

′. Thus
(w,w′) ∈ ∆θ and therefore ∆θ 6= ∅.

Case: x 6= y. Assume that Rθ does not satisfy a literal of type x 6= y. With-
out loss of generality, we may assume that x, y ∈ Vs. Therefore, since
Rθx = Rθy, it follows at once that (x, y) ∈ ∆θ.

5.2.2. Proof of Assumption A2

Assumption A2 is proved by the following lemma.

Lemma 5.7. If rule (13) is applied either in case A or in case B to a pair of
variables (x, y) on a branch θ, then Rθ̄x = Rθ̄y each time the realization Rθ̄ is
computed, for every prolongation θ̄ of θ.

Proof. If rule (13) is applied with the restrictions described in case A, then the
thesis follows by Lemma 5.5 and from the fact that since θ is an open branch
the pair (x, y) /∈ ∆θ and (x, y) will never be processed by rule (12). If rule
(13) is applied to (x, y) in case B, all prolongations of θ will be closed without
computing the realization anymore. Thus the thesis follows.

5.2.3. Some Additional Results on the Behavior of the Procedure

In this section we introduce two lemmas showing in which cases a pair of
variables (x1, x2) ∈ ∆θ can be diversified by rule (12) only. Such results are
interesting because one may notice that if all the pairs of variables in ∆θ can
be diversified by rule (12), then the procedure described in this paper behaves
like the one in [3]. On the other hand, if ∆θ contains at least one pair of
variables (x1, x2) that cannot be diversified by rule (12), rule (13) case B
must be applied in order to close the branch.

In the following lemma we show how effective a diversification step can be.

Lemma 5.8. Let (w1, w2) be a pair of variables chosen from the set ∆θ \
Diversifiedθ when executing line 11 of the procedure HMLSS tableau test(S).
Then the following implications hold:

(a) If a literal of the form wi = {y1, . . . , yk} occurs in θ, for some i ∈ {1, 2},
then there are m ≥ k prolongations θ1, θ2, . . . , θm of θ, obtained by ap-
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plying rule (12) and procedure HSaturate to the branch θ, such that
Rθjw1 = Rθjw2, for j = 1, 2, . . . ,m.

(b) If no literal of the form wi = {y1, . . . , yk} occurs in θ, for i ∈ {1, 2}, then
for every open prolongation θ̄ of θ, obtained by applying rule (12) and
procedure HSaturate to the branch θ, it holds that Rθ̄w1 6= Rθ̄w2.

Proof. Let (w1, w2) ∈ ∆θ \Diversifiedθ as in the hypothesis.

Concerning (a), let wi = {y1, . . . , yk} occur in θ, for some i ∈ {1, 2}. Then
the pair (w1, w2) still has to be processed by rule (12). It holds that Rθw1 =
Rθw2, and either the literal w1 6= w2 or the literals wi ∈ z and w3−i ∈ z occur
in θ, for some z ∈ VS .

Applying rule (12) as shown by lines 13-21 of the procedure
HMLSS tableau test , three branches are constructed. Among them let us con-
sider the one to which the literals u ∈ wi and u /∈ w3−i are added, where u is
a newly introduced variable.

By the application of rule (9) with premises wi = {y1, . . . , yk} and u ∈
wi, taking place during the execution of the procedure HSaturate, m ≥ k
prolongations θ1, θ2, . . . , θm of θ are created such that Rθjw1 = Rθjw2, for
j = 1, 2, . . . ,m.

Concerning (b), let us assume that we apply rule (12) to the pair (w1, w2)
and without loss of generality let us consider the prolongation of θ obtained
by adding literals u ∈ wi and u /∈ w3−i (we could have also considered the
prolongation of θ obtained by adding literals u /∈ wi and u ∈ w3−i). Since no
literal of type wi = {y1, . . . yk} is on the branch and u /∈ VS , we can apply
neither rule (9) nor rule (13) to put u in relation ∼θ with some variable of
VS . Then, according to the definitions given in Section 4, u ∈ T ′ and therefore
Rθ̄w1 6= Rθ̄w2. In fact Rθ̄w3−i cannot contain any a such that a = Rθ̄u.
Moreover if the literal u ∈ w′ such that w′ ∼θ w3−i is on the branch we can
derive a contradiction.

In the following lemma, pairs of variables (w1, w2) in ∆θ that cannot be
diversified by rule (12) are characterized as the ones for which a pointed flat
system Ewi , for some i ∈ {1, 2}, is entirely contained in θ.

Lemma 5.9. If ∅ 6= ∆θ ⊆ Diversifiedθ, then there exists a ≺θ-cycle containing
(w1, w2), for every (w1, w2) ∈ ∆θ. Moreover, elements of ∆θ can be character-
ized as being the pairs of variables (w1, w2) in VS such that for some i ∈ {1, 2}
it is possible to construct a pointed flat system Ewi = (X,A, e, wi) satisfying

1. X ⊆ VS,

2. for every x ∈ X, x = ex is a literal occurring in θ.
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Proof. Let (w1, w2) be an element of ∆θ. Since ∆θ ⊆ Diversifiedθ, then
(w1, w2) ∈ ∆θ ∩ Diversifiedθ and, by Lemma 5.3, there exists an infinite de-
scending ≺θ-chain starting with (w1, w2). But ∆θ ∩ Diversifiedθ is finite, and
thus there must exist a ≺θ-cycle containing (w1, w2).

To prove that when ∆θ ⊆ Diversifiedθ the elements of ∆θ are characterized
as specified above, take a pair (w1, w2) occurring in ∆θ ⊆ Diversifiedθ. (w1, w2)
has been processed by rule (12) and, after its application on branch θ, Rθw1 =
Rθw2. Since ∆θ ⊆ Diversifiedθ, by Lemmas 5.3 and 5.8, (w1, w2) fulfills the
conditions of the lemma. On the other hand, let (w1, w2) be a pair fulfilling
the conditions of the lemma on a branch θ′ and still not processed by rule (12).
Then it can easily be checked (by iterated applications of Lemmas 5.3 and 5.8)
that there is a prolongation θ′′ of θ′ such that ∅ 6= ∆θ′′ ⊆ Diversifiedθ ′′ and
(w1, w2) ∈ ∆θ′′ .

Let us now make some considerations on the above two lemmas. Lemma
5.8(a) says that if for one of the two variables w1 and w2 chosen for the ap-
plication of rule (12) a literal of the form wi = {y1, . . . , yk} is in θ, after the
application of rule (12) and subsequent saturation of the branches carried out
by the procedure HSaturate there will be some prolongation θ̄ of θ such that
Rθ̄w1 = Rθ̄w2.

This situation is not problematic, as w1 and w2 can still be diversified by
the diversification of some of their elements, namely of some pair (u1, u2) such
that (u1, u2) ≺θ̄ (w1, w2). Diversification of (u1, u2) is possible only if the
pair satisfies the condition in Lemma 5.8(b), that is if for every i ∈ {1, 2} no
literal of the form ui = {v1, . . . , vm} occurs on the current branch θ̄. Clearly,
if Rθ̄u1 6= Rθ̄u2, it also holds that Rθ̄w1 6= Rθ̄w2. Cases like this are handled
without using rule (13) and thus the procedure behaves in the same way as
the one described in [3]. If the pair (w1, w2) chosen for the application of rule
(12) fulfills the conditions specified by Lemma 5.9, then w1 and w2 cannot be
diversified by any number of applications of rule (12), and thus rule (13) must
be applied.

6. Some Examples

In light of what has been proved and discussed in the previous sections, we
examplify some applications of the procedure HMLSS tableau test in which,
for conciseness, the tableaux illustrated in the figures below represent only the
relevant parts of the proofs produced by the procedure. Let ϕ1 be the HMLSS-
conjunction x = {x} ∧ y = {y} ∧ x 6= y. A closed tableau for ϕ1 is illustrated
in Fig. 4. Notice that the literal x = y could be added to the branch because
x and y satisfy the restrictions of rule (13), case A.

Next, let ϕ2 be the HMLSS-conjunction x ∈ x ∧ y ∈ y ∧ x 6= y. ϕ2 differs
from ϕ1 because while in ϕ1 the structure of the hypersets x and y is completely
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determined by the literals x = {x} and y = {y}, such constraints are not present
in ϕ2. The formula ϕ2 turns out to be satisfiable, as shown by the tableau
described in Fig. 5. The first branch of the tableau is closed while the second
and third ones are open and satisfiable. The second branch θ2 is satisfied by the
realization Rθ2u = {vt}, for some suitable set vt, Rθ2x = {Ω, {vt}}, Rθ2y = Ω.
The third branch is satisfied by Rθ3u = {vt}, Rθ3x = Ω, Rθ3y = {Ω, {vt}}.
Notice that the tableau has been constructed without applying rule (13). In
cases like this the procedure behaves just as the one presented in [3].

Consider again ϕ1 and construct a closed tableau for it avoiding to use rule
(13) case A. The resulting tableau is the one depicted in Fig. 6. As one may
notice, the tableau in Fig. 4 is quite smaller.

7. Conclusions

We have presented a decision procedure for the fragment HMLSS of the hyperset
theory. The algorithm proposed is similar to a tableau saturation strategy
introduced in [3] in the context of the MLSS fragment. Switching from the
well-founded to the non-well-founded setting required the construction of some
means to deal with membership cycles, namely rule (13), which has been used
to derive bisimilarity relations between the variables of the given formula.

To guarantee correct application of the rule on a branch to a pair of variables
(x1, x2), one must check that the branch considered, which is open and not
satisfied by the realization, is saturated with respect to the rules (1)-(11), (13)
case A and to the rule (12), up to the relation ∼θ. In fact, in this case
the dependency graph will not be enriched by new relevant information after
further applications of the rules (1)-(12) and the variables x1, x2 of the pair
(x1, x2) can be therefore guaranteed to remain bisimilar.

Several fragments of well-founded set theory have already been shown to
possess a decision procedure [4, 5]. It would be interesting to extend to the
hyperset context some of such most basic decidability results.
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procedure HMLSS tableau test(S)
– VS the collection of variables occurring in S and
– T the initial tableau induced by S.

1. for θ ∈ T do
2. Diversifiedθ := ∅;
3. end for;
4. T := HSaturate(T , VS);
5. while there exists a non-closed branch θ in T do
6. if Rθ satisfies θ then
7. return “input formula is satisfied by Rθ”
8. else
9. put ∆θ = {(w,w′) ∈ VS × VS : Rθw = Rθw

′} ∩ To be diversifiedθ;
10. assert: ∆θ 6= ∅
11. if ∆θ \Diversifiedθ 6= ∅ then
12. pick (x, y) ∈ ∆θ \Diversifiedθ;
13. apply rule (12) to (x, y):
14. let u be the next unused variable;
15. split the branch θ into three branches θ1, θ2, and θ3, where

θ1 = θ;u ∈ x, u /∈ y;
θ2 = θ;u /∈ x, u ∈ y;
θ3 = θ;x = y;

16. and put
17. To be diversifiedθ1 := To be diversifiedθ;
18. To be diversifiedθ2 := To be diversifiedθ;
19. To be diversifiedθ3 := To be diversifiedθ;
20. Diversifiedθ1 := Diversifiedθ2 :=

Diversifiedθ ∪ {(x′, y′)(y′, x′) ∈ VS × VS : x′ ∼θ x, y′ ∼θ y};
21. Diversifiedθ3 := Diversifiedθ;

– Notice that after saturation w.r.t. rule (10), all branches
– from θ3 will be closed.

22. else
23. choose (x1, x2) ∈ ∆θ ∩Diversifiedθ;
24. apply rule (13) (case B) to (x1, x2):
25. θ1 := θ;x1 = x2;
26. To be diversifiedθ1 := To be diversifiedθ;
27. Diversifiedθ1 := Diversifiedθ;

– Notice that after saturation w.r.t. rule (10), all branches
– from θ1 will be closed.

28. end if ;
29. assign to T the resulting tableau;
30. T := HSaturate(T , VS);
31. end if ;
32 end while;
33. return “input formula is unsatisfiable, as proved by the closed tableau T ”
end procedure

Figure 3: The HMLSS-tableau test procedure.
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(1.) x = {x}

(2.) y = {y}

(3.) x 6= y

(4.) x = y

∗

Figure 4: A closed tableau for ϕ1.
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(1.) x = {x}

(2.) y = {y}

(3.) x 6= y

(4.) x = y

∗

(5.) u ∈ x

(6.) u /∈ y

(9.) u = x

(10.) u = {u}

(11.) u ∈ u

(12.) u 6= y

(13.) x = y

∗

(7.) u /∈ x

(8.) u ∈ y

(14.) u = y

(15.) u = {u}

(16.) u ∈ u

(17.) x 6= u

(18.) x = y

∗

Figure 6: A closed tableau for ϕ1 without the application of rule (13) case B.

Figure 6: A closed tableau for ϕ1 without the application of rule (13) case B.
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