
Rend. Istit. Mat. Univ. Trieste
Volume 42 (2010), 147–163.

Hybrid Automata and Bisimulations

Alberto Casagrande

Abstract. This paper surveys hybrid automata and bisimulation rela-
tions. We formally introduce both notions and briefly present the model
checking problem over hybrid automata. We show how, in some cases,
bisimulations can be used to quotient infinite state systems to finite
ones and, hence, we reduce the model checking over hybrid automata to
model checking over finite models. Finally, we review some classes of
hybrid automata which admit finite bisimulation quotients.

Keywords: Hybrid Systems, Bisimulation, Model Checking.

MS Classification 2010: 34A38 , 68Q05, 03B45

1. Introduction

Hybrid systems are systems exhibiting a mixed discrete-continuous behaviour
which cannot be described in a proper way using either discrete or continu-
ous models. Such systems consist of a discrete program within a continuously
changing environment and they are very common in many fields such as auto-
motive, where car engine’s physics are ruled by four different phases, or control
theory, in the case of digital devices designed to control continuous phenomena.
Moreover, hybrid systems are even present in less “canonical” contexts in which
the discrete program is not artificial. In particular, we can find hybrid systems
in biology where substance concentrations of a living organism are ruled by
continuous laws which change according to a phase cycle.

The notion of hybrid automaton was introduced to model hybrid systems
(see e.g., [1]). Intuitively, a hybrid automaton is a “finite-state” automaton with
continuous variables which evolve according to a set of continuous laws, called
dynamics, characterising each discrete location. Hybrid automaton semantics
can be given as a labelled transition system over an infinite set of states.

Once hybrid automata have been chosen as formalism to describe hybrid
systems, one may want to use them to establish properties of the systems
themselves. Model checking is a technique used to automatically investigate
formal models and prove properties expressed by peculiar classes of logics such
as temporal logics or µ-calculi. Although it was initially introduced to handle
finite Kripke structures only, whenever we can encode the original model within
such formalisms, we can apply the almost classical algorithms presented in the
literature and deduce system properties such as safety or liveness.

148 ALBERTO CASAGRANDE

In the following sections, we briefly introduce Kripke structures, temporal
logics, and model checking, we describe bisimulation relations and formalize
hybrid automata, and, finally, we suggest how bisimulation can be used to
investigate hybrid automata and review some of the classes of such formalism
which admit a finite bisimulation quotient.

2. Kripke Structures and Temporal Logics

In order to verify the behaviour of a system, we need both a formal model of
it and a way to indicate its properties. Kripke structures and temporal logics
are used to formally specify a system and to denote the system’s properties,
respectively. Roughly, a Kripke structure is a labelled transition system whose
states are labelled through a set of propositional symbols.

Definition 2.1 (Labelled Transition System). A labelled transition system is
a tuple 〈Q,∆,−→〉 such that:

• Q is a non empty set of states;

• ∆ is a set of edge’s labels;

• −→ is a transition relation on Q and ∆. Specifically, −→⊆ Q × ∆ × Q.
Any element in −→ is called edge or arc of the structure. We will write
ℓ

α
−→ ℓ′ meaning 〈ℓ, α, ℓ′〉 ∈→.

We will use S to indicate a set of propositional symbols and, for any set X,
2X to indicate the powerset of X.

Definition 2.2 (Kripke Structure [6]). A Kripke structure, K, is a tuple K =
〈Q,∆,−→,LS〉 where:

• 〈Q,∆,−→〉 is a labelled transition system;

• LS : Q 7→ 2S is a labeling function which tags each state ℓ with a set of
propositional symbols. LS(ℓ) is the set of all the symbols true in ℓ.

Without loss of generality, we may assume that transition relations are total
i.e., for every ℓ ∈ Q there exists a ℓ′ ∈ Q such that ℓ −→ ℓ′.

Temporal logics (see, for instance, [20, 10]) may be used to denote Kripke
structure’s properties. Such formalisms extend the propositional logic and ex-
press properties of transition sequences. In particular, besides using atomic
propositions and traditional Boolean connectives, temporal logics may specify
time properties such as: “property p will eventually hold”, “from now on prop-
erty q will hold” or “property r will never hold”. These time properties are
described using specific temporal operators and path quantifiers which depend
on the particular temporal logic adopted. Examples of temporal logics are

HYBRID AUTOMATA AND BISIMULATIONS 149

Computation Tree Logic-* (CTL*) [10], Computation Tree Logic (CTL) [10],
and Linear Temporal Logic (LTL) [20].

Example 2.3 (Computation Tree Logic-* [10]). Let K = 〈Q,∆,−→,LS〉 be a
Kripke structure. There are two kinds of CTL*-formulæ over K: state formulæ,
which hold in a particular state of K, and path formulæ, which hold along a
K’s path. A state formula has one of the following forms:

• p, where p ∈ S ;

• ¬ϕ, ϕ ∨ ψ, or ϕ ∧ ψ, where both ϕ and ψ are state formulæ;

• Eϕ or Aϕ, where ϕ is a state formula.

The syntax of path formulæ is detailed in the following rules:

• if ϕ is a state formula, then ϕ is also a path formula;

• if ϕ and ψ are path formulæ, then ¬ϕ, ϕ∨ ψ, ϕ∧ ψ, ◦ϕ, 3ϕ, 2ϕ, ψUϕ,
and ψRϕ are path formulæ.

We now give the semantics of CTL* with respect to K. We use the symbols π
and πi to denote a path of K and the suffix of π beginning with the state qi ∈ Q,
respectivelly. If ϕ1 and ϕ2 are state formulæ and ψ1 and ψ2 are path formulæ,
then the relation |= is inductively defined as follows:

K, ℓ |= p ⇐⇒ p ∈ LS(ℓ)
K, ℓ |= ¬ϕ1 ⇐⇒ K, ℓ |= ϕ1 does not hold
K, ℓ |= ϕ1 ∨ ϕ2 ⇐⇒ either K, ℓ |= ϕ1 or K, ℓ |= ϕ2

K, ℓ |= Eψ1 ⇐⇒
there exists a path π issuing from ℓ such that
K, π |= ψ1

K, π |= ϕ1 ⇐⇒ the first state ℓ of π is such that K, ℓ |= ϕ1

K, π |= ¬ψ1 ⇐⇒ K, π |= ψ1 does not hold
K, π |= ψ1 ∨ ψ2 ⇐⇒ either K, π |= ψ1 or K, π |= ψ2

K, π |= ◦ψ1 ⇐⇒ K, π1 |= ψ1

K, π |= ψ1Uψ2 ⇐⇒
there exists a k such that K, πk |= ψ2 and for
all j < k K, πj |= ψ1

The formulæ φ1 ∧ φ2, ψ1Rψ2, 3ψ, 2ψ, and Aϕ are shortcuts for ¬(¬φ1 ∨
¬φ2), ¬(¬ψ1U¬ψ2), ⊤Uψ, ¬3¬ψ, and ¬E¬ϕ, respectivelly.

Given a Kripke structure K, a state ℓ of K, and a temporal formula ϕ, the
problem of deciding whether K, ℓ |= ϕ holds or not, i.e., whether ϕ hold or
not in ℓ, is known in the literature as the model checking problem [8]. Despite
this problem not being always decidable, many techniques and algorithms have
been developed to answer specific instances of it; for the sake of example,
there exist effective methods to solve CTL* model checking over finite Kripke
structures [7, 8].

150 ALBERTO CASAGRANDE

3. Bisimulation Relations

The notion of bisimulation has been introduced in many fields with different
purposes (see, e.g., [21, 19, 11, 18, 9]). For instance, van Benthem proposed it
as an equivalence principle between structures [21].

Roughly, a Kripke structure K bisimulates a Kripke structure K′, if every
behaviour of K′ can be matched by K and vice versa.

Definition 3.1 (Bisimulation Relation). Let K = 〈Q,∆,−→,LS〉 and K′ =
〈Q′,∆,−→′,LS ′〉 be two structures. A relation B ⊆ Q × Q′ is a bisimulation
relation between K and K′ if and only if, for all 〈ℓ, ℓ′〉 ∈ B:

• LS(ℓ) = LS ′(ℓ′);

• for all ℓ̃ ∈ Q and α ∈ ∆ such that ℓ
α
−→ ℓ̃, there exists a ℓ̃′ such that

ℓ′
α
−→

′
ℓ̃′ and 〈ℓ̃, ℓ̃′〉 ∈ B;

• for all ℓ̃′ ∈ Q′ and α ∈ ∆ such that ℓ′
α
−→

′
ℓ̃′, there exists a ℓ̃ such that

ℓ
α
−→ ℓ̃ and 〈ℓ̃, ℓ̃′〉 ∈ B.

If there exists a bisimulation relation B between K and K′ and 〈ℓ, ℓ′〉 ∈ B
then we say that ℓ and ℓ′ are bisimilar and we write ℓ ≈ ℓ′. By extension, if
there exists a bisimulation relation B between K and K′, then we say that K
and K′ are bisimilar and we write K ≈ K′.

It is easy to prove that the reflexive, symmetric, and transitive closure of any
bisimulation is a bisimulation. The following lemma characterizes the relation
“to be bisimilar to”, denoted by ≈.

Lemma 3.2 (From [17]). The relation ≈, restricted to the states of a Kripke
structure K, is an equivalence and it is the maximal bisimulation between the
states of K, i.e., if B is a bisimulation between the states of K, then B ⊆≈.

Bisimulation equivalence preserves CTL*-properties: if two Kripke struc-
tures are bisimulation equivalent, then they satisfy the same CTL* formulæ.

Theorem 3.3 (From [19]). Let K = 〈Q,∆,−→,LS〉 and K′ = 〈Q′,∆,−→′,LS ′〉
be two structures. For all CTL* formulæ ϕ with atomic propositions in S and
for all ℓ ∈ Q and ℓ′ ∈ Q′ such that ℓ ≈ ℓ′, K′, ℓ′ |= ϕ if and only if K, ℓ |= ϕ.

Let K = 〈Q,∆,−→,LS〉 be a Kripke structure. Since ≈ restricted to Q is

an equivalence relation, we can build the structure K≈
def

= 〈Q≈ ,∆,−→≈ ,LS≈〉,

whereQ≈
def

= {[ℓ]≈ |ℓ ∈ Q}, [q]≈ is the equivalence class of≈ containing q, −→≈
def

=

{〈[ℓ]≈ , σ, [ℓ′]≈〉|〈ℓ, σ, ℓ′〉 ∈−→}, and LS≈([ℓ]≈)
def

= LS(ℓ). Whereas ℓ′ ∈ [ℓ]≈ if and
only if ℓ ≈ ℓ′, LS(ℓ) = LS(ℓ′) for all ℓ′ ∈ [ℓ]≈ by definition of bisimulation and
K≈ is well defined. The Kripke structure K≈ is the bisimulation quotient, or
quotient by maximum bisimulation, of K.

HYBRID AUTOMATA AND BISIMULATIONS 151

It is easy to see that the relation {〈ℓ, [ℓ]≈〉|ℓ ∈ Q} is a bisimulation between
a Kripke structure K = 〈Q,∆,−→,LS〉 and its quotient by maximal bisimulation
K≈ and, by Theorem 3.3, that K and K≈ are CTL*-equivalent, i.e., they satisfy
the same CTL* formulæ. In particular, this is true even if the original Kripke
structure K has an unbounded number of states and the state space of its
bisimulation quotient is finite.

4. Hybrid Automata

Hybrid automata were introduced in [16, 1] as models for hybrid systems. In
order to define such a formalism, we first need to introduce some conventions.
Capital letters Z , Z ′, Zm, and Zm

′, wherem ∈ N, denote variables ranging over
R. Analogously, Z denotes the vector of variables 〈Z1, . . . , Zd〉 and Z

′ denotes
the vector 〈Z1

′, . . . , Zd
′〉. The temporal variables T , T ′, T0,. . . , Tn model time

and range over R≥0. We use the small letters p, q, r, s, . . . to denote vectors
of real numbers. Occasionally, we write ϕ[Z1, . . . , Zm] to stress the fact that
the set of free variables of the first-order formula ϕ is included in the set of
variables {Z1, . . ., Zm}. Given a formula ϕ[Z

1
, . . ., Z

i
, . . ., Z

n
] and a vector

p having the same dimension as Z
i
, the formula obtained by component-wise

substitution of Z
i
with p is denoted by ϕ[Z

1
, . . ., Z

i−1
, p, Z

i+1
, . . ., Z

n
]. When

the only free variables in ϕ are the components of Z
i
, after the substitution we

can determine the truth value of ϕ[p].
We are now ready to define hybrid automata. For each node of a graph, we

have an invariant condition and a dynamic law. The dynamic law may depend
on the initial conditions, i.e., on the values of the continuous variables at the
beginning of the evolution in the node. Jumps from one discrete location to
another are regulated by activation conditions and reset maps.

Definition 4.1 (Hybrid Automata - Syntax). A hybrid automaton H having
dimension d(H) ∈ N is a tuple (Z, Z′, V, E, Inv, f·, Act, Res) where:

• Z = 〈Z1, . . ., Zd(H)〉 and Z
′ = 〈Z1

′, . . ., Z
d(H)

′〉 are two vectors of
variables ranging over the reals R;

• 〈V, E〉 is a graph. Each element of V will be dubbed location or mode;

• Each vertex v ∈ V is labelled by both a formula Inv(v) [Z], called in-
variant, and a function fv : Rd(H) −→ (R≥0 −→ Rd(H)), called dy-
namics. The dynamics may be specified either by differential equations,
i.e., fv is the solution of a given Cauchy problem, or by a logic formula.
We use the formula Dyn(v)[Z,Z′, T] to denote the dynamics on v i.e.,

Dyn(v)[Z,Z′, T]
def

= Z
′ = fv(Z)(T);

• Each edge e ∈ E is labelled by the formulæ Act(e)[Z] and Res(e)[Z,Z′]
which are called activation and reset, respectively.

152 ALBERTO CASAGRANDE

Let us notice that, whenever the dynamics are given as differential equa-
tions, they benefit from the properties of the differential equations themselves.
For instance, the solutions of a vector field are derivable and transitive.

If all the defining formulæ belong to the same logical theory T , then we say
that the hybrid automaton is definable in T or that it is a T hybrid automaton.

Whenever a reset does not depend on the Z interpretation (i.e., for any p,
q, and p′ in Rd(H), if both Res(e)[p, q] holds, then Res(e)[p′, q] holds too), we
say that the reset is constant.

We present hybrid automaton semantics as transition systems: given an
initial state, we can deduce the evolution of a hybrid automaton by iteratively
applying the transition relation which is associated to the automaton itself.
Since hybrid automata have a double nature, the transition systems defin-
ing their semantics contains two different transition relations: the continuous
reachability transition relation and the discrete reachability transition relation.

Definition 4.2 (Hybrid Automaton - Semantics). A state ℓ of H is a pair
〈v, r〉, where v ∈ V is a location and r ∈ Rd(H) is an assignment of values for
the variables of Z. A state 〈v, r〉 is said to be admissible if Inv(v) [r] holds.

The continuous reachability transition relation
t
−→C between states, with

t ≥ 0 denoting the transition elapsed time, is defined as follows:

〈v, r〉
t
−→C 〈v, s〉 ⇐⇒

r = fv(r)(0), s = fv(r)(t), fv(r) is continuous
in [0, t], and Inv(v) [fv(r)(t

′)] hold for each t′ ∈
[0, t]. In such a case, fv(r) is called flow function.

The discrete reachability transition relation
e
−→D among admissible states

is defined as follows:

〈v, r〉
e
−→D 〈u, s〉 ⇐⇒

e ∈ E, with v and u source and destination of e,
respectively, and Act(e)[r] and Res(e)[r, s] hold.

We write ℓ →C ℓ′ and ℓ →D ℓ′ to mean that there exists a t ∈ R≥0 such

that ℓ
t
−→C ℓ′ and that there exists an e ∈ E such that ℓ

e
−→D ℓ′, respectively.

Building upon a combination of both continuous and discrete transitions,
we can formulate the notion of reachability.

Definition 4.3 (Hybrid Automata - Reachability). The hybrid automaton H
reaches a state ℓn from a state ℓ0 if there exists a sequence of admissible states
ℓ0, . . . , ℓn such that ℓi−1 → ℓi holds for all i ∈ [1, n] and either ℓi−2 →C

ℓi−1 →D ℓi, ℓi−2 →D ℓi−1 →D ℓi, or ℓi−2 →D ℓi−1 →C ℓi for all i ∈ [2, n]1. In
such a case, we also say that ℓn is reachable from ℓ0 in H.

The problem of deciding whether a hybrid automaton H reaches a set of
states T from a second set of states S is known as the reachability problem of
T from S over H. There exist hybrid automata over which the reachability
problem is not decidable [1].

1This last condition supports not transitive dynamics. See [5] for a complete discussion.

HYBRID AUTOMATA AND BISIMULATIONS 153

5. Hybrid Automata and Model Checking

In order to automatically verify properties of a hybrid automaton, one may be
tempted to consider classical model checking techniques (see e.g., [8]). Unfortu-
nately, this aim is suddenly frustrated because such techniques can be applied
only to finite Kripke structures. We can obtain a Kripke structure from a hy-
brid automaton by considering the semantics of the automaton itself together
with a function, definable in the same logical theory used to specify activations
and invariants, which labels the system’ states with sets of opportune propo-
sitional symbols (e.g., “admissible state” or “unwanted state”). The Kripke
structure obtained in such a way has as many states as the original hybrid au-
tomaton and, since hybrid automata are infinite state models by definition, the
standard model checking techniques cannot be directly applied in this context.

Many authors suggested the use of equivalence reductions based on relations
such as simulation or bisimulation. Given a hybrid automaton, we can deduce
the Kripke structure corresponding to its semantics and we may try to reduce
the state space of it by computing the quotient by maximal bisimulation of the
structure itself. Since such quotient is bisimilar to the original structure, they
satisfy the same CTL*-formulæ. By Theorem 3.3, whenever the bisimulation
quotient of a hybrid automaton is finite, we can verify CTL* properties of the
system by applying finite model checking techniques to its quotient.

Since time domain is dense, the labels in the continuous transition system
defining the semantics of any hybrid automaton are infinite in number and any
quotient preserving them has an infinite set of states. Thus, we have the chance
to shrink state set exclusively by abstracting the time and bisimulations may re-
duce to finite structures only time-abstract semantics i.e., 〈V× Rn,−→,E ∪ {⊥}〉

where
e
−→ is

e
−→D, if e ∈ E, and it is →C otherwise. We call such relations time-

abstract bisimulations. In the context of hybrid systems, the terms bisimulation
and bisimulation quotient are usually synonymous with time-abstract bisimu-
lation and time-abstract bisimulation quotient.

6. Hybrid Automata and Finite Bisimulation Quotient

Any hybrid automaton reduced by time-abstract bisimulation preserves the
original reachability properties. However, though there exists an effective way
to establish the reachability on finite transition systems, the reachability prob-
lem over hybrid automata is not always decidable [1]. It follows that not all
hybrid automata admit a finite time-abstract bisimulation quotient.

In this section, we report about some interesting classes of hybrid automata
whose time-abstract bisimulation quotient is finite. If we are able to compute
their quotients, and this is not always the case, then we can reduce them and
apply classical model checking techniques for finite Kripke structures.

154 ALBERTO CASAGRANDE

6.1. Timed Automata

Timed automata are hybrid automata whose variables represent time clocks.
When a timed automaton crosses an edge, each variable can either be reset to
zero or maintain its value. The following definition formalizes timed automata.

Definition 6.1 (Timed Automaton [2]). A timed automaton H is a hybrid
automaton such that for each v ∈ V, e ∈ E, and variables Zi and Zj:

• the dynamics of Zi on v are Żi = 1;

• Res(e) either does not change the value of Zi or resets Zi to 0;

• both Inv(v) [Z] and Act(e)[Z] are Boolean combinations of terms of the
form either Zi ≍ c or Zi − Zj ≍ c where c ∈ Q and ≍∈ {<,≤,=,≥, >}.

All timed automata have a finite time-abstract bisimulation quotient [2].
In order to prove such a statement, we build a finite-index equivalence relation
∼H over the interpretations of the variables of a generic timed automaton H.
For each variable Zi, let ci be the largest constant in the terms of H containing
Zi as well. For any x, y ∈ Rd(H), x ∼H y if and only if for all i, j ∈ [1, d(H)]:

• either ⌊xi ∗ d⌋ = ⌊yi ∗ d⌋ or both xi > ci and yi > ci,

• if xi ≤ ci and xj ≤ cj , then fract (xi ∗ d) ≤ fract (xj ∗ d) iff fract (yi ∗ d) ≤
fract (yj ∗ d),

• if xi ≤ ci, then fract (xi ∗ d) = 0 iff fract (yi ∗ d) = 0,

where xi is the i-th component of x, fract (x) is the fractional part of x, and d is
the least common denominator of all the ci’s. The relation ∼H is an equivalence
and the classes induced by ∼H are dubbed clock regions for H.

The number of clock regions is upper bounded by 6d(H)Π
d(H)
i=1 (ci + 1) and,

hence, ∼H has finite index for any timed automaton H.

The relation ≃H= {〈〈v, r〉 , 〈v, r′〉〉 | r ∼H r′} is a bisimulation for H. As a
matter of fact, invariants and activations of H cannot discriminate two variable
interpretations in the same clock region. Moreover, the dynamics are such that,
whenever two values x, y ∈ Rd(H) lay in the same clock region and there exists
a x′ ∈ Rd(H) such that 〈v, x〉 →C 〈v, x′〉, there should exists a y′ ∈ Rd(H) such
that 〈v, y〉 →C 〈v, y′〉 and y ∼H y′. Thus, ≃H is a bisimulation with respect
to →C and, since each variable can be reset to either 0 or identity, ≃H is a
bisimulation with respect to

e
−→D too. It follows that ≃H is a bisimulation and

a finite-index equivalence relation between pairs of states of H.

HYBRID AUTOMATA AND BISIMULATIONS 155

0 d 2d 3d 4d ci = 5d
0

d

2d

cj = 3d

Zi

Zj

Figure 1: A two dimensional projection of timed automaton clock regions.
Arrows over clock regions describe possible continuous evolutions.

6.2. Multirate Automata

Timed automaton variables correspond to clocks and their derivatives are set
to 1. In multirate automata, variable derivatives may have any rational values.

Definition 6.2 (Multirate Automata [1]). A multirate automaton H is a hy-
brid automaton such that for each v ∈ V, e ∈ E, and variables Zi and Zj:

• the dynamics of Zi on v are Żi = ci where ci ∈ Q does not depend on the
location;

• Res(e) either does not change the value of Zi or resets Zi to 0;

• both Inv(v) [Z] and Act(e)[Z] are Boolean combinations of terms of the
form either Zi ≍ c or Zi − Zj ≍ c where c ∈ Q and ≍∈ {<,≤,=,≥, >}.

Example 6.3 (From [1]). The water level of a sump should remain between 1
and 12 centimeters. For such a reason, a monitor continuously controls and
regulates the water height by switching on and off a pump. When the pump
is off, the water level decreases by 2 centimeters per second, while, when it is
on, the water grows by 1 centimeter per second. The switching time is not
instantaneous and the pump takes 2 seconds to turn on or off. For such a
reason, the monitor should turn on the pump before the water height reaches 1
centimeters and turn off it before the water level raises over 12 centimeters.

Figure 2 depicts the described monitor. The two variables Z1 and Z2 rep-
resent the elapsed time from the last switch and the water level, respectively.

156 ALBERTO CASAGRANDE

Ż1 = 1

Ż2 = 1

Ż2 ≤ 10

Ż1 = 1

Ż2 = 1

Ż2 ≤ 2

Ż1 = 1

Ż2 = −2

Ż2 ≥ 5

Ż1 = 1

Ż2 = −2

Ż2 ≤ 2

Z2 = 10

Z1 ← 0

Z1 = 2

Z2 = 5

Z1 ← 0

Z1 = 2

Figure 2: A water-level monitor.

It is known that the reachability problem for multirate automata is un-
decidable [1] and, hence, they do not admit finite time-abstract bisimulation
quotient. However, such a result is based on one’s ability to compare variables
having different dynamics. Finite bisimulation quotient can be achieved never-
theless by avoiding comparisons between variables. Simple multirate automata
have been introduced in [1] for such a purpose.

Definition 6.4 (Simple Multirate Automaton [1]). A multirate automaton is
simple if, for all locations v and edges e, all the atoms in the formulæ Inv(v),
Act(e), and Res(e) are of the form Zi ≤ ci or ci ≤ Zi, where ci ∈ Q.

Simple multirate automata can be encoded into timed automata by both ad-
justing variable derivatives to 1 and syntactically replacing all the occurrences
of any variable Zi in Inv(v), Act(e), and Res(e) with ci ∗Zi. The obtained hy-
brid automaton is a timed automaton whose transitions mimic the transitions
of the corresponding simple multirate automaton.

Theorem 6.5 (From [1]). All the simple multirate automata admit finite time-
abstract bisimulation quotients.

Proof. Let H = (Z, Z′, V, E, Inv , f·, Act , Res) be a simple multirate automa-
ton such that the dynamics of Zi are Żi = ci. Let us consider the automaton
H ′ = (Z, Z′, V, E, Inv ′, f ′· , Act

′, Res ′) such that, for any location v ∈ V, edge
e ∈ E, and variable Zi:

• the dynamics of Zi in v are Żi = 1;

HYBRID AUTOMATA AND BISIMULATIONS 157

• the formulæ Inv ′(v), Act ′(e), and Res ′(e) are obtained from Inv(v),
Act(e), and Res(e), respectively, by syntactically replacing any occur-
rence of Zi with ci ∗ Zi.

The automaton H ′ is timed automaton. If r = 〈r1, . . . , rn〉, p = 〈p1, . . . , pn〉,

c = 〈c1, . . . , cn〉, and c ∗ p = 〈c1 ∗ p1, . . . , cn ∗ pn〉, then 〈v, r〉
t
−→C 〈v, p〉 in H

if and only if 〈v, c ∗ r〉
t
−→C 〈v, c ∗ p〉 in H ′. Analogously, 〈v, r〉

e
−→D 〈v, p〉 in H

if and only if 〈v, k ∗ r〉
e
−→D 〈v, k ∗ p〉 in H ′. It follows that B is a bisimulation

between H’s states if and only if B′ = {〈〈v, c ∗ p〉 , 〈v′, c ∗ r〉〉 | 〈〈v, p〉 , 〈v′, r〉〉 ∈
B} is a bisimulation between H ′’s states. Since timed automata admit time-
abstract finite quotient bisimulation, so do multirate automata.

6.3. O-minimal Hybrid Automata

Both timed automata and simple multirate automata exhibit very simple dy-
namics and, hence, they can hardly be used to model complex phenomena. In
order to bypass such a limitation, we can restrict resets to constant maps and
focus on the theory used to express the dynamics themselves.

An interesting class of theories is the class of O-minimal theories.

Definition 6.6 (O-Minimal Theory [22]). Let L be a first-order language whose
set of relational symbols includes a binary symbol < and letM be a model of L
in which < is interpreted as a linear order and whose support is M . The theory
T (M) is order minimal, or simply O-minimal, if every subset of M definable
in T (M) is a union of finitely many points and intervals (with respect to <).

O-minimal theories include theories such as 〈R, 0, 1,+, ∗, <〉, also known as
Tarski theory, 〈R, 0, 1,+, ∗, ex, <〉, which augments the Tarski theory with the
exponential function ex, and 〈R, 0, 1,+, ∗, (f)f∈an, <〉, which is 〈R, 0, 1,+, ∗, <〉
extended with the set of all the real-analytic functions from [−1, 1]n to R.

O-minimal hybrid automata are hybrid automata whose invariants, dynam-
ics, resets, and activations are definable in the same O-minimal theory and
whose resets are constant.

Definition 6.7 (O-minimal Hybrid Automaton [15]). An O-minimal hybrid
automaton is a T hybrid automaton such that T is O-minimal, Res(e) is con-
stant for all e ∈ E, and whose dynamics are given as vector fields.

Example 6.8. An O-minimal hybrid automaton can be used to model a simple
thermostat. Two discrete locations represents the two states of the thermostat
(i.e., “heater on” and “heater off”) and dynamics depict the temperature evo-
lution in each of such two states. Whenever the temperature reaches 15 degrees
the heater is activated, while, if the temperature rises up to 20 degrees, the

158 ALBERTO CASAGRANDE

Ż = −krZ

10 ≤ Z ≤ 30

Ż = kh − krZ

10 ≤ Z ≤ 30

Z = 15

Z ← 15

Z = 20

Z ← 20

Figure 3: A simple thermostat.

heater is turned off. In the automaton graphical representation depicted in Fig-
ure 6.8, the two constants kr and kh are the dispersion and heating coefficients,
respectively, while the variable Z represents the room temperature.

Every O-minimal hybrid automaton admits a finite bisimulation quotient.
Let us notice that the existence of a finite bisimulation quotient does not imply
that such a quotient is computable: there may be O-minimal hybrid automata
whose maximal bisimulation is not computable at all.

Since the resets of any O-minimal hybrid automaton are constants, it admits
a finite bisimulation quotient if and only if all the time-abstract transition
systems induced by the continuous evolutions in each locations do the same.
In order to prove such property, we first need to introduce the notion of cell of
a theory T or, simply, T -cell.

Definition 6.9 (T -Cell [14]). Let T be a theory which interprets < as a linear
order and whose support is M . By induction on n, a T -cell in Mn is:

n = 1: either a singleton {r}, where r ∈M is definable in T , or a T -definable
open interval (a, b) ⊆M ;

n > 1: one of the following sets Cf = {〈x1, . . . , xn−1, r〉 | f(x) = r}, C ↑f =
{〈x1, . . . , xn−1, r〉 | f(x) < r}, C ↓f = {〈x1, . . . , xn−1, r〉 | r < f(x)}, or

C lfg = C ↑f ∩ C ↓g where C ⊆ Mn−1 is a T -cell and f, g : C → M are
continuous functions definable in T such that f < g.

The following result has been given in [14].

Theorem 6.10 (Cell Decomposition). Let T be an O-minimal theory whose
support is M . For any finite collection {A1, . . . , Al} of subsets of Mn definable
in T , there exists a partition {C1, . . . , Cm} of Mn such that all the Ci’s are
T -cells and the finite collection complies with the partition in the sense that all
the Ai’s are union of some of the classes of the partition.

HYBRID AUTOMATA AND BISIMULATIONS 159

Since dynamics are expressed as vector fields and they are autonomous, we
can deduce from Theorem 6.10 that any O-minimal hybrid automaton admits a
finite time-abstract bisimulation quotient. As stated above, we may be unable
to compute such a quotient and, actually, the computability of it is guaranteed
only for automata whose defining theory is decidable [15].

6.4. STORMED Hybrid Automata

In previous subsections, we have reviewed some hybrid automaton classes which
admit finite time-abstract bisimulation quotients. We imposed many limita-
tions to either resets or dynamics to achieve such a result. For instance, simple
multirate automata admit identity resets, but they are equipped with very
simple dynamics. On the contrary, O-minimal hybrid automata have memory-
less resets, while their continuous evolutions may be rather complex. All the
limitations imposed in previous sections are, in some sense, both local and syn-
tactic, as they can easily be checked by analyzing the syntactic structure of all
the formulæ in hybrid automaton definition and do not constrain directly the
overall automaton evolutions. Vladimerou et al. identify a new class of hybrid
automata with finite time-abstract bisimulation quotient by imposing some
global constraints on the semantics of both dynamics and resets [23]. Hybrid
automata satisfying such constraints are called STORMED hybrid automata.

The definition of STORMED imposes a sort of spatial goal for the automa-
ton evolutions and requires the distance from such a goal to decrease monoton-
ically through both continuous flows and discrete jumps. The absence of Zeno
behaviors (i.e., evolutions with an infinite number of discrete jumps in a finite
amount of time) are guaranteed by the monotonicity and by guard separability.
This is enough to ensure finite time-abstract bisimulation quotient.

In order to formalize STORMED automata, we first need some definitions.

Definition 6.11 (Time-Independent Spatially-Consistent). Given a hybrid au-
tomaton H, its dynamics are said to be time-independent spatially-consistent,
or TISC, if fv(r) is continuous, fv(r)(0) = r, and fv(r)(t+ t′) = fv(r

′)(t′) for
all v ∈ V, all r, r′ ∈ Rd(H), and all t, t′ ∈ R≥0 such that fv(r)(t) = r′.

Let us notice that TISC property are ensured for hybrid automata whose
dynamics are specified as vector fields.

Definition 6.12 (Separable Guards). Let H = (Z, Z
′, V, E, Inv, f·, Act,

Res) be a hybrid automaton. If there exists a d ∈ R>0 such that ‖r1 − r2‖ ≥ d
for all e1, e2 ∈ E and all r1, r2 ∈ Rd(H) with Act(e1)[r1] and Act(e2)[r2], then
H is said to have separable guards. In such a case, H is said to be d-separable.

Separable guards avoid non-deterministic selections between two alternative
discrete jumps from the same state and help to avoid Zeno behaviors, i.e.,
infinite jumps in a finite amount of time.

160 ALBERTO CASAGRANDE

Definition 6.13 (Monotonic Flows). Let H = (Z, Z
′, V, E, Inv, f·, Act,

Res) be a hybrid automaton and let r ∈ Rd(H) be a vector. The flows of H are
monotonic with respect to r if there exists an ǫ ∈ R>0 such that for all v ∈ V,
all s ∈ Rd(H), and all t, τ ∈ R≥0:

r · (fv(s)(t+ τ)− fv(s)(t)) ≥ ǫ ‖fv(s)(t+ τ)− fv(s)(t)‖ .

In such a case, such flows are (ǫ, r)-monotonic.

Definition 6.14 (Monotonic Resets). Let H = (Z, Z
′, V, E, Inv, f·, Act,

Res) be a hybrid automaton and let r ∈ Rd(H) be a vector. The resets of H are
monotonic with respect to r if there exists an ǫ, γ ∈ R>0 such that for all e ∈ E

and all s1, s2 ∈ Rd(H) which satisfy Res(e)[s1, s2], it holds that:

• if the source and the destination of e are the same location, then either
s1 = s2 or r · (s2 − s1) ≥ γ;

• if e’s source and destination differ, then r · (s2 − s1) ≥ ǫ‖s2 − s1‖.

In such a case, resets are (ǫ, γ, r)-monotonic.

If flows are (ǫ, r)-monotonic, then their projections on the vector r mono-
tonically diverge from the initial evolution point, pi. Analogously, (ǫ, γ, r)-
monotonic resets do not decrease the distance from pi. Hence, if we bound by
definition the activation regions along the axis associated with r, then both
the maximum number of admissible discrete jumps and the maximum elapsed
time in valid evolutions of the automaton should be bounded.

We are now able to formally present STORMED hybrid automata.

Definition 6.15 (STORMED Hybrid Automata [23]). A STORMED hybrid
automaton H is a hybrid automaton such that there exist b−, b+, dmin ∈ R,
ǫ, γ ∈ R>0, and ψ ∈ Rd(H) and the following conditions hold:

S the activation regions are dmin-Separable;

T the flows are TISC;

O H is definable in a O-minimal theory;

RM Resets and flows are (ǫ, γ, ψ)-Monotonic and (ǫ, ψ)-monotonic, respec-
tively;

ED Ends are Delimited: the projections of the activation regions on ψ are
upper bounded by b+ and lower bounder by b−.

STORMED hybrid automata admit finite time-abstract bisimulation quo-
tient and, if the theory used to define the automaton is decidable, then there
exists an effective algorithm for computing such a quotient [23].

HYBRID AUTOMATA AND BISIMULATIONS 161

7. Conclusions

This article relates hybrid automata, bisimulation, and model checking, show
that bisimulation can be used to reduce infinite systems to finite ones, and
reviews some of the classes of hybrid automata presented in the literature which
admit finite time-abstract bisimulation quotient. In order to achieve these
goals, we formalized both labelled transition systems and Kripke structures and
we briefly described temporal logics. We detailed bisimulation and bisimulation
quotient and we related them with the model checking problem. Moreover,
we introduced hybrid automata from both syntactic and semantical points of
view and we suggested that time-abstract bisimulation quotient may be used to
reduce model checking over hybrid automata to finite structure model checking.
Finally, we surveyed some of the classes of hybrid automata for which the
existence of a finite time-abstract bisimulation quotient is guaranteed.

Although not many classes of hybrid automata admit a finite time-abstract
bisimulation quotient and though the expressiveness of such classes suffers
many limitations in either dynamics, resets, or global evolutions, bisimulation
still remains a powerful instrument for the investigation of such framework and,
more in general, of infinite state models. In particular, the surroundings avoid-
ing finite index bisimulations seem to be more linked to the extreme suppleness
of the hybrid automaton formalism than to real world models. As, in some
sense, proved by STORMED hybrid automata, the possibility of chopping the
space further and further, due to the density of variable domain, together with
the unboundedness of the real variable values are the main reasons of infinite-
index time-abstract bisimulation. However, such conditions are far from been
natural: which thermostat cares about one millionth or one million degrees?
which rule discriminates one amstrong or one parsec? Because of such reasons,
even if it is hard to identify general classes of hybrid automata having finite
time-abstract bisimulation quotient, it is more likely to run into a particular
model which possesses such feature. Moreover, in recent years, we have seen
many proposals to identify either a coarser definition of bisimulation [13, 12]
or a rougher interpretation for the automata evolutions [3, 4]. Such efforts will
certainly open a new frontier in the model checking of infinite-state models
and call again for the use of bisimulation and, more in general, of partial order
reductions as appealing tools to investigate hybrid automata.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis and S. Yovine, The algorithmic analysis

of hybrid systems, Theoret. Comput. Sci. 138 (1995), 3–34.
[2] R. Alur and D.L. Dill, A theory of timed automata, Theoret. Comput. Sci.

126 (1994), 183–235.

162 ALBERTO CASAGRANDE

[3] A. Casagrande, C. Piazza and A. Policriti, Discreteness, hybrid automata

and biology, in the proceedings of the 9th international workshop on discrete

event systems (Göteburg, Sweden). IEEE Computer Society Press (2008), 281–
286.

[4] A. Casagrande, C. Piazza and A. Policriti, Discrete semantics for hybrid

automata, Discrete Event Dyn. Syst. 19 (2009), 471–493.
[5] A. Casagrande, C. Piazza, A. Policriti and B. Mishra, Inclusion dynam-

ics hybrid automata, Inform. and Comput. 206 (2008), 1394–1424.
[6] E.M. Clarke and E.A. Emerson, Design and synthesis of synchronization

skeletons using brancing time temporal logic, in the proceedings of the workshop
Logics of programs (Yorktown Heights, New York), LNCS volume 131, Springer,
Berlin (1981), 52–71.

[7] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of

finite-state concurrent systems using temporal logic specifications, ACM Trans.
Progr. Lang. Syst. 8 (1986), 244–263.

[8] E.M. Clarke, O. Grumberg and D.A. Peled, Model checking, MIT Press,
Boston (1999).

[9] E.E. Doberkat, The converse of a stochastic relation, J. Log. Algebr. Program.
62 (2005), 133–154.

[10] E.A. Emerson and E.M. Clarke, Using branching time temporal logic to

synthesize synchronization skeletons, Sci. Comput. Program. 2 (1982), 241–266.
[11] M. Forti and F. Honsell, Set theory with free construction principles, Annali

Scuola Normale Superiore di Pisa Cl. Sc. IV (1983), 493–522.
[12] A. Girard, A. Agung Julius and G. J. Pappas, Approximate simulation

relations for hybrid systems, Discrete Event Dyn. Syst. 18 (2008), 163–179.
[13] A. Girard and G.J. Pappas, Approximation metrics for discrete and continu-

ous systems, IEEE Trans. Automat. Control 52 (2007), 782–798.
[14] J.F. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered struc-

tures II, Trans. Amer. Math. Soc. 2 (1986), 593–605.
[15] G. Lafferriere, G.J. Pappas and S. Sastry, O-minimal hybrid systems,

Math. Control Sign. Syst. 13 (2000), 1–21.
[16] O. Maler, Z. Manna and A. Pnueli, From timed to hybrid systems, in J.W.

de Bakker, C. Huizing, W.P. de Roever and G. Rozenberg, Real-time:

theory in practice, Springer, Berlin (1991), 447–484.
[17] R. Milner, A calculus of communicating systems, Springer, Berlin (1982).
[18] R. Milner, Communication and concurrency, Prentice-Hall Inc., Upper Saddle

River (1989).
[19] D.M.R. Park, Concurrency and automata on infinite sequences, in the pro-

ceedings of 5th GI-Conference on Theoretical Computer Science (London, U.K.),
LNCS volume 104, Springer, Berlin (1981), 167–183.

[20] A. Pnueli, The temporal logic of programs, in the proceedings of the 18th Annual

Symposium on Foundations of Computer Science, (Rhode Island, U.S.A.), IEEE
Computer Society Press (1977), 46–57.

[21] J. van Benthem, Modal correspondence theory, Ph.D. thesis, Department of
Mathematics, University of Amsterdam, Amsterdam, The Netherlands (1978).

[22] L. van den Dries and C. Miller, Geometric categories and O-minimal struc-

HYBRID AUTOMATA AND BISIMULATIONS 163

tures, Duke Math. J.l 84 (1996), 497–540.
[23] V. Vladimerou, P. Prabhakar, M. Viswanathan and G.E. Dullerud,

STORMED hybrid systems, in the proceedings of the 35th International Collo-

quium on Automata, Languages and Programming, LNCS volume 5126, Springer,
Berlin (2008), 136–147.

Author’s address:

Alberto Casagrande
Dipartimento di Matematica e Informatica
Università degli Studi di Trieste
Via Valerio 12/1, 34127 Trieste, Italy
E-mail: acasagrande@units.it

Received September 15, 2010
Revised October 17, 2010

