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of a Given Diameter

Zsolt Lángi

Abstract. Makeev proved that among centrally symmetric four-

dimensional polytopes, with more than twenty facets and circumscribed

about the Euclidean ball of diameter one, there is no universal cover

for the family of unit diameter sets. In this paper we examine the con-

verse problem, and prove that each centrally symmetric polytope, with

at most fourteen facets and circumscribed about the Euclidean ball of

diameter one, is a universal cover for the family of unit diameter sets.
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A convex body C in the Euclidean n-space R
n is called a universal cover for

sets of diameter d, if for every set of diameter d there is a congruent copy of
C containing it. The problem of finding universal covers for sets of a given
diameter, or equivalently, for unit diameter sets, is a long-standing question of
discrete geometry. These universal covers are used, in particular, for the solu-
tion of Borsuk’s problem, that asks the minimal number of subsets of smaller
diameters that an n-dimensional set can be partitioned into. For information
about Borsuk’s problem and its relationship with universal covers, the reader
is referred to [10].

As a special case, we may consider universal covers in the family Pn of
centrally symmetric n-dimensional polytopes circumscribed about a Euclidean
ball of diameter one. Since every set in the Euclidean space is contained in a
constant-width body of the same diameter, we may rephrase this problem as
finding polytopes that can be circumscribed about any n-dimensional body of
constant width one. This problem is related to Knaster’s problem, that asks
which finite point sets on the Euclidean sphere S

m has the property that for
any continuous function f : Sm → R

n, f is constant on a congruent copy of S
(cf., e.g. [6]).
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Let Dn denote the dual of the difference body of an n-dimensional regular
simplex such that Dn is circumscribed about the Euclidean ball of unit diam-
eter. In 1994, Makeev [7] conjectured that Dn is a universal cover for unit
diameter sets. This conjecture is partly motivated by the fact that Dn has
n(n+1) facets, and by a result of Makeev [7] that no universal cover in Pn has
more than n(n + 1) facets. The n = 2 case of Makeev’s conjecture is known
as Pál’s lemma, and has been known since 1920 (cf. [9]). The n = 3 case
was proven independently by Makeev [8], by G. Kuperberg [6] and by Hausel,
Makai, Jr. and Szűcs [5]. In [8] and [6], the main idea of the proofs is that,
homologically, for any convex body of constant width one, there are an odd
number of congruent copies of D3 circumscribing it, which yields that geomet-
rically there is at least one. The author of [6] remarks also that in dimension
four, homologically, there is zero circumscribed copy of not only D4, which has
twenty facets, but also of the regular cross-polytope, which has sixteen facets.

Our main result is the following. We note that this result, in some sense, is
converse to the result in [7], mentioned in the previous paragraph.

Theorem 1. Every polytope P ∈ P4, with at most fourteen facets, is a universal

cover for unit diameter sets.

To prove this theorem, first we introduce a topological invariant, called
Smith index, and recall some estimates regarding it.

Let T be a fixed-point-free involution, with period two, defined on the
topological spaces X and Y (for the terminology, cf., for example [3]). Then
the pairs (X,T ) and (Y, T ) are called T -spaces, and a continuous mapping
f : X → Y with Tf = fT is called a T -map.

Let S(X) be the singular chain complex of X, with Z2 as the set of co-
efficients, and let ρ = I − T = I + T , where I is the identity operator on
S(X). Then, as T , and thus also ρ, commutes with the boundary operator
∂ of S(X), we have that ρ is a chain homomorphism of S(X) into itself. We
denote the image of this homomorhism by Sρ(X). Composing Sρ(X) with the
homology theory functor of Z2, we obtain the singular Smith homology groups
with coefficient group Z2. We denote the kth group of this theory by H

ρ
k (X),

and the corresponding homology group of S(X) by Hk(X). Theorem 1.6 of [4]
states that if (X,T ) is a Haussdorff T -space and X∗ is its orbit space, then
H

ρ
k (X,T ) ≈ Hk(X

∗, Z2), for every value of k, where Hk(X
∗, Z2) is the ordinary

kth singular homology group of X∗.
Now, let i denote the inclusion operator, and ∆k be the boundary operator

of Hρ
k (X). Then

. . .
i
←− H

ρ
k−1

(X)
∆k←−− H

ρ
k (X)

ρ
←− Hk(X)

i
←− H

ρ
k (X)

∆k+1

←−−− . . . (1)

is an exact sequence. This follows from the fact that Z2 is a field, and thus, the
couple (i, ρ) is a direct couple, and hence the observation follows from Theorem
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2.7, p. 128 of [3].

Furthermore, we may define a homomorphism

∆̃0 : Hρ
0 (X)→ Z2 by

∆̃0 = In ◦ρ−1,

where In is the Kronecker index homomorphism of the ordinary singular ho-
mology theory. This is well defined, as the kernel of ρ is contained in the kernel
of In. Then, we define

Ind : Hρ
n(X)→ Z2 by

Ind = ∆̃0 ◦∆1 ◦∆2 ◦ . . . ◦∆n.

Finally, the Smith index Ind(∅, T ) is zero. If X is not empty, then Ind(X,T )
is the largest integer such that Ind(Hρ

n(X)) 6= 0, if it exists, and otherwise it is
defined to be infinity.

An important property of Smith index is stated in the following theorem,
proved by Geraghty (cf. the remark after Lemma 2.2 of [4]).

Theorem 2 (Geraghty, 1961). If there is a T -map f : (X,T ) → (Y, T ), then
Ind(X,T ) ≤ Ind(Y, T ).

Another important observation that we use later is that if H0(X) = Z2,
and Hi(X) = 0 for i = 2, 3, . . . , n − 1, then Ind(X,T ) ≥ n. Indeed, since
H0(X) = Z2 and since the sequence in (1) is exact, we have H

ρ
0 (X) = Z2.

Thus ∆1 is onto, and as Hi(X) = 0 for i = 2, 3, . . . , n− 1, we obtain that ∆i is
onto for i = 2, 3, . . . , n. Since a zero-dimensional ρ-cycle consisting of a point
and its T -image has index one, it yields that Ind(X,T ) ≥ n. In particular, it is
well-known that for the Euclidean sphere Sn with the usual antipodal mapping
T , Ind(Sn, T ) = n.

Now recall the notion of Stiefel manifold; that is, the topological space of the
orthonormal k-frames in R

n, denoted by Vn,k. Observe that there is a natural
homeomorphism between Vn,n−1 and SO(n), and between Vn,1 and S

n−1. We
use the following estimates, proved by Geraghty, regarding the Smith indices
of Stiefel manifolds with respect to the ususal antipodal mapping T (cf. [4]).

Theorem 3 (Geraghty, 1961). If s is the largest power of 2 that divides 2n, then

s− 1 ≤ Ind(SO(2n), T ) ≤ Ind(S2n−1, T ) = 2n− 1.

In particular, if n is a power of 2, then Ind(SO(2n), T ) = 2n− 1.

For completeness, we recall the proof of this estimate from [4].
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Proof. Clearly, it is sufficient to prove the general estimate. Consider the Stiefel
manifolds V2n,k with the usual antipodal mapping as T . Observe that by
deleting the kth member of the frame, we have a sequence of T -maps

(SO(2n), T )=(V2n,2n−1, T )→ (V2n,2n−2, T )→ . . .→ (V2n,1, T )=(S2n−1, T ).

The orbit space of SO(2n) is the projective special orthogonal group PSO(2n).
Thus, the singular Smith homology groups of SO(2n) are the ordinary singular
homology groups of PSO(2n).

The Poincaré polynomial of PSO(2n), with the coefficients in Z2, is

P (t)=(1 + t)(1+t2) . . . (1= ts−1) · (1+t+. . .+ ts + ts)(1+ts+1) . . . (1+t2n−1),

where s is the largest power of 2 dividing 2n (cf. [2]).
Furthermore, the Poincaré polynomial of SO(2n) (cf. [1]), with the coeffi-

cients in Z2, is
Q(t) = (1 + t)(1 + t2) . . . (1 + t2n−1).

Now, let the coefficient of ti in P(t), or in other words the Betti number of
Hi(PSO(2n), Z2) = H

ρ
i (SO(2n), T ), be denoted by B

ρ
i , and similarly, let Bi

denote the coefficient of ti in Q(t). Then for i = 0, 1, . . . , s− 1, we have

B
ρ
i =

i∑

j=0

Bj .

Thus, in terms of the Betti numbers, the sequence in (1) is

0← B0

ρ
←− Bo

∆1←−− B0 +B1

ρ
←− B1

i
←− B0 +B1

∆2←−− B0 +B1 +B2

ρ
←− . . .

and hence, ∆i is onto for i = 1, 2, . . . , s − 1. Since H
ρ
0 (SO(2n), T ) = Z2, we

have Ind(SO(2n), T ) ≥ s− 1. Since Ind(S2n−1, T ) = 2n− 1, and since T -maps
do not decrease the value of Smith index, we have that

s− 1 ≤ Ind(SO(2n), T ) ≤ Ind(S2n−1, T ) = 2n− 1.

Now we are ready to prove Theorem 1.

Proof. Consider a convex body C ⊂ R
4 of constant width one. We may assume

that P has exactly fourteen facets. Let K1,K2, . . . ,K7 denote the seven infinite
strips bounded by pairs of parallel facet-hyperplanes of P , and note that P =⋂7

i=1
Ki. Observe that the width of any of these strips is one. Note also that in

any system of vectors spanning R
4, there are four that also span R

4. Applying
this observation for the normal vectors of the facet-hyperplanes of P , we obtain
that, among K1,K2, . . . ,K7, there are four strips such that the hyperplanes
bisecting them intersect in a singleton. We may assume that these strips are
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K1,K2,K3 and K4, which yields the (unique) existence of a translation vector

x such that C ⊂ x+
⋂4

i=1
Ki.

Consider an arbitrary element τ ∈ SO(4). We define a function g : SO(4)→
R

3 in the following way. Let xτ denote the unique vector with the property
that C ⊂ xτ +

⋂4

i=1
τ(Ki). Then the three coordinates of g(τ) are the signed

distances, from xτ , of the three hyperplanes bisecting τ(K5), τ(K6) and τ(K7).
Let T denote the usual antipodal mapping, and note that by Theorem 3, we

have Ind(SO(4), T ) = 3. As by Theorem 2, T -maps do not decrease the value
of Smith index, and as Ind(S2, T ) = 2, there is no T -map from (SO(4), T ) to
(S2, T ). Similarly like in the proof of the classical Borsuk-Ulam theorem, from
this it can be shown that for any T -map g : SO(4) → R

3, there is a point
mapped to the origin (this property follows also from Theorem 4.2 of [4]).

We note that in our consideration, we have shown also the following, more
general statement.

Theorem 4. Every polytope P ∈ P2m with at most 2m + 2 Ind(SO(2m), T )
facets is a universal cover for sets of diameter one.
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mous referee for their helpful remarks.

References

[1] A. Borel, Sur la cohomologie des variétés de Stiefel et de certains groupes de

Lie, C.R. Acad. Sci. Paris 232 (1951), 1628–1630.
[2] Armand Borel, Sur l’homologie et la cohomologie des groupes de Lie compacts

connexes, Amer. J. Math. 76 (1954), 273–342.
[3] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton

University Press, Princeton (1952).
[4] M.A. Geraghty, Applications of Smith index to some covering and frame the-

orems, Nederl. Akad. Wetensch. Proc. Ser. A 64 23 (1961), 219–228.
[5] T. Hausel, E. Makai, Jr. and A. Szűcs, Inscribing cubes and covering by

rhombic dodecahedra via equivariant topology, Mathematika 47 (2000), 371–397;
arXiv:math/9906066v2.

[6] G. Kuperberg, Circumscribing constant-width bodies with polytopes, New York
J. Math. 5 (1999), 91–100; arXiv:math/9809165v3.

[7] V.V. Makeev, Inscribed and circumscribed polygons of a convex body, Mat.
Zametki 55 (1994), 128–130.

[8] V.V. Makeev, On affine images of a rhombo-dodecahedron circumscribed about

a three-dimensional convex body, Zap. Nauchn. Sem. S. Peterburg. Otdel. Mat.
Inst. Steklov. (POMI) 246 (1997), 191–195.
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