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Gauge Theory:

from Physics to Geometry1

Ugo Bruzzo

Abstract. Maxwell theory may be regarded as a prototype of gauge
theory and generalized to nonabelian gauge theory. We briefly sketch
the history of gauge theories, from Maxwell to Yang-Mills theory, and
the identification of gauge fields with connections on fibre bundles. We
introduce the notion of instanton and consider the moduli spaces of such
objects. Finally, we discuss some modern techniques for studying the
topology of these moduli spaces.
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1. Introduction

The title of a famous paper by Eugene Wigner, “The unreasonable effective-
ness of mathematics in the natural sciences” [56], has by now become almost
a commonplace. Here I would like to turn it upside-down, and make it into
“the unreasonable effectiveness of nature in teaching us mathematics”. There
have been indeed remarkable instances where physical theories have provided
formidable input to mathematicians, offering the stimulus to the creation of new
mathematical theories, and supplying strong evidence for highly nontrivial the-
orems. A striking example of this new kind of interaction between mathematics

1This paper is an elaboration of the contents of a talk given in a meeting in occasion of the
40th anniversary of Rendiconti dell’Istituto di Matematica dell’Università di Trieste. I thank
the organizers of the meeting for their invitation, and Claudio Bartocci for a useful conversa-
tion about the development of gauge theory. I also thank Giuseppe Bruzzaniti for reading the
manuscript and for helping with the pictures, and Alessandro Tanzini for suggestions. The
original results I cite in this text have been obtained in collaboration with Francesco Fucito,
Dimitri Markushevich, José Morales, Rubik Poghossian and Alessandro Tanzini (in different
combinations). This paper was written while I was visiting the Department of Mathematics
of the University of Pennsylvania for the Fall 2010 term; I thank Penn for hospitality and
support, and the staff and the scientists at the Department of Mathematics for providing an
enjoyable and productive atmosphere. The original research on which this paper is based
was supported by prin “Geometria delle varietà algebriche e dei loro spazi di moduli” and
the infn project pi14 “Nonperturbative dynamics of gauge theories”.
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and physics is string theory, with its relation with the theory of invariants of
algebraic varieties. A beautiful account of the interplay between string theory
and mathematics, from the point of view of string dualities, is provided in [40].

Another major character in this story is gauge theory. If we were to pin-
point a starting point of gauge theory, we could go back to Maxwell equations.
These equations crowned 200 years of experimental and theoretical research,
to which one can associate such names as Nollet, Coulomb, Ampère, Arago,
Ørsted, Faraday, Henry, Neumann, Maxwell.... The fields entering the Maxwell
equations, the electric and magnetic fields, may be written in a suitable way
as derivatives of two potentials, the scalar and the vector potential. However,
these potentials are defined up a suitable combination of the derivatives of an-
other scalar field; this is the “gauge invariance” of electromagnetism. Now,
the essence of gauge theory, from the physical viewpoint, is that this gauge
invariance dictates the way matter interacts via the electromagnetic fields. A
first attempt to implement this idea, as a way to unify electromagnetism with
gravitation, was done in 1918 by Hermann Weyl [54]. His theory was not suc-
cessful, for some reasons that we cannot examine here, however it contained
many ideas that found applications and were developed later on, such as the
role of conformal geometry. He also introduced the term “gauge”.

The first workable gauge theory after electromagnetism is Yang-Mills the-
ory, of which we shall give some outline in the next section. The paper by Yang
and Mills was published in 1954. However gauge theory entered the mathemat-
ical scene only when it was realized that a gauge field may be pictured as a
connection on a fibre bundle. To my knowledge, the first paper where such a
relationship was explicitly suggested is a 1958 paper by Dennis Sciama [52],
even though Utiyama’s paper [53] already contains the mathematics of this
relationship, albeit in local, coordinate form. Precusors of this interpretation
were the already mentioned paper by Weyl [54], a 1953 letter by Pauli to A.
Pais [49], and others.

However, only in the late 70s the mathematics of gauge theory became a
mainstream subject of study for mathematicians. A search on Mathematical
Reviews will show that in the years 1977 and 1978 a huge number of papers was
published on the mathematics of gauge theory, most of them related in some
way to M. F. Atiyah and his collaborators. Here we shall only cite [1, 4, 6].
Afterwards, the work of S. K. Donaldson,1 (a student of Atiyah’s, and a 1986
Fields Medal recipient) showed that gauge theory is a powerful tool for the
study of the geometry of four-manifolds — in particular, SU(2) gauge theory.2

Given a (compact, oriented) four-manifold X, the moduli space of SU(2)

1See [19] and references therein.

2Donaldson wrote the first paper on this topic [16] when he still was a graduate student.
According to the words of Michael Atiyah [2], that paper “stunned the mathematical world.”
Michael Atiyah himself got a Fields Medal in 1966.
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instantons — a space which parametrizes connections of a particular kind, that
we shall introduce in section 3 — allows one to associate with X some invari-
ants, that are able to distinguish between different differentiable structures on
X. This allowed for spectacular advances in the study of the topology and
geometry of four-manifolds.

The moduli space of instantons is also at the base of some constructions
that are being used to establish unexpected and highly nontrivial relations
between different invariants that one can associate to geometric spaces, such
as the Gromov-Witten and the Seiberg-Witten invariants. Our purpose in this
paper is to give a rough sketch of the inception of gauge theories, starting
from Maxwell theory and from there moving to Yang-Mills theory. We shall
introduce the concept of instanton, and will briefly explain what their moduli
space is. From there we shall go to the moduli spaces of framed sheaves, which
provide a desingularization of the moduli space of instantons, and will show
how a technique called “instanton counting” allows one to study the topology of
these moduli spaces. This knowledge is important in the physical applications
of this theory.

In no way this paper pretends to give a full account of the history of gauge
theory,3 or of the relations between the mathematics and the physics of gauge
theory. Neither there is any claim to originality. Our only aim is to sketch
a path from Maxwell theory to some modern developments of gauge theory
that may highlight some points of interest and motivate further study into the
subject.

2. Maxwell Equations

The Maxwell equations are a system of partial differential equations for the
electric field E and the magnetic field B, with the electric charge density ρ and
the electric current density vector j acting as sources.4 In the CGS system of
units they read as

divE = 4πρ

rotB =
4π

c
j +

1

c

∂E

∂t
divB = 0

rotE = −1

c

∂B

∂t

3For a fuller account of the early developments of gauge theories the reader may wish
to consult [48]. This is a collection of original papers, some translated from German, with
comments and an introductory chapter by the editor L. O’Raifeartaigh.

4Good, classical references for the physics and mathematics of Maxwell equations, and
their four-dimensional formulation, are [36, 39].
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Several features of the electromagnetic field, that gave rise to highly non-
trivial developments, may be drawn from these equations. The main ones that
come to my mind are the following.

(i) A current is just electric charge in movement. Thus, different observers,
in relative motion, will see different values for the charge and current
density fields. For instance, if some observer just sees a distribution
of electric charges at rest, and no electric current, another observer in
relative motion will see some current, in addition to some charge. In
view of Maxwell’s equations, we may expect the same to be true for
the electric and magnetic fields: the value of E and B will be observer-
dependent, and moreover, we may expect that the transformation laws
for these fields under change of observer will “mix” these fields: the value
of the electric field for the observer “in motion” will depend on the values
of both the electric and magnetic fields as seen by the observer “at rest”,
and the same for the magnetic field.

(ii) After some manipulations, from Maxwell’s equations in the absence of
sources (i.e., with j = ρ = 0) one can obtain the wave equations for the
electric and magnetic fields:

∆E =
1

c2
∂2E

∂t2
, ∆B =

1

c2
∂2B

∂t2
.

The constant c, that appeared in Maxwell’s equations, plays now the role
of speed of propagation for the electromagnetic waves (also called speed of
light since light turns out just to be a form of electromagnetic waves). The
constant c can be measured in a laboratory by means of experiments in
electrostatics and magnetostatics. What is striking in this state of affairs
is that c appears to be the speed of light for every observer for which
the Maxwell equations hold. If we assume — as it seems quite natural to
do — that the Maxwell equation hold for any inertial observer, we have
a contradiction with Galilean relativity, which would prescribe different
speeds for the electromagnetic waves for different observers. This seeming
contradiction is one of the roots of special relativity. According to that
theory, Maxwell equations hold for any inertial observer, and the speed
of light has the same value for all inertial observers. Of course, the price
to be paid is that Galilean relativity should be relinquished and replaced
by Einstenian relativity, with its nontrivial law of addition of velocities.

(iii) The electric and magnetic fields can be written in terms of a scalar field
φ (the scalar potential) and a vector field A (the vector potential), ac-
cording to the equations

E = − gradφ− 1

c

∂A

∂t
, B = rotA . (1)
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It turns out that these potential are fixed by the electromagnetic field
up to a combination of the derivatives of an indeterminate scalar field
(function); let us call it ψ. If we set

A′ = A + gradψ, φ′ = φ− 1

c

∂ψ

∂t
(2)

the pairs (A, φ) and (A′, φ′) determine via the equation (1) the same
electromagnetic fields E and B. This freedom may be used to “gauge”
the potentials A, φ in a way to simplify the treatment of some specific
problem. For instance, if the potentials satisfy the condition (Lorentz
gauge condition)

divA +
1

c

∂φ

∂t
= 0

then A and φ satisfy the inhomogeneous wave equation with sources given
by the charge and current densities:

∆A− 1

c2
∂2A

∂t2
=

4π

c
j, ∆φ− 1

c2
∂2φ

∂t2
= 4π ρ .

The Lorentz condition can always be met up to solving a partial differ-
ential equation: indeed, if (A, φ) is any given pair of potentials, and ψ is
a scalar field satisfying the inhomogeneous wave equation

∆ψ − 1

c2
∂2ψ

∂t2
= −divA− 1

c

∂φ

∂t

then the potentials (A′, φ′) given by the equations (2) satisfy the Lorentz
gauge condition.

One outcome of this discussion is that electromagnetism should be more sat-
isfactorily formulated in a four-dimensional setting, i.e., as a field theory on
the four-dimensional Minkowski spacetime of special relativity. In this way
the Maxwell equations explicitly display their invariance under the special-
relativistic group of reference transformations (the Poincaré group). This in-
variance is not too easily detected from the three-dimensional equations we
have previously written. Let us write the Maxwell equations in this way. One
organizes the components of electromagnetic fields into a 4×4 matrix (the in-
dexes µ, ν run form 0 to 3)5

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0


5In this part of our treatment we assume that the signature of the Minkowski metric is

(+−−−), in accordance with the usage in physics.
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and from this one defines a differential 2-form (i.e., a skew-symmetric covariant
two-tensor)

F = 1
2

∑
µ,ν=0,...,3

Fµν dx
µ ∧ dxν .

Analogously, one assembles the sources into a differential 1-form (a covariant
four-vector)

jµ = (cρ,−j), j =

3∑
µ=0

jµ dx
µ

Maxwell equations may now be written as

dF = 0, ∗d∗ F = 4π
c j

where d is the exterior (Cartan) differential, and ∗ denoted the Hodge dual. In
component notation, these may be written as

∂µFνλ + ∂λFµν + ∂νFλµ = 0,

3∑
ν=0

∂νFνµ = 4π
c jµ .

The homogeneous Maxwell equations dF = 0 allow one to write F = dA for a
differential 1-form A. Again, in components this reads Fµν = ∂µAν − ∂νAµ. If
we set A = (cφ,−A), the equation F = dA turns out be the four-dimensional
form of equations (1). The 1-form A is called the electromagnetic potential.

Since d2 = 0 (this is Schwarz’s lemma about the symmetry of the
second derivatives of a sufficiently smooth function), F is invariant under
the transformation

A 7→ A+ dψ . (3)

Thus we recover the gauge transformations (2). The advantage of putting these
equations into this new form is that it suggests a very interesting geometric
interpretation.6 Let P → X be a U(1) principal bundle on a differentiable
manifold X, equipped with a connection ω (we shall use the same symbol
for the associated differential form on the total space P of the bundle).7 Let
f : P → P be a vertical automorphism of P , i.e., a diffeomorphism which maps
fibres to fibres and is U(1)-equivariant, f(ug) = f(u)g if u ∈ P and g ∈ U(1).
The automorphism f acts on the connection by pullback

ω 7→ f∗(ω) , (4)

producing in general a new connection. The transformation (4) is called a
gauge transformation.

6For an introduction to the geometry of gauge theories the reader may consult [10].

7For the theory of principal bundles and connections we refer the reader to [38].
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The base manifold X is to be identified with spacetime, and if we want to
write equations on spacetime, we need to pullback the quantities defined on P
to X using a section σ of P , that is, a differentiable map σ : X → P such that
π ◦ σ = idX , where π : P → X is the projection. However such a section exists
if and only if P is trivial, which in general is not the case (see the remark at
the end of this section). Then we may consider local sections σ : U → P , and
set A = σ∗ω. A section establishes an isomorphism P|U ' U × U(1) by letting
u 7→ (x, g), where x = π(u), and g is the element of U(1) such that u = σ(x)g.
Under such an isomorphism, the restriction of the vertical automorphism f to
P|U may be identified with a map f̃ : U → U(1).

Now, if we have two sections σ, σ′, and σ′ = σ · f̃ , one has A′ = A+ f̃−1df̃ ,
and, if we set ψ = log f̃ , we get the transformations (2). Thus, the gauge
trasformation of electromagnetism may be regarded as gauge transfomations in
the sense of bundle theory. We need to identify the electromagnetic potential
with a connection on a U(1) bundle: the vertical automorphisms of the bundle
will reproduce the gauge transformation of electromagnetism. Moreover, the
field strength F = dA turns out to be the curvature of the connection.

If we allow the base X of the principal bundle to have nontrivial topology
— so that P itself may be nontrivial — we get interesting effects. Assume for
instance that a certain field configuration is time independent in some refer-
ence frame, and that the associated 3-space has the topology of S2 × R. The
dependence on the radial coordinate is easily separated and solved, and one is
left with a U(1) bundle on S2. Such bundles are topologically classified by an
integer (the first Chern class). In physics the resulting field strength is called a
Dirac monopole, and the first Chern class is called the charge of the monopole.8

3. Yang-Mills Fields

Once electromagnetism is given this geometric interpretation, it is quite natu-
ral to argue that one can generalize it by replacing the structure group U(1)
with another group. In particular, one could expect nontrivial effects to arise
from the choice of a nonabelian structure group. Such a generalization was
indeed proposed by the physicists C. N. Yang and R. L. Mills [58] on purely
physical grounds, before the intepretation of gauge fields as connections was
known. In their 1954 paper, they proposed a gauge theory based on the group
SU(2) as a model for the so-called isospin. The basic idea is that the proton
and the neutron are two different states of a single particle, the nucleon, which
has a quantum number, the isospin, whose values correspond to the two par-
ticles. So, the observable isospin has two eigenstates, and SU(2) acts on the
two-dimensional complex vector space generated by these eigenstates. This

8More information on the Dirac monopole may be found in [44], and, from the physical
viewpoint, in [36].
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idea may be traced back to Heisenberg [31]; the term “isospin” was coined
by Wigner [55].

Yang and Mills’ idea was to promote this symmetry from a “global” to a
“local” one, namely, they allowed the element of the SU(2) group acting on the
isospin space to depend on the spacetime position. Once this is done, the theory
is no longer invariant, and to restore invariance one needs to include new fields:
these are the gauge fields, which, from the physical viewpoints, are interpreted
as the carriers of a physical interaction, in this case, the strong interaction (I
will descrive below this mechanism in the case of electromagnetism). This the-
ory was not entirely successful, and indeed nowadays the physics of the nucleons
is explained in a completely different way by another gauge theory, called chro-
modynamics,9 based on the group SU(3) [30]. However, Yang-Mills theory has
survived this drawback, and gauge theory has become the universal paradigm
for the modelization of the fundamental interactions; in addition to the already
mentioned chromodynamics, there is the Weinberg-Salam electroweak theory
[29], a gauge theory based on the group SU(2)×U(1), which provides a unified
theory of electromagnetism and the weak nuclear force. More generally, the
basic structure of the Standard Model (a comprehensive theory of the funda-
mental interactions, excluding gravity10) is that of a gauge theory; and the way
string theory is able to be interpreted as a unified theory of all interactions, is,
at least for the electroweak and strong forces, again via gauge theory.

Let us now explain by the simplest example what the “gauge principle” is,
namely, how the requirement for a global symmetry to be promoted to a local
one enforces the presence of a new field, which will describe an interaction. Let
us consider the Dirac equation for a spinor field ψ:

i

3∑
µ=0

γµ ∂µψ = mψ .

Here γµ are the gamma matrices, i.e., the generators of a representation of the
group SL(2,C) on C4 (the group SL(2,C) plays a role here because it is the
universal covering of the Lorentz group, or to be more precise, of the proper
orthocronous Lorentz group, which is the connected component of the Lorentz
group containing the identity). Moreover m is the mass of the spinor field
(to be identified with the electron/positron field). The Dirac equation may
be derived as Euler-Lagrange equations from a variational principle associated

9Chromodynamics is the theory according to which heavy particles are made up by more
elementary constituents, called quarks, which interact via the strong force; the latter is
described by an SU(3) gauge field, whose associated particles are called gluons.

10A good, even though somehow elementary, introduction to the Standard Model for non-
specialists is given in [7]; see also [47].
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with the action functional

S(ψ) =
1

2

∫
X

ψ̄
(
i
∑
µγ

µ ∂µ −m
)
ψ d4x + hermitian conjugate.

This functional, and the Dirac equation, are invariant under the transformation

ψ 7→ eiα ψ ψ̄ 7→ e−iα ψ̄ (5)

where α is a real constant. If α is nonconstant, i.e., it is an arbitrary function
on spacetime, the action integral is no longer invariant. To make it invariant
even when α is not constant, one can replace ∂µ with Dµ = ∂µ − iAµ, where
Aµ is some field, and accompany the transformation rule (5) with

Aµ 7→ Aµ + ∂µα .

Thus, we have rediscovered the electromagnetic gauge transformations! We
may therefore interpret the field A as the electromagnetic potential, and
consider an extended action integral, where (in addition to replacing ∂µ by
Dµ = ∂µ − ieAµ) we include a term for the electromagnetic field. The quan-
tity e is a “coupling constant”, to be identified with the absolute value of the
electric charge of the field ψ (electron charge). The complete action now reads

S(ψ,A) =

∫
X

[
1

2
ψ̄
(
i
∑
µγ

µDµ −m
)
ψ +

1

32π

∑
µν F

µνFµν

]
d4x+ h.c.

The equations for the electron field are now

i

3∑
µ=0

γµDµψ = mψ

or

i

( 3∑
µ=0

γµ ∂µ −m
)
ψ = −e

3∑
µ=0

γµAµ ψ

which contains a terms that describes an interaction between ψ and A. The
Euler-Lagrange equations for A read∑

ν

∂ν Fνµ =
4π

c
e ψ̄ γµ ψ

i.e., we obtain the Maxwell equations with a source current term given by the
electron field: indeed, the electron is a charged particle, and is the source of an
electromagnetic field.



112 UGO BRUZZO

Of course, this is a fully classical description, which makes no physical sense
unless it is quantized; but this is another story, i.e., quantum electrodynamics
(QED). For a leisurely introduction to QED the reader may consult [21].

A similar treatment actually applies for any gauge group, for instance, for
the SU(2) group of Yang-Mills theory. However in that case a new phenomenon
arises, due to the fact that SU(2) is not abelian. The connection ω on the
principal bundle is described by a differential 1-form with values in the Lie
algebra of the gauge group; in the case of SU(2), this is the vector space
of 2×2 anti-hermitian complex matrices with zero trace, equipped with a Lie
bracket given by the commutator of matrices. For this reason, the relation
between the connection and its curvature is no longer linear:11

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] .

The field equations for the free fields (i.e., in the absence of matter) are no
more linear, as it used to be in electrodynamics; this may interpreted as a
self-interaction of the Yang-Mills field.

Let us consider a quite general setting. X is now a differentiable manifold,
that we assume to be compact to have a finite action integral (or, if X is not
compact, we assume a suitably fast decay of the fields at infinity). Moreover, we
assume that a Riemmannian metric g is defined on X.12 Let P be a principal
bundle on X, with structure group a (say, compact semisimple) Lie group G.
The standard action functional for a free gauge theory based on this geometric
framework is

S(A) = −1

2

∫
X

κ(F, ∗F ) vol(g) (6)

where A, a connection on P , is the independent variable, F is the curvature
of A, while ∗F is the Hodge dual of F , and vol(g) is the measure (volume
form) naturally induced on X by the Riemannian metric g. Moreover, κ is the
Killing-Cartan form, which is a nondegenerate bilinear form on the Lie algebra
of G. The functional S can be regarded as a function on the space A of all
connections on P (the space A turns out to be an infinite-dimensional affine
space). Actually, the action functional (6) is gauge-invariant, in the sense that
S(A) = S(f∗(A)) for all vertical automorphisms f of P . Therefore, denoting
by G the group of such automorphisms, the action functional descends to a

11In the physical literature, the commutator term is multiplied by a dimensioned factor,
which plays the role of a self-coupling constant, describing the intensity of the self-interaction
of the gauge field.

12We assume that g is Riemannian, rather than pseudo-Riemannian. This is more conve-
nient for the mathematical treatment, and has also a physical justification. A transition from
the pseudo-Riemannian to the Riemannian signature is indeed necessary to obtain a consis-
tent quantum treatment. In the physical theories this is achieved by a formal manipulation
called the “Wick rotation” [50].
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functional on the quotient space B = A /G , which is called the orbit space.
This space has in general a nontrivial topology, and is infinite-dimensional; one
can do geometry on it by equipping it with a structure of Banach manifold.

The connections A at which the action functional has absolute minima are
of particular interest. These are called instantons.13 They may given a simple,
direct geometric description: a connection A on P is an absolute minimum of
the Yang-Mills functional if and only it its curvature F is self-dual with respect
to the Hodge duality ∗ given by the Riemannian metric g, i.e., if and only if14

F = ∗F . (7)

Being absolute minima of the action functional, from the physical viewpoint in-
stantons represent the classical vacua of the quantum theory, and therefore play
an important role in the theory of fundamental interactions. Their relevance
in mathematics is the object of the next section.

4. The Instanton Moduli Space

Let M ⊂ B be the subset of the orbit space B corresponding to gauge equiv-
alence classes of connections whose curvature is self-dual — i.e., the moduli
space M of instantons. The self-duality equation (7) is a nonlinear first-order
PDE which is not elliptic due to the presence of the gauge freedom, i.e., an
invariance under gauge transformations. However, at least locally one can fix
the gauge, and the resulting equation turns out to be elliptic. Then general el-
liptic theory, and an application of Kuranishi’s linearization technique [23, 19],
imply that the space of solutions modulo gauge transformations, i.e., the space
M , may be given the structure of a smooth, finite dimensional differentiable
manifold. Actually this may not work for some special, “unlucky” Riemannian
metrics on X, but it does the job for a generic metric.

Let us give a precise statement. Let Riem(X) be the space of Riemannian
structures on X. It may be given a structure of Banach manifold (see e.g. [23]),
hence it is has a natural topology.

Theorem 4.1. [4, 23, 19] Let P be a principal G-bundle on a compact Rie-
mannian oriented connected manifold (X, g), where G is a compact semisimple

13For a deeper study of instantons the reader may consult [19, 23] for the mathematical
theory, and [20] for the physical applications.

14One may consider as well anti-self-dual connections, namely, connections whose curvature
changes sign under Hodge duality, F = −∗F . We could call these connections anti-instantons.
Since the Hodge ∗ operator changes sign under the reversal of the orientation, the latter
operation swaps instantons with anti-instantons. The two notions are equivalent unless there
is some preferred choice of orientation, as in the case of complex manifolds. We shall be
vague about this distinction.
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Lie group. Let M be the space of irreducible15 instanton connections on P ,
modulo gauge transformations.

There is a second-category set D ⊂ Riem(X) such that, if the Riemannian
metric g in X is chosen in D, the moduli space M may given the structure of
a smooth differentiable manifold of dimension

dim M = 2 c2(Ad(P ))− (dimG)(1− b1 + b−) (8)

where Ad(P ) is the adjoint bundle of P , c2 denotes the second Chern class, b1
is the first Betti number of X, and b− is the dimension of the vector space of
anti-self-dual harmonic 2-forms on X.

Example 4.2. The simplest nontrivial case we may consider is given by the
choices X = S4 (with the metric induced by the standard metric in R5 if we
think of S4 as the unit sphere in R5), and G = SU(2). In this case we have
c2(Ad(P )) = 4c2(E), where E is the rank 2 complex vector bundle associated
with P via the natural action of SU(2) on C2. Moreover, since S4 has no
cohomology in degree 1 and 2, we have b1 = b− = 0. If we set k = c2(E),
formula (8) becomes dim M = 8k − 3. Instantons corresponding to various
values of k can be described quite explicitly [1]. For k = 1 the moduli space
has dimension 5, and can be identified with the open unit ball in R5. We shall
denote this moduli space by M1.

Figure 1 shows the graph of the norm square of the curvature in this case, as
a function of two variables on the sphere S4. Let us imagine this as the graph of
this quantity as a function of all 4 variables. (By the way the localized form of
this energy density is the origin of the term “instanton”, as something which is
localized in time). The 4 coordinates of the center λ of the energy distribution
in Figure 1, and the width ρ of the latter, defined in some conventional way,
can be regarded as 5 spherical coordinates in M1; the four numbers in λ are
angular coordinates, while the radial coordinate in M1 may be expressed in
terms of ρ. By normalization, the height of the instanton is proportional to
1/ρ. From this simple example we learn that the moduli space M is in general
non compact (and indeed it is never), and that the manifold X appears as the
boundary of M . This is a general feature: the boundary of the moduli space
M contains a component homeomorphic to X (the collar theorem, see [23]).

An important property of the moduli space M is that it is orientable.
This is proved by calculating its orientation line bundle (the determinant of its
tangent bundle) as the determinant of an Atiyah-Singer index bundle on M ,
and checking that it is trivial [23, 19].

15A connection ∇ on a G-bundle P is said to be irreducible if there is no subbundle of P ,
with structure group a subgroup H of G, over which ∇ induces a connection by restriction.
Reducible connections need to be discarded because they produce singularities in the moduli
space.
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Figure 1: Square norm of the curvature for an SU(2) instanton with k = 1.

Moreover, the moduli space carries a universal bundle with connection [5].
More precisely, there is a G-bundle P on X ×M , with a connection ∇∇∇, en-
joying the following properties: for every m ∈ M , the restriction P|X×{m} is
isomorphic to P , and ∇∇∇|X×{m}, as a connection on P , lies in the gauge equiva-
lence class m. As a preparation for the definition of the Donaldson polynomial
invariants, we may use the universal bundle P to define a map

µ : H2(X,Q)→ H2(M ,Q) .

For simplicity, we only consider the case G = SU(r). One defines

µ(Σ) = c2(P)\Σ

where \ is the “slant product” Hp(X ×M ,Q)×Hq(X,Q)→ Hp−q(M ,Q) (in
our case, p = 4 and q = 2). Alternatively, by denoting p1, p2 the projections
of X ×M onto its factors, we may write

µ(Σ) = p2∗ [p∗1(PD(Σ)) ∪ c2(P)]

where p2∗ is the Gysin morphism (push-forward) in cohomology, i.e., integration
along the fibers of p2, and PD denotes Poincaré duality. We may now define
the Donaldson invariants as polynomials on the space H2(X,Q) by letting

Id(Σ1, . . . ,Σd) =

∫
M

µ(Σ1) ∪ · · · ∪ µ(Σd) . (9)
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Figure 2: Square norm of the curvature for an SU(2) instanton with k = 3.

We are assuming here that M is smooth, that dim M is even, and set d =
1
2 dim M . A more important issue is the fact that, for the integral (9) to make
sense, we need to compactify the moduli space M . This is accomplished by
the so-called Uhlenbeck-Donaldson compactification. The naive idea underlying
this compactification is the following.

Let us consider the case X = S4, and G = SU(2). The energy density of
an instanton of charge k (remember that k, the instanton charge, is actually
the second Chern class of the bundle E, i.e., k = c2(E)) is shown in Figure 2
(for k = 3). This is a kind of nonlinear superposition of k profiles as the one
shown in Figure 1 (of course the self-duality equation are nonlinear, so that this
is not a linear superposition, unless the “bumps” in Figure 2 are so far apart
that the self-interaction is negligible). The k = 1 moduli space M1 (which is
5-dimensional) is compactified by letting ρ→ 0; this means that the “bump” in
Figure 1 shrinks around its center, and its height becomes infinite. More pre-
cisely, the square norm of the curvature approaches a multiple of the Dirac delta
function, concentrated at centre of the bump. The compactification boundary
is diffeomorphic to S4 (the “collar” theorem we have already mentioned). For
k > 1, one can allow one or more bumps to shrink to zero size. So the com-
pactification boundary is stratified, according to the number of bumps that we
allow to shrink; moreover, the only information relevant to the description of
the bumps that have shrunk is their position, and therefore, if we shrink m of
them, we get a point in the symmetric product Symm(S4). The k −m bumps
that have not been shrunk will give a point in Mk−m. These configurations,
corresponding to an instantons where some “bumps” have been shrunk to zero
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size, are called ideal instantons. Denoting by M̄k the compactified space, the
resulting stratification is written as

M̄k = q
0 ≤ m ≤ k

Mk−m × Symm(X) . (10)

The compactification is done in this way in the general case, even though it
involves quite a lot of hard analysis [19, 23]; the stratification formula (10)
holds true in the general case.

Donaldson’s polynomial invariants are a powerful tool for the study of 4-
manifolds, and therefore, also for the study of complex and algebraic manifolds
of complex dimension 2. Just to give the flavour of the kind of results one can
prove, we cite the following result by Donaldson [18]:

A non-singular, projective algebraic surface can be diffeomor-
phic to the connected sum of two oriented 4-manifolds only
if one of them has negative-definite intersection form.

The reader interested in this subject may consult [24]. From a physical view-
point, it is interesting to note that Donaldson’s polynomial invariants are the
correlation functions of a supersymmetric topological Yang-Mills theory [57].

5. Framed Instantons and Framed Sheaves

Often one considers framed instantons. In the principal bundle picture, these
are pairs (∇, φ), where∇ is a self-dual connection on a principal bundle P → X,
and φ is a point in the fibre Px over a fixed point x ∈ X, i.e., a “frame”.
Correspondingly, one restricts to consider gauge transformations that fix the
frame. There are reasons for considering such pairs both in mathematics and
physics. In mathematics, their moduli spaces are somehow better behaved,
and have a richer mathematical structure; for instance, when X = S4, and
G = SU(r), the resulting moduli spaces are hyperkähler [41]. The framing has
a meaning also in physical theories: when the instanton moduli space represents
the space of classical vacua of a quantized gauge theory, the framing has the
meaning of a vacuum expectation value of some fields (technically, the scalar
fields in the N = 2 vector multiplet).

For X = S4, and G = SU(r), the moduli space of framed instantons can
be very nicely parametrized in terms of some linear data, called ADHM data
[3, 41], from the initials of Atiyah, Drinfel’d, Hitchin and Manin. One shows
that there is a one-to-one correspondence between the set of gauge equivalence
classes of framed instantons of instanton charge k, and a space which is ob-
tained by considering a space of linear data (matrices) satisfying some quadratic
constraints and a nondegeneracy condition, modulo a free action of the group
U(r). In this way the set of gauge equivalence classes is given the structure
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of a smooth affine variety (over the complex numbers), of complex dimension
2rk. Following Nakajima’s notation, we shall call this moduli space M reg(r, k).
This space may be constructed also by means of a hyperkähler reduction tech-
nique16 [41], and in this way one shows that it has a hyperkähler structure.
One can in a sense complete this moduli space by adding ideal instantons as in
the nonframed case; in terms of ADHM data, this means to partially relax the
nondegeneracy condition. However, the new moduli space that one obtains,
that we denote by M0(r, k), is singular. One should note that in this case
M0(r, k) is not compact.

In a 1993 paper [17], Donaldson showed that there is a one-to-one corre-
spondence between “true” framed instantons on S4, and framed bundles on
P2, that is, holomorphic vector bundles on P2 with a trivialization on a fixed
(projective) line. This correspondence uses a beautiful construction, called the
Atiyah-Ward correspondence, that relates instantons on S4 with a special class
of holomorphic vector bundles on P3 [1, 6], and geometric invariant theory (for
references about this theory we refer to Donaldson’s paper [17]). SU(r) instan-
tons on S4, with instanton charge k, correspond to rank r framed holomorphic
vector bundles on P2, with second Chern class k. So the space M reg(r, k) is
isomorphic to a moduli space MB(r, k) parametrizing framed rank r vector
bundles on P2, with second Chern class k. Now, we mentioned the fact that
the “completed” moduli space M0(r, k), which includes ideal instantons, is
singular. We can desingularize it by the usual blowup technique, obtaining
a smooth variety M (r, k) (the same variety can be obtained by hyperkähler
reduction, by perturbing the zero-level set of the moment map). It is a very
remarkable fact that M (r, k) is a moduli space itself, parametrizing framed
torsion-free coherent sheaves on P2, with rank r and second Chern class k. The
space MB(r, k) sits inside M (r, k) as an open, dense subset, and the comple-
ment M (r, k) \MB(r, k) is the exceptional divisor of the blowdown morphism
π : M (r, k)→M0(r, k). In other terms, we have a commutative diagram

MB(r, k)
OO

'
��

� � // M (r, k)

π

��
M reg(r, k) � � // M0(r, k)

where the horizontal arrows are open immersions, and π is a blowdown mor-
phism which contracts the closed subset of M (r, k) corresponding to framed
non-locally free, torsion-free sheaves on P2 to the singular locus of M0(r, k).

There is a kind of pattern in these correspondences. In some sense we start
from R4; on the one hand, we compactify it by adding a point and obtaining

16A beautiful introduction to the ideas of the hyperkähler reduction techniques is
given in [33].
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S4, and then consider framed instantons on S4. Or, on the other hand, we
choose a complex structure on R4 and add a projective line, obtaining P2, and
consider on it framed holomorphic vector bundles. The two moduli spaces are
isomorphic. Other instances of this pattern were studied by King and Buchdahl
[37, 14]. In the first case, one starts from C2 blown up at the origin; adding a
point we get P2, i.e., P2 with the reversed orientation, and adding a projective
line we obtain P̂2, that is, P2 blown up at a point. Framed instantons on
P2 correspond to framed bundles on P̂2. In the second case, we have framed
instantons on the connected sum of n copies of P2, and framed bundles on P2

blown up at n distinct points.
Also these moduli spaces admit ADHM descriptions. For framed bundles

on P2 blown up at one or more points, these are given in the works of King
and Buchdahl [37, 15]. An ADHM description for framed torsion-free sheaves
on the multiple blowups of P2 has been given by A. A. Henni [32]; a similar
description for framed torsion-free sheaves on Hirzebruch surfaces has been
given by C. Rava [51].

A general treatment of moduli spaces of framed sheaves is given in [12].
Relying on the theory of stable framed modules as developed by Huybrechts
and Lehn [34, 35], the authors of [12] study the moduli problem for torsion-free
sheaves on a projective surface X, that are framed along a divisor D ⊂ X. One
considers pairs (E, φ), where E is a torsion-free sheaf on X, and φ is a morphism
φ : E→ F, where F is a fixed sheaf supported by D; one asks that the restriction
φ|D : E|D → F is an isomorphism. Under some mild conditions (one assumes
D to be smooth, irreducible, big and nef,17 and F to be a semistable bundle
on D), one can show that a moduli space M (c) of framed sheaves (E, φ) with
invariants c exists, is a quasi-projective scheme, and is fine, that is, there is on
the product X ×M (c) a universal framed sheaf. Here c ∈ H•(X,Q) is a given
set of topological invariants for the sheaf E (say, rank and first and second
Chern class). These moduli spaces are in a sense higher rank generalizations
of the Hilbert scheme of points: indeed, when we assume that the sheaves
E have rank one, and F is the structure sheaf of D, the space M (c) turns
out to be isomorphic to a Hilbert scheme of points of X \ D (in particular,
M (c) ' (X \D)[n] if c = (1, 0, n)).

Moreover, one can characterize the tangent space to the points of M (c):

T[(E,φ)]MX(c) ' Ext1(E,E⊗ OX(−D)) , (11)

and can compute the obstruction to the smoothness of the moduli space. For
instance, if the condition (KX +D) ·D < 0 holds, where KX is the canonical

17A divisor D in a projective variety X is nef (which is an abbreviation for “numerically
effective”) if D cuts nonnegatively all curves in X, i.e., D · C ≥ 0 for all curves C ⊂ X. In
terms of line bundles, the line bundle OX(D) given by the linear equivalence class of D must
have nonnegative degree on any curve. D is said to be big and nef if in addition D2 > 0
(when X is a surface).
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divisor of X, and F is taken as a trivial bundle, then the moduli space is a
smooth quasi-projective variety. A typical case is when X is a rational surface,
and D is a rational curve of degree 1 in it. The examples previously mentioned
are all of this type.

Moduli spaces of framed sheaves are used very much in the physics liter-
ature because they provide desingularizations of moduli spaces of instantons.
Very often physics papers refer to instanton moduli spaces, but really they are
dealing with the moduli spaces of framed sheaves.

6. Instanton Counting

Moduli spaces of framed sheaves can be nicely studied when the base space X is
a toric surface.18 The toric action lifts to the moduli space of framed bundles,
and can be combined with an action of the maximal torus of GLr(C) on the
framing (we are assuming that the framing sheaf is the trivial bundle of rank
r). So one has an action of the algebraic torus (C∗)2+r on the moduli space
M (c). Under suitable assumptions, this action has a finite number of fixed
points. Then, considering the equivariant cohomology of M (c) with respect
to this action, one cas use equivariant cohomology techniques [9] to study the
geometry of these moduli spaces.

One example of such procedure is the computation of Nekrasov’s partition
function. This was introduced by Nekrasov [45] as the partition function of
N = 2 topological super Yang-Mills theory. For a geometric viewpoint, it turns
out that the Nekrasov partition function is the integral over the moduli space of
the equivariant fundamental class. Actually, the moduli space is not compact
(it is only quasi-projective) and therefore, strictly speaking, the integral is not
defined. However one can formally apply the localization formula in equivariant
cohomology, and the resulting expression is by definition Nekrasov’s partition
formula. This was explicitly computed in [11] for framed sheaves on P2, with
framing provided by the trivial bundle on a line. Nakajima and Yoshioka also
computed it for P̂2, the blow-up of P2 at a point. A general computation for
toric surfaces is given in [26]. There is a very interesting relation between the
Nekrasov partition function and the Donaldson polynomials [27, 28].

These computations are done by looking at the fixed points of the toric
action on the moduli space. The tangent spaces at the fixed points provide
representations of the acting torus, and one can compute the characters of

18An n-dimensional toric variety X is an algebraic variety which contains an open dense
subset over which the n-dimensional algebraic torus (C∗)n acts transitively. The simplest
projective example is Pn, where the open dense subset is Cn − {0}. The geometry of toric
variety admits a relatively simple combinatorial description, which allows one to compute
several features of the variety in a very explicit way. For an introduction to toric varieties,
and the development of their theory, we refer the reader to [25, 46].
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the representations. This allows one to compute the “right-hand side” of the
localization formula, and therefore, to compute Nekrasov’s partition function.
The identification of the fixed points, and the calculations of the characters,
is done with some combinatorial computations, using Young tableaux. This is
what is meant (at least by mathematicians) by “instanton counting”.

The same information allows one to compute the Poincaré polynomial19

of these moduli spaces. As it was shown in [41], one can introduce a perfect
Morse function on the moduli space, whose critical points coincide with the
fixed points of the toric action. The index of the Morse function at the critical
points can be computed in terms of the characters of the toric action.

By way of example, we show here the computation in the case of Hirzebruch
surfaces20 [13]. We denote by Fp the p-th Hirzebruch surface Fp = P(OP1 ⊕
OP1(−p)), which is the projective closure of the total space Xp of the line bundle
OP1(−p) on P1. This may be explicitly described as the divisor in P2 × P1

Fp = {([z0 : z1 : z2], [z : w] ∈ P2 × P1 | z1wp = z2z
p},

Denoting by f : Fp → P2 the projection onto P2, we let C∞ = f−1(l∞), where
l∞ is the “line at infinity” z0 = 0. The Picard group of Fp is generated by C∞
and the fibre F of the projection Fp → P1.

Let M p(r, k, n) be the moduli space parametrizing isomorphism classes of
pairs (E, φ), where

• E is a torsion-free coherent sheaf on Fp, whose topological invariants are
the rank r, the first Chern class c1(E) = kC, and the discriminant

∆(E) = c2(E)− r − 1

2r
c21(E) = n;

• φ is a framing on C∞, i.e., an isomorphism of the restriction of E to C∞
with the trivial rank r sheaf on C∞:

φ : E|C∞
∼→ O⊕rC∞ .

The results we have recalled in the previous section imply that the moduli
space M p(r, k, n), when nonempty, is a smooth quasi-projective variety of di-
mension 2rn. Its tangent space at a point [E] is isomorphic to the vector space

19The Poincaré polynomial (or series) of a space S whose rational cohomology is finite-
dimensional in all degrees is

Pt(S) =
∑
n≥0

(dimHn(S,Q)) tn .

20A useful reference about Hirzebruch surfaces is [8].
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Ext1(E,E(−C∞)). (A nonemptiness criterium for this space is given in [51],
see also [12]).

As far as the toric action is concerned, we start by noting that the two-
dimensional algebraic torus C∗ × C∗ acts on Fp according to

([z0 : z1 : z2], [z : w])
Gt1,t2−−−−→ ([z0 : tp1z1 : tp2z2], [t1z : t2w])

The divisors C and C∞ are fixed under this action. Moreover, this action has
four fixed points, i.e., p1 = ([1 : 0 : 0], [0 : 1] and p2 = ([1 : 0 : 0], [1 : 0] lying on
the exceptional line C, and two points lying on the line at infinity C∞. The in-
variance of C∞ implies that the pullback G∗t1,t2 defines an action on M p(r, k, n).
Moreover we have an action of the maximal torus of Gl(r,C) on the framing.
Altogether, we have an action of the torus T = (C∗)r+2 on M p(r, k, n). We
study now the fixed point sets for the action of T on M p(r, k, n). This is
basically the same statement as in [42] (see also [43] and [26]).

Proposition 6.1. The fixed points of the action of T on M p(r, k, n) are
sheaves of the type

E =

r⊕
α=1

Iα(kαC) (12)

where Iα is the ideal sheaf of a 0-cycle Zα supported on {p1} ∪ {p2} and
k1, . . . , kr are integers which sum up to k. Moreover,

n = `+
p

2r

(
r

r∑
α=1

k2α − k2
)

= `+
p

2r

∑
α<β

(kα − kβ)2 (13)

where ` is the length of the singularity set of E.

The exact identification of the fixed points is obtained by using some Young
tableaux combinatorics [41, 45, 11]. As far as notation is concerned, |Y | will
denote the number of boxes in a Young tableau Y . One should attach to

each fixed point an r-ple {Y (i)
α } of pairs of Young tableaux (so i = 1, 2 and

α = 1, . . . , r). If Zα = Z
(1)
α ∪ Z(2)

α , where Z
(i)
α is supported at pi, the Young

tableau {Y (i)
α } is attached to the ideal sheaf I

Z
(i)
α

as follows: choose local affine

coordinates (x, y) around pi and make a correspondence between the boxes of

{Y (i)
α } and monomials in x, y as shown in Figure 3. Then I

Z
(i)
α

is generated by

the monomials that lie outside the tableau.
Now the identity (13) may be written as

n =
∑
α

(
|Y 1
α |+ |Y 2

α |
)

+
p

2r

∑
α<β

(kα − kβ)2 .
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Figure 3: Labelling of the monomials generating the 0-dimensional sheaves

OX/I
(i)
Zα

at the fixed points of the toric action.

The fixed points are in a one-to-one relation with the collections of Young
tableaux and strings of integers k1, . . . , kr satisfying this condition together
with

∑r
α=1 kα = k.

We shall show now how to determine the weight decomposition of the toric
action on the tangent space to the moduli space at the fixed points, and how to
use this to compute the Poincaré polynomial of the moduli spaces M p(r, k, n).
Actually our computations also make sense for c1(E) = kC with k = m/p
for integer m, and p ≥ 2. This can be justified by considering a “stacky
compactification” of Xp; instead of adding the divisor C∞, we add C̃∞ '
C∞/Zp. One obtains a Deligne-Mumford stack Xp, whose so-called coarse

space may be identified with the Hirzebruch surface Fp. Let M̃ p(r, k, n) be

the moduli space of torsion-free rank r sheaves E on Xp, with c1(Ẽ) = kC and

discriminant n, that are framed on C̃∞ to the sheaf O⊕r
C̃∞

. The fixed points

under the torus action are as in Proposition 6.1, except that in this case the
kα’s have the form kα = mα/p, mα ∈ Z.

In view of the characterization (11) and of the decomposition (12), the

tangent space T(E,φ)M̃
p(r, k, n) splits as

Ext1(E,E(−C∞)) =
⊕
α,β

Ext1(Iα(kαC), Iβ(kβC − C̃∞)).

The factor Ext1(Iα(kαC), Iβ(kβC− C̃∞)) has weight eβe
−1
α under the maximal

torus of Gl(r,C). So we need only to describe the weight decomposition with
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respect to the remaining action of T 2 = C∗ × C∗. In this way we get

T(E,φ)M̃
p(r, k, n) =

r∑
α,β=1

(
Lα,β(t1, t2)+t

p(kβ−kα)
1 N

~Y1

α,β(tp1, t2/t1)+t
p(kβ−kα)
2 N

~Y2

α,β(t1/t2, t
p
2)
)
,

where
Lα,β(t1, t2) = eβ e

−1
α

∑
i,j≥0,i+j−pnαβ=0 mod p,

i+j≤p(nαβ−1)

t−i1 t−j2

for nαβ > 0,

Lα,β(t1, t2) = eβ e
−1
α

∑
i,j≥0, i+j+2+pnαβ=0 mod p,

i+j≤−pnαβ−2

ti+1
1 tj+1

2

for nαβ ≤ 0, and

N
~Y
α,β(t1, t2) =

eβe
−1
α ×

∑
s∈Yα

(
t
−lYβ (s)
1 t

1+aYα (s)
2

)
+
∑
s∈Yβ

(
t
1+lYα (s)
1 t

−aYβ (s)
2

) ,

a well known expression for the P2 case, first introduced in [22]. Here ~Y denotes
an r-ple of Young tableaux, while for a given box s in the tableau Yα, the
symbols aYα(s) and lYα(s) denote, respectively, the “arm” and “leg” of the box
s in the tableau Yα, that is, the number of boxes above and on the right to
that box (see Figure 4).

From these data one can compute the desired Poincaré polynomial (see [13]
for details).

Theorem 6.2. The Poincaré polynomial of M̃ p(r, k, n) is

Pt(M̃
p(r, k, n)) =∑

fixed
points

r∏
α=1

t2(|Yα|−l(Yα))
∞∏
i=1

t2(m
(α)
i +1) − 1

t2 − 1

∏
α<β

t2(l
′
α,β+|Yα|+|Yβ |−n

′
α,β) .

Here m
(α)
i is the number of columns in Yα whose length is i, and

l′α,β =


1

2
[nαβ ] (p[nαβ ]+2−p)+p[nαβ ]{nαβ} if nαβ ≥ 0,

1

2
[nβα] (p[nβα]+2−p)+p[nβα]{nβα} − δp{nβα},0 otherwise.
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Figure 4: How to remember the meaning of “arm” and “leg” in a Young tableau.

n′α,β =


number of columns of Yα that are longer

than kα − kβ if kα − kβ ≥ 0,
number of columns of Yβ that are longer

than kβ − kα − 1 otherwise.

Setting t = −1 in this formula we obtain a compact expression for the

generating function of the Euler characteristics of the moduli spaces M̃ p(r, k, n)

∑
k,n

P−1(M̃ p(r, k, n)) qn+
pk2

2r zk =

(
θ3( vp |

τ
p )

η̂(τ)2

)r
where q = e2πiτ and z = e2πiv. We have used formulas for the quasi-
modular functions

θ3(v|τ) =
∑
n∈Z

q
1
2n

2

e2πivn, η̂(τ) =

∞∏
l=1

(1− ql) .
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[27] L. Göttsche, H. Nakajima and K. Yoshioka, Instanton counting and Don-
aldson invariants, J. Diff. Geom. 80 (2008), 343–390.
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