
Rend. Istit. Mat. Univ. Trieste
Volume 42 (2010), 1–18.

Global Stability

and Plus-Global Stability.

An Application

to Forward Neural Networks

Giovanni Di Lena, Mario Martelli

and Basilio Messano

Communicated by Aljoša Volčič
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Abstract. A necessary and sufficient condition for a discrete dy-
namical system to be globally stable and plus-globally stable are first
established in Section 2. The V-condition is introduced and The-
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1. Introduction

Let f : R → R be continuous and consider the discrete dynamical system
governed by f . Given x0 ∈ R denote with O(x0) its orbit, namely the sequence

O(x0) := {xn : n = 1, 2, . . . } (1)

with

x1 = f(x0), x2 = f(x1) = f(f(x0)) := f2(x0), . . . (2)
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Notice that
xn+1 − f(xn) = 0, for every n = 0, 1, . . . (3)

Let {xn : n = 0, 1, . . . } be a sequence in R such that

lim
n→∞

xn+1 − f(xn) = 0. (4)

Define
P (x0) = {xn : n = 0, 1, . . . }. (5)

Clearly, (3) is a particular case of (4).
The main purpose of this paper is to establish conditions that imply the

existence and uniqueness of a fixed point xs of f , and the convergence of P (x0)
to xs regardless of the initial position x0 ∈ R. A dynamical system with these
properties is said to be plus-globally stable. The system is simply globally stable
in the case when f has one and only one fixed point xs, and O(x0) converges
to xs for all x0 ∈ R.

Obviously, every system that is plus-globally stable is also globally stable.
In Section 2 we provide an example of a system that is globally stable, but it
is not plus-globally stable.

The results obtained in Sections 2 and 3 are used in Section 4 to establish,
in a simple case, the global stability and the plus-global stability of non-scalar
systems arising in the study of forward neural networks.

Some historical remarks are in order.
Let H : Rq → R

q and assume that there exists a norm ‖.‖a in R
q, a positive

integer p, and a constant k ∈ [0, 1) such that

‖Hp(x)−Hp(y)‖a ≤ k‖x− y‖a, (6)

for every pair of points x,y of Rq. Inequality (6) implies that there is one and
only one point xs such that xs = H(xs). Moreover, every orbit of H, every
sequence of iterates

O(x0) := {x1 = H(x0),x2 = H(x1) = H(H(x0)) := H2(x0), . . . }, (7)

where x0 is any element of Rq, converges to xs. The existence and uniqueness
of the fixed point xs and the convergence of O(x0) to xs for all x0 ∈ R

q follow,
for p = 1, from the Banach Contraction Principle, established in 1922 by S.
Banach for maps defined in complete metric spaces (see [2, 8]). For p > 1 both
results are derived from an extension, attributed to R. Caccioppoli (see [4, 13]),
of the Banach Contraction Principle.

Assume that H : Rq → R
q has a fixed point xs, and, in addition, the map

H is Fréchet differentiable (see, for example, [18]) at every x 6= xs. Moreover,
let us require the existence of a function h : Rq → R such that h′(x) = H(x)
(namely, H is a gradient). Then, for every x0 ∈ R

q, the orbit O(x0) converges
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to xs, provided that, for all x 6= xs, the spectral radius of the Fréchet derivative
H ′

F (x) is smaller than 1 (see [13]). Since the Fréchet derivative of F at every
x 6= xs is a symmetric matrix, one can use the Euclidean norm to prove the
uniqueness of the fixed point xs and the convergence of O(x0) to xs for every
x0 ∈ R

q.
Symmetricity ofH ′

F (x) is no longer available whenH is lower triangular, i.e.

H(x) = H(x1, . . . , xq) = (k1(x1), k2(x1, x2), . . . , kq(x1, . . . , xq)),

unless

H(x) = H(x1, . . . , xq) = (h1(x1), h2(x2), . . . , hq(xq)),

namely H is a diagonal map. However, one can still obtain that every orbit
O(x0) converges to xs by placing suitable restrictions on the diagonal elements
of the matrix H ′

F (x), for all x 6= xs. The convergence is established using the
Euclidean norm (see [1, 7, 14]).

Assume that H(0) = 0. It has been recently proved (see [9]) that O(x0)
converges to 0 for every x0 ∈ R

q provided that H is continuous, its Gateaux
derivative H ′

G(x) (see, for example, [18]) exists except possibly on a linearly
countable set S ⊂ R

q, and the spectral radius of the product of H ′
G(x) and of

its transpose is smaller than 1 at every point x /∈ S. Recall that S is linearly
countable if for every z ∈ R

q the set [0, z] ∩ S is at most countable, where the
symbol [0, z] denotes the line segment {y = tz : t ∈ [0, 1]}. The convergence is
established using the Euclidean norm.

Notice that with the exception of the case when H or one of its iterates
is a contraction (see inequality (6)), all remaining cases mentioned above use
some form of differentiability. Moreover, the plus-global stability is never con-
sidered. No differentiability assumptions are made in this paper. Moreover, we
investigate the theory and an application of plus-globally stable systems.

The paper is divided into four sections. After this introduction (Section 1),
we define, in Section 2, globally stable and plus-globally stable systems and we
establish necessary and sufficient conditions for global stability and for plus-
global stability. In Section 3 the V-condition is introduced and its implications
for dynamical systems are analyzed. We explore the interplay between the V-
condition and global stability (see Theorem 3.5). We also analyze the relations
between the V-condition and plus-global stability (see Theorem 3.7). Section
4 presents a simple application of the theory developed in Sections 2 and 3 to
a convergence problem that arises in the study of forward neural networks.

2. Notations, Definitions, and Preliminary Results

Consider the discrete dynamical system governed by a function f : R → R.
Recall that the symbol O(x0) denotes the orbit of x0 (see (1) and (2)).
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Definition 2.1. We write
x0 < O(x0) (8)

to indicate that x0 < xn := fn(x0), for every n = 1, 2, . . . Obviously O(x0) <
x0 denotes that fn(x) := xn < x0, for every n = 1, 2, . . .

Definition 2.2. We say that x0 is a periodic point of period 2 of f if x0 =
x2 6= f(x0) = x1. Notice that x3 = x1. The definition of a periodic point of
period q, 3 ≤ q, is analogous.

Definition 2.3. The dynamical system governed by f is said to be globally
stable (or, simply, f is globally stable) if f has a unique fixed point xs, and,
for every x0 ∈ R, the orbit O(x0) converges to xs (see, for example, [17]).

Definition 2.4. The dynamical system governed by f is plus-globally stable
(or, simply, f is plus-globally stable) if f has a unique fixed point xs, and
every sequence {xn, n = 0, 1, . . . } (not necessarily an orbit) such that

lim
n→∞

xn+1 − f(xn) = 0, (9)

converges to xs.
Globally stable and plus-globally stable systems (or maps) in R

q are defined
(and denoted) in a similar manner.

Remark 2.5. Notice that, as mentioned in Section 1, a plus-globally stable
system is globally stable. In fact, along every orbit of the dynamical system
governed by f we have

xn+1 − f(xn) = 0, for every n = 0, 1, . . . (see (3)). (10)

As pointed out by P. Cull (see [17]), local stability is easier to check than
global stability (see [12]) for population models either continuous or discrete
and governed by functions that are at least C1.

Notice that Cull’s investigation addresses the study of population models.
Consequently, the variable x is necessarily positive. In this paper we consider
functions f : R → R , we only assume continuity and we study globally stable
as well as plus-globally stable systems.

The following examples and theorems regard dynamical systems that are
globally stable and the ones that are plus-globally stable.

Example 2.6. Let f : R → R be defined by

f(x) = x(1− e−|x|). (11)

Notice that xs = 0 is the only fixed point of f . Moreover, it can be easily
verified that O(x0) converges to 0 for every x0 ∈ R. Hence, the dynamical
system is globally stable. The sequence

{xn = ln(n+ 2), n = 0, 1, . . . } (12)
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has the property
lim

n→+∞
xn+1 − f(xn) = 0.

Therefore, f is not plus-globally stable.

Example 2.7. Let a ∈ (−1, 1) and define f(x) = ax. Clearly, xs = 0 is the only
fixed point of f and O(x0) converges to 0 for every x0 ∈ R. It is not difficult to
verify that this globally stable dynamical system is also plus-globally stable.

Theorem 2.16 gives a necessary and sufficient condition for global stability.
Its proof is based on the following results and remarks.

We begin with a theorem of A. N. Sharkovsky [19].

Theorem 2.8. Let I ⊂ R be an interval and f : I → I be continuous. Assume
that f has a periodic orbit of period p. Then f has a periodic orbit of period q
for every q that follows p in the arrangement (Sharkovsky′s ordering)

3≺5≺7≺ . . .≺6≺10≺14≺ . . .≺12≺20≺28≺ . . .≺23≺22≺2≺20 = 1.

Notice that the first group contains, in increasing order, all odd numbers
starting with 3. The second group consists of the entries of the first group
multiplied by 2 and with the increasing order preserved. The elements of the
third group are obtained from the ones of the second group by multiplying its
entries by 2 and preserving the increasing order . . . Each group is infinite on the
right, but the last one that is infinite on the left, and it consists of all powers
of 2 in reverse order. The string ends with 20 = 1.

The following remark is an easy consequence of Sharkovsky’s result.

Remark 2.9. Theorem 2.8 (see also [16]) implies that the following statements
are equivalent:
a. there exists xs ∈ R such that f(xs) = xs is the only periodic point of f ;
b. f has one and only one fixed point xs, and it does not have any periodic
point of period 2 (see Definition 2.2).

Remark 2.10. It is easy to show that every bounded orbit of a continuous func-
tion f : R → R that satisfies condition a. (or b.) of Remark 2.9 must converge
to xs.

We also need the following result of L. S. Block and W. A. Coppel [3].

Theorem 2.11. Let I be a compact interval and J ⊂ I be a subinterval which
contains no periodic points of a continuous function f : I → I. Then, for every
x0 ∈ I, the points of the orbit O(x0) which lie in J form a strictly monotonic
(finite or infinite) sequence.

Finally, we shall use a result established by A. Crannell and M. Martelli [6].



6 G. DI LENA ET AL.

Theorem 2.12. Suppose that I ⊂ R is a ( possibly infinite ) interval and
f : I → I is continuous. Suppose, moreover, that there is x0 ∈ I such that
O(x0) has infinitely many limit points. Then for every number p ∈ N there
exists q ∈ N, q > p, and y0 ∈ I such that y0 is a periodic point of period q of f .

We now present some additional remarks and a result (see Proposition 2.14)
that will be helpful in the proof of Theorem 2.16.

Remark 2.13. The reasoning used in [6] shows that when O(x0) has only
m ∈ N, m ≥ 1, distinct limit points, say

{z1, z2, . . . , zm},

then each zk, k = 1, . . . ,m is a periodic point of period m of f .

As mentioned above, the proof of Theorem 2.16 is based on the following

Proposition 2.14. Assume that f : R → R is continuous, and for every x ∈ R,
x 6= 0, whenever one of the ratios

f(x)

x
,
f(f(x))

x
(13)

is positive, it belongs to (0, 1). Then f does not have any fixed point different
from 0, or any periodic orbit of period 2.

Proof. The existence of a fixed point xs 6= 0 would imply that the first quo-
tient is 1. The existence of a periodic orbit of period 2 (see Definition 2.2)
would imply

z = f(f(z)).

for some z 6= 0.

Remark 2.15. In what follows we shall always assume that 0 /∈ O(x0), and it
is easy to see that any orbit of this type belongs to one and only one of the
following disjoint sets:

j. the set A of orbits with infinitely many states on one side of 0, and with
only finitely many states on the other side of 0;

jj. the set B of orbits with infinitely many states on both sides of 0, and
with the additional property that we can find, on each side, at least one
pair of entries belonging to three successive states of the orbit;

jjj. the set C of orbits with infinitely many states on both sides of 0, and
such that we cannot find, on one side (say the left side), a pair of entries
belonging to any three successive states of the orbit.
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With the results and remarks mentioned above we are in a position to prove

Theorem 2.16. Assume that f is continuous and f(0) = 0. Then O(x0) con-
verges to 0 for every x0 ∈ R if and only if f satisfies the condition that whenever
one of the ratios (13) is positive, it belongs to (0, 1).

Proof. We first show that the convergence of O(x0) to 0 follows from the prop-
erty that whenever one of the ratios (13) is positive, it belongs to (0, 1). Recall
that, by Proposition 2.14, f does not have any fixed point xs 6= 0 nor any
periodic orbit of period 2. Consequently, by Theorem 2.8, the function does
not admit any periodic orbit of period p ≥ 2. Moreover, Remark 2.15 implies
that O(x0) belongs to one and only one of the sets A,B, and C.

Let us assume that O(x0) ∈ A. Since only finitely many states of the
orbit are on one side of 0, there exists a positive integer k such that the states
{xk = fk(x0), xk+1 = fk+1(x0), . . . } belong to the other side of 0. We can
assume, without loss of generality, that the other side is the half-line (0,+∞).
Since the ratios {

xp+1

xp

, : p ≥ k} are positive, they belong to (0, 1). Hence, the

sequence {xk+q : q = 0, 1, . . . } is strictly monotone decreasing and it converges
to the fixed point 0 (see also Remark 2.10).

Let us now assume that O(x0) ∈ B and denote by R(x0) and L(x0) the
subsequences of O(x0) contained in (0,+∞) and (−∞, 0) respectively. Since
there are no periodic orbits of f in (0,+∞) we can use Proposition 2.14 and
Theorem 2.11 to derive thatR(x0) is stricly decreasing. In an analogous manner
we obtain that L(x0) is strictly increasing. Therefore, R(x0) converges to
zR ≥ 0 and L(x0) converges to zL ≤ 0. It is easy to prove that zR = zL = 0.
It remains to show that the result holds when O(x0) ∈ C. Without loss of
generality we can assume that the subset L(x0) does not have any pair of
entries belonging to a group of three successive states of the orbit. Moreover,
Proposition 2.14, Theorem 2.11 and the same strategy outlined in the case
O(x0) ∈ B, require R(x0) to be strictly decreasing. Hence, it converges to a
point zR ≥ 0. We cannot have zR > 0, since either from Theorem 2.12 or from
Remark 2.13, we would obtain the existence of a periodic point xp 6= 0 of period
p ≥ 1 of f , contradicting Proposition 2.14 and Theorem 2.8. Hence, R(x0)
converges to 0. The continuity of f implies that the entire orbit converges to 0.

We now prove that when the discrete dynamical system governed by f has
the property that every orbit O(x0) converges to 0, then if one of the ratios (13)
is positive, it belongs to (0, 1). Clearly, the system does not have a fixed point
xs 6= 0 nor any periodic orbit of period p ≥ 2. In addition, for every x0 ∈ R,
0 /∈ O(x0), there exists a positive constant M(x0) = max{|xn| : n = 1, 2, . . . }.
Theorem 2.11 implies that the elements of O(x0) belonging to either one of the
two intervals

I1 = (0,M(x0)), I2 = (−M(x0), 0)

are arranged in a strictly monotonic manner. More precisely, the convergence
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of O(x0) to 0 requires the ones of I1 to be strictly decreasing and the ones of
I2 to be strictly increasing. Hence, the ratio of any two states of O(x0) on
the same side of 0 is smaller than 1 whenever the subscript of the one in the
numerator is larger than the subscript of the one in the denominator. Hence,
in particular, the ratios (13) that are positive must be smaller than 1.

Remark 2.17. As Example 2.6 shows the necessary and sufficient condition
of Theorem 2.16 is not enough to guarantee that a globally stable system is
plus-globally stable. We will provide, at the end of this section, a sufficient
condition and a separate necessary condition for plus-global stability.

Remark 2.18. The property f(0) = 0 can obviously be replaced by f(xs) = xs,
provided that the ratios (13) are changed accordingly. This observation holds
also for Theorem 2.19 (see below).

We now establish a sufficient condition for the global stability of dynamical
systems governed by functions belonging to a special family.

Theorem 2.19. Let f : R → R be continuous and such that

a) f(0)=0 is the only periodic point of f ;

b) there exists r > 0 such that |f(x)| < r when |x| < r.

Then the dynamical system governed by f is globally stable.

Proof. Let us show that the existence of an unbounded orbit of f would imply
the existence of a point z = fp(z), z 6= 0, p ∈ N, p ≥ 1, contradicting the
property that 0 = f(0) is the only periodic point of f .

From assumptions a), b) and Remark 2.10 we derive that

lim
n→∞

fn(x) = 0 (14)

for every x ∈ I = (−r, r). Therefore, given c ∈ (−r, r), c 6= 0, there exists
k ∈ N, k ≥ 1, such that for every q ∈ N, q ≥ k, we have fq(c) < c when c > 0
and c < fq(c) when c < 0. Assume that f has an unbounded orbit O(x0).
Without loss of generality we may assume that x0 > c > 0 and fp(x0) > x0

for some p ≥ q. Hence
(c, x0) ⊂ (fp(c), fp(x0)). (15)

By the Intermediate Value Theorem fp has a fixed point z ∈ [c, x0]. This
conclusion contradicts property a) of f . Hence every orbit of f is bounded.
The result now follows from Remark 2.10.

Remark 2.20. Notice that property b) of Theorem 2.19 is sufficient but not
necessary for global stability.
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We are now interested in establishing a sufficient condition and a separate
necessary condition for a discrete dynamical system to be plus-globally stable.

Theorem 2.21. Assume that f : R → R is globally stable with f(xs) = xs.
Then f is plus-globally stable if there exist positive constants K and T such that

T < f(x)− x, whenever x < −K, (16)

and

T < x− f(x), whenever x > K. (17)

Proof. We shall do the proof only in the case when x > 0. The case x < 0 can
be analyzed in a similar manner. Let us show that the plus-global stability of
the system can be derived from inequality (17).

Let {zn : n = 1, 2, . . . } be such that

lim
n→∞

zn+1 − f(zn) = 0. (18)

We need to prove that the sequence converges to xs. Assume that the sequence
is bounded and let L be the set of its limit points. Although {zn : n = 0, 1, . . . }
may not be an orbit, we obtain (see for example [7]) f(L) = L. We can now
use either Theorem 2.12 or Remark 2.13 to conclude that f has periodic orbits.
Since the only periodic point of f is xs we conclude that the sequence must
converge to xs.

It remains to show that the sequence is bounded. From (18) we derive the
existence of positive integer n0 such that for all n ≥ n0 we have

zn+1 ∈

(

f(zn)−
T

2
, f(zn) +

T

2

)

. (19)

Moreover, (17) implies that

f(xq) + T < xq (20)

whenever xq > K. Let p ≥ n0 be such that xp > K. Then

f(xp) + T < xp (21)

and

xp+1 < f(xp) +
T

2
< xp. (22)

Consequently, the sequence is bounded.

We now provide a necessary condition for plus-global stability.



10 G. DI LENA ET AL.

Theorem 2.22. Let f : R → R be globally stable and such that f(xs) = xs.
Assume that at least one of the two limits

lim
x→+∞

x− f(x), lim
x→−∞

x− f(x) (23)

exists and it is 0. Then the dynamical system governed by f is not plus-
globally stable.

Proof. We shall prove the result when the first limit is 0. The remaining case
can be analyzed in a similar manner.

From (23) we derive that every monotone sequence {xn : n = 1, 2, . . . } such
that x1 = 1 and

lim
n→∞

xn = +∞ (24)

has the property
lim

n→∞
xn − f(xn) = 0. (25)

Choose {xn : n = 1, 2, . . . } so that

xn+1 = xn +
1

n
. (26)

Clearly, the sequence has the property required by (24). Then, from (25) and
(26), we obtain

lim
n→∞

xn+1 − f(xn) = 0. (27)

Therefore, the system is not plus-globally stable.

Remark 2.23. From Theorem 2.22 we derive that a necessary condition for
plus-global stability is that both limits (23) should be different from 0. How-
ever, it is not difficult to verify that this requirement does not guarantee plus-
global stability.

3. The V-Condition

We first would like to characterize those functions f : R → R such that for
every r ∈ R

1. the point xr is the one and only one solution of the equation f(x)+r = x;

2. the dynamical system governed by gr : R → R, gr(x) = f(x)+r is globally
stable.

To achieve the stated goals we introduce a class of maps with the property (28)
listed below.
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Definition 3.1. A function f : R → R satisfies the V-condition whenever
a < b does not imply that

f(b) ≤ a < b ≤ f(a). (28)

It can be shown that when f is continuous and the orbits of f are bounded,
inequality (28) is equivalent to the statement that f does not have periodic
points of period 2 (see [16]).

The following result holds.

Proposition 3.2. Assume that f : R → R satisfies the V-condition. Then

i) x0 < f(x0) = x1 implies x0 < O(x0),

and

ii) x1 = f(x0) < x0 implies O(x0) < x0.

Proof. We shall only prove i), namely that x0 < x1 implies x0 < O(x0). The
proof of ii) is similar.

Assume that x0 < O(x0) is not verified for some x0 ∈ R. Let p ≥ 2 be the
smallest integer such that

xp ≤ x0 < f(x0) = x1. (29)

In the case when p = 2 we conclude that f does not satisfy the V-condition
with a = x0 and b = x1.

Hence, assume that p ≥ 3 and notice that we must have x0 < xp−1 for,
otherwise, xp could not be the first element to the left of x0. The inequality
xp−1 ≤ x1 implies that f does not satisfy the V-condition with a = x0 and
b = xp−1. Hence, we can suppose that xp ≤ x0 < x1 < xp−1. Let 1 < k < p−1
be the largest integer such that xk < xp−1 ≤ xk+1. Then, once again, f does
not satisfy the V-condition with a = xk and b = xp−1.

We now present two propositions that give us the information we need to
establish Theorems 3.5 and 3.7.

Define

h1 : R → R by h1(x) := f(x)− x ;

h2 : R → R by h2(x) := f(x) + x .

We do not include a proof of Proposition 3.3 since the result is evident.

Proposition 3.3. The following properties are equivalent :

j) the function h1 is bijective;
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jj) the equation gr(x) = x has one and only one solution for every r ∈ R.

Proposition 3.4 establishes the equivalence of three different statements
linking the V-condition, the strictly increasing character of the map h2, and a
lower bound for the ratio

f(b)− f(a)

b− a

with a 6= b.

Proposition 3.4. The following properties are equivalent :

1. ∀r ∈ R the function gr verifies the V-condition;

2. for every pair of real numbers a, b such that a < b we have

f(b)− f(a)

b− a
> −1;

3. the function h2 is strictly increasing.

Proof. Assume the existence of a < b such that

f(b)− f(a)

b− a
≤ −1. (30)

Then, we can find r ∈ R satisfying the following inequality

f(b)− a ≤ −r ≤ f(a)− b. (31)

Rearrange (31) to obtain

f(b) + r ≤ a < b ≤ f(a) + r (32)

which implies that gr violates the V-condition. Therefore, Property 1 implies
Property 2.

Property 2 clearly implies Property 3. It remains to show that Property 3
implies Property 1.

Assume that there exists r such that gr does not satisfy the V-condition.
Then we can find a < b such that

f(b) + r ≤ a < b ≤ f(a) + r. (33)

From (33) we derive
b− a ≤ f(a)− f(b).

against the assumption that h2 is strictly increasing.
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We are now ready to prove an important result regarding global stability.

Theorem 3.5. Let f : R → R be such that h1 is bijective and h2 is strictly
increasing and let xr be the only fixed point of gr (see Proposition 3.3). Then,
the following two properties are equivalent :

1. the dynamical system governed by gr is globally stable;

2. for every x 6= xr, we have

|gr(x)− xr| < |x− xr|.

Proof. Since the global stability of the system governed by gr can easily be
derived from the inequality

|gr(x)− xr| < |x− xr|, (34)

we only need to show that the global stability of gr implies (34).
We prove the result only in the case when xr < x. A similar reasoning can

be used for the case x < xr.
We first show that the following inequality holds

2xr − x < gr(x). (35)

In fact, assume that
gr(x)− xr ≤ xr − x. (36)

Inequality (36) implies
f(x)− f(xr)

x− xr

≤ −1. (37)

Since (37) violates the stricly increasing character of h2, we obtain that
(35) holds.

We now show that gr(x) < x. In fact, if this is not the case, we can find
x0 such that xr < x0 ≤ gr(x0) = x1. Propositions 3.2 and 3.4 imply that
xr < x0 ≤ O(x0). This result, however, is unacceptable since the orbit O(x0)
must converge to xr. Hence

2xr − x < gr(x) < x. (38)

Subtracting xr from each term of (38) we obtain

xr − x < gr(x)− xr < x− xr. (39)

Notice that (34) is equivalent to (39).

Theorem 3.5 implies
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Corollary 3.6. Let f : R → R be such that h1 is bijective, h2 is strictly
increasing, and the dynamical system governed by gr is globally stable for every
r ∈ R. Then f is continuous.

We now establish an important result regarding plus-global stability.

Theorem 3.7. Let f : R → R be continuous and assume that the following
conditions are verified :

j) h1 is bijective;

jj) inf
x 6=y

f(x)− f(y)

x− y
> −1;

jjj) lim sup
|x|→∞

∣

∣

∣

∣

f(x)

x

∣

∣

∣

∣

< 1.

Then, for every r ∈ R, the dynamical system governed by the function gr is
plus-globally stable.

Proof. The plus-global stability will be established when r = 0 (g0 = f). In a
similar manner we can analyze the situation r 6= 0.

From assumption j) we derive, using Proposition 3.3, that the function f
has one and only one fixed point α. Let {yn : n = 0, 1, . . . } be such that

lim
n→∞

yn+1 − f(yn) = 0. (40)

We need to show that
lim
n→∞

yn = α. (41)

We first prove that the sequence {yn : n = 0, 1, . . . } is bounded. From jjj)
and from the continuity of f we derive that there are constants P ≥ 0 and
k ∈ [0, 1) such that

|f(x)| ≤ P + k|x| (42)

for all x ∈ R. Since
lim
n→∞

yn+1 − f(yn) = 0,

inequality (42) implies the existence of a non-negative constant Q and n0 ∈ N

such that
|yn+1| ≤ Q+ k|yn| (43)

for all n ≥ n0. Hence, the sequence is bounded.
Let L be the set of its limit points. Notice that the sequence {yn : n =

0, 1, . . . } may not be an orbit. However, it is known (see, for example, [7]) that
L is compact and f(L) = L. Define

β1 = lim inf
n→∞

yn , β2 = lim sup
n→∞

yn.
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It is easy to verify that β1 ≤ α ≤ β2. Our goal is to prove that β1 = β2 = α.
Let us show that

β1 < β2, (44)

leads to a contradiction. Observe first that we cannot have

β1 = α < β2 (45)

since, by the Intermediate Value Theorem, we could find a fixed point of f
different from α. Analogously, we cannot have

β1 < α = β2. (46)

It remains to show that we cannot have β1 < α < β2. In fact, using once more
the Intermediate Value Theorem, we can prove that f has a fixed point different
from α either in the case when there exists a ∈ (β1, α) such that f(a) = β1,
or in the case when we can find b ∈ (α, β2) such that f(b) = β2 (recall that
f(L) = L). Hence, the only possibility is to have a ∈ (β1, α) and b ∈ (α, β2)
such that f(a) = β2 and f(b) = β1. This however, contradicts assumption
jj) of the theorem. Hence, β1 = β2 = α. It follows that (41) holds and the
dynamical system governed by f = g0 is plus-globally stable.

4. An Application to Foreward Neural Networks

We now present an application of the theory established in the previous sections
to dynamical systems governed by lower triangular maps. This type of systems
are used to model the evolution of forward neural networks (see [5, 10, 11]).
We would like to point out that the purpose of this section is not to investigate
the most general situation regarding global convergence of lower (or upper)
triangular maps. We just want to underline how the theory presented in the
previous sections can be used to study this class of problems.

Let F : Rq → R
q be of the form

F (x) = (f1(x1), f2(x1, x2), . . . , fq(x1, . . . , xq)) + xI (47)

where

xI = (xI,1, . . . , xI,q). (48)

Assume that g1(t) = f1(t) + xI,1, t ∈ R, satisfies the assumptions of Theorem
3.7 and let α1 be its unique fixed point. Next, consider g2(t) = f2(α1, t) +
xI,2, t ∈ R, and assume that also g2 satisfies the assumptions of Theorem 3.7.
Denote by α2 its unique fixed point. Continuing in the manner just described
we arrive at gq(t) = fq(α1, . . . , αq−1, t) + xI,q, t ∈ R. We assume that gq
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satisfies the assumptions of Theorem 3.7 and we denote by αq its unique fixed
point. Notice that

F (α1, . . . , αq) = (α1, . . . , αq) := α (49)

i.e. α is a fixed point of F . The dynamical system governed by F : Rq → R
q is

said to be globally stable (or, simply, F is globally stable) if for every x0 ∈ R
q,

the orbit O(x0) converges to α.
The following result holds.

Theorem 4.1. Assume that every fi, i ∈ {2, . . . , q}, is uniformly continuous,
xI = (xI,1, . . . , xI,q) is a given point of Rq and the functions gi, i ∈ {1, . . . , q},
satisfy the assumptions of Theorem 3.7 with fixed points α1, . . . , αq, respectively.
Let F : Rq → R

q be defined as in (47). Then the dynamical system governed by
F is globally stable.

Proof. Let x0 be a point of Rq and consider the sequence of iterates of (47)
starting from x0 = (x1,0, . . . , xq,0). We have

x1,n+1 = f1(x1,n) + xI,1 ,

x2,n+1 = f2(x1,n, x2,n) + xI,2 ,

. . .

xq,n+1 = fq(x1,n, . . . , xq,n) + xI,q.

Since g1 is plus-globally stable we obtain that

lim
n→∞

x1,n+1 = α1. (50)

Moreover,
x2,n+1 = g2(α1, x2,n) + δ2,n (51)

where
δ2,n = f2(x1,n, x2,n)− f2(α1, x2,n).

The uniform continuity of f2 implies that

lim
n→∞

δ2,n = 0. (52)

Since g2 is plus-globally stable we obtain

lim
n→∞

x2,n+1 = α2.

Continuing in the same manner we conclude that

lim
n→∞

xq,n+1 = αq. (53)

Therefore,
lim

n→∞
xn+1 = α, (54)

and Theorem 4.1 is fully established.
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Remark 4.2. Notice that a sequence {zn, n = 1, 2, . . . } such that

lim
n→+∞

zn+1 − F (zn) = 0 (55)

need not be bounded. In the case when all such sequences are bounded, for ex-

ample when lim sup
‖z‖→+∞

‖ F (z) ‖

‖ z ‖
< 1, and with the same assumptions of Theorem

4.1, we obtain that the dynamical system governed by F is plus-globally stable.

Remark 4.3. The neural networks studied in [5, 10, 11] are of the form

H(x) = (h11(x1), h21(x1) + h22(x2), . . . , hq1(x1) + · · ·+ hqq(xq)) + xI (56)

whereH : Rq → R
q is continuous and hkk is a contraction for every k = 1, . . . , q.

It can be easily proved that the functions

gk(t) = hk1(α1) + · · ·+ hk,k−1(αk−1) + hkk(t) + xI,k, k = 1, . . . , q

are plus-globally stable. Moreover, in this particular case, the uniform continu-
ity of the functions fi, i ∈ {2, . . . , q}, is no longer needed and it can be replaced
by the simple continuity. The proof of Theorem 4.1 is modified accordingly.
For more general situations one can consult [1, 14].
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