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Abstract. The Laguerre 2D polynomials depending on an arbitrary
matrix Q in SU(2) as a fixed parameter are used to construct a set of
coherent states. The corresponding coherent state transforms constitute
a deformation by matrix Q of a generalized Bargmann transform.
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1. Introduction

The Bargmann transform, originally introduced by V. Bargmann [1], is a win-
dowed Fourier transform [5]. It is closely connected to the Heisenberg group
and has many applications in quantum optics as well as in signal processing
and harmonic analysis on phase space [3]. This transform defined through

B0 [f ] (z) :=

∫

R

f(x)e−x2+2xz− 1

2
z2

dx, z ∈ C,

maps isometrically the space L2(R, dx) of square integrable functions on the real
line onto the Bargmann-Fock space F (C) of entire complex-valued functions

which are e−|z|2dµ-square integrable, dµ being the Lebesgue measure on C.
In [2] H-Y. Chen and J. Fan have constructed an integral transform, called

there generalized Bargmann transform, by

B [ϕ] (z, w) :=

∫

C

exp

(

− zw + wξ̄ + zξ − 1

2
|ξ|2

)

ϕ(ξ)dµ(ξ) (1)

as a transform of two-mode Fock space represented by a two-variable complex
Laguerre polynomials, which naturally accompanies Einstein-Podolsky-Rosen
entangled states of continuous variables.

Our aim here is to construct a kind of deformation BQ of (1) by means of
an arbitrary parameter matrix Q belonging to the special unitary group SU(2),
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such that for Q = I, being the identity matrix, the kernel of BI coincides with
that of (1). Indeed, we define:

BQ [ϕ] (Z) :=

∫

C

exp

(

ZQtΞ(ξ) − 1

2
ZΛtQtZ − 1

2
|ξ|2

)

ϕ(ξ)dµ(ξ), (2)

where ϕ belongs to a suitable class of functions, tZ (resp. tΞ(ξ)) denotes
the matrix transpose of Z = (z, w) ∈ C

2 (resp. Ξ(ξ) = (ξ, ξ̄)) and Λ :=
(

0 1
1 0

)

. This can be handled by adopting a coherent states method [7]. The

physical meaning of the obtained deformed Bargmann transform (2) is encoded
in the two-variable complex Laguerre polynomials depending on a matrix Q as
introduced by A. Wünsche [10], and occurring in the quantum mechanics of a
degenerate 2D harmonic oscillator.

The paper is organized as follows. In Section 2, we shall recall some needed
facts on the Laguerre 2D polynomials. Section 3 deals with a formalism of
generalized coherent states. This formalism is applied in Section 4 so as to
define a matrix parameter family of generalized coherent states and to discuss
the corresponding coherent state transforms.

2. The Laguerre 2D Polynomials

The Laguerre 2D polynomials LQ
m,n(ξ, ξ∗) defined in [10] are polynomials of the

pair complex conjugated variables (ξ, ξ∗), which depend on an arbitrary fixed
2D matrix Q as parameter. In fact, we have

LQ
m,n(ξ, ξ∗) = exp

(

− ∂2

∂ξ∂ξ∗

)

(ξ′)m(ξ′
∗

)n; m,n = 0, 1, 2, ..., (3)

where for Q =

(

α β

γ σ

)

we have

(

ξ′

ξ′
∗

)

= Q

(

ξ

ξ∗

)

=

(

αξ + βξ∗

γξ + σξ∗

)

.

In the special case of Q being the identity matrix I, definition (3)
provides explicitly

LI
m,n(ξ, ξ∗) = (−1)nn!ξm−nL(m−n)

n (ξξ∗) = (−1)mm!ξ∗n−m
L(n−m)

m (ξξ∗),

where L
(α)
m (·) denote the generalized Laguerre polynomials and L

(0)
m (·) = Lm(·)

are the ordinary Laguerre polynomials [4].
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Note that for an arbitrary matrix Q the polynomials LQ
m,n(ξ, ξ∗) are still

connected to the polynomials Lm,n := LI
m,n through the relation [10, p. 670]:

LQ
m,n(ξ, ξ∗) = (

√

detQ)m+n

m+n
∑

j=0

(

β√
detQ

)m−j(
σ√

detQ

)n−j

(4)

×P (m−j,n−j)
j

(

1 +
2αγ

detQ

)

Lj,m+n−j(ξ, ξ
∗)

where P
(α,β)
j (·) denotes the Jacobi polynomial [4]. It should be also noted that

there is a relation between the two polynomials LQ
m,n(·, ·) and Lp,s(·, ·). in the

degenerate case of vanishing determinant of Q see [10, p. 671].
Beside the Laguerre 2D polynomials, Wünsche has introduced the Laguerre

2D functions as

LQ
m,n(ξ, ξ∗) := e−

1

2
|ξ|2

LQ
m,n(ξ, ξ∗)√
πm!n!

(5)

and has established for general 2D matrix Q the following orthonormaliza-
tion relations:

∫

C

i

2
(dξ ∧ dξ∗)LQ

m,n(ξ, ξ∗)L
(tQ)−1

k,l (ξ∗, ξ) = δm,kδn,l, (6)

where i
2 (dξ ∧ dξ∗) = dµ(ξ) is the area element of the plane. Here tQ denotes

the transposed matrix of Q and δm,k the Kronecker symbol. In addition, we
have the completeness relation:

+∞
∑

m=0

+∞
∑

n=0

LQ
m,n(ξ, ξ∗)L(tQ)−1

m,n (ζ∗, ζ) = δ(ξ − ζ, ξ∗ − ζ∗), (7)

where δ(ξ, ξ∗) = δ(ℜξ)δ(ℑξ) denotes the two-dimensional delta function.
For our purpose, we fix Q in the special unitary group SU(2), i.e., so

that its inverse Q−1 be equal to the transpose of its conjugate. Thus, one
can easily see from (5) and (6) that the Laguerre 2D polynomials satisfy the
following property

∫

C

|LQ
m,n(ξ, ξ∗)|2e−|ξ|2dµ =

√
πm!n! (8)

which means that the function ξ 7→ LQ
m,n(ξ, ξ∗) belongs to the Hilbert space

L2(C; e−|ξ|2dµ) of complex-valued Gaussian square integrable functions on C.
Consequently, the Laguerre 2D functions are elements of the Hilbert space
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L2(C; dµ). Indeed, these functions can be viewed as unitary transforms of the
normalized Laguerre 2D polynomials as

LQ
m,n(ξ, ξ∗) := T−1

[

LQ
m,n(ξ, ξ∗)

]

(9)

where T is the unitary map from L2(C; dµ) to L2(C; e−|ξ|2dµ) defined by

T [φ] (ζ) := e
1

2
|ζ|φ(ζ) , φ ∈ L2(C; dµ) , (10)

called a ground state transformation. These precisions are just to make sense
when talking about the closure in L2(C; dµ) of the vector space spanned by all
linear combinations of the Laguerre 2D functions.

Remark 2.1. The involved polynomials LI
m,n(ξ, ξ∗) in (4), corresponding to

the special case of the identity matrix Q = I, play an important role when
studying representations of quasi-probabilities in quantum optics [8, 9]. Indeed,
for Q = I the identity (4) can be used to describe the transition from linear
polarization to circular polarization or for a beam splitter to the splitting of a
beam into two partial beams of equal intensity [6].

3. Generalized Coherent States

In this section, we present a generalization of coherent states according to the
procedure in [7]. For this, let (X, ν) be a measure space and A ⊂ L2(X, ν) a
closed subspace of infinite dimension. Let {fk}∞k=0 be a given orthogonal basis
of A satisfying

ω(a) := K(a, a) :=

∞
∑

k=0

ρ−1
k |fk(a)|2 < +∞; a ∈ X, (11)

where ρk := ‖fk‖2
L2(X,ν) and

K(a, b) :=

∞
∑

k=0

ρ−1
k fk(a)fk(b), a, b ∈ X, (12)

is the reproducing kernel of the Hilbert space A.

Definition 3.1. Let H be a infinite Hilbert space with an orthonormal basis
{ψk}∞k=0. The coherent states labeled by points a ∈ X are defined as the ket-
vectors | φa >∈ H :

| φa >:= (ω(a))−
1

2

∞
∑

k=0

fk(a)√
ρk

ψk. (13)
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Then, it is straightforward to show that < φa | φa >= 1.

Definition 3.2. The coherent state transform corresponding to the set of co-
herent states (| φa >) is the isometric mapping W : H → A ⊂ L2(X, ν) de-
fined by

W [ψ] (a) := (ω(a))
1

2 < φa | ψ >H, a ∈ X. (14)

Thus, for φ, ψ ∈ H, we have

< φ | ψ >H = < W [φ] |W [ψ] >L2(X,ν)

=

∫

X

dν(a)ω(a) < φ | φa >< φa | ψ > .

Thereby, we have a resolution of the identity of H which can be expressed in
Dirac’s bra-ket notation as

1H =

∫

X

dν(a)ω(a) | φa >< φa |, (15)

where ω(a) appears as a weight function. The notation | φa >< φa | means
the rank one operator.

Remark 3.3. Note that the formula (11) can be considered as a generalization
of the series expansion of the canonical coherent states :

| φz >:= e−
1

2
|z|2

+∞
∑

k=0

zk

√
k!
ψk, z ∈ C, (16)

where {ψk}+∞
k=0 denotes an orthonormal basis of eigenstates of the quantum

harmonic oscillator, consisting of Gaussian-Hermite functions in L2(R, dx).
In this case, the space A is nothing but the Bargmann-Fock space F(C) and

ω(z) = π−1e|z|
2

, z ∈ C.

4. A Coherent State Transform Associated with Laguerre
2D Functions

We are now going to attach to Laguerre 2D polynomials with a fixed matrix
parameter Q ∈ SU(2) a set of coherent states by using the formalism described
in Section 3. This can be handled by considering the following points:

• (X, ν) = (C2, e−|z|2−|w|2dµ), dµ(z, w) is the Lebesgue measure on C
2.
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• A := F (C2) ⊂ L2(C2, e−|z|2dµ) denotes the Bargmann-Fock space of
entire functions ϕ : C

2 → C with finite norm square

||ϕ||2 :=

∫

C2

ϕ(z, w)ϕ(z, w)e−|z|2−|w|2dµ(z, w) < +∞. (17)

Its reproducing kernel is known to be given by K((z1, w1), (z2, w2)) =
π−2 exp (z1z2 + w1w2) so that

ω(z, w) = K((z, w), (z, w)) = π−2e|z|
2+|w|2 . (18)

• {fm,n}+∞
m,n=0 is an orthogonal basis of A given by

fm,n(z, w) := zmwn; m,n = 0, 1, 2, · · · (19)

whose the norm is given by ρm,n = ‖fm,n‖2
= πm!n!.

• Q ∈ SU(2) is a fixed matrix parameter and HQ(C) denotes the Hilbert
subspace of L2(C, dµ) obtained as the closure of vector space span(LQ

m,n)

spanned by all linear combinations of the Laguerre 2D functions LQ
m,n

in (5).

Definition 4.1. The vectors (ΦZ,Q) of the Hilbert space HQ(C) labelled by
elements Z = (z, w) ∈ C

2 and defined formally through (13) by

ΦZ,Q ≡| (z, w), Q >:= (ω(z, w))−
1

2

+∞
∑

m,n=0

fm,n(z, w)
√
ρm,n

LQ
m,n, (20)

are called generalized coherent states.

Proposition 4.2. The wave functions of the states in (20) admit the following
closed form

ΦZ,Q(ξ) = e−
1

2
(|Z|2+|ξ|2) exp

(

ZQtΞ(ξ) − 1

2
ZΛtQtZ

)

, (21)

where tZ (resp. tΞ(ξ)) denotes the matrix transpose of Z = (z, w) (resp. Ξ(ξ) =
(ξ, ξ∗)), |Z|2 = |z|2 + |w|2 its square modulus and Λ denotes the first Pauli spin

matrix
(

0 1
1 0

)

.
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Proof. By definition (20), the associated wave functions read

ΦZ,Q(ξ) := < ξ | Z, Q >=< ξ | (z, w), Q >

:= (ω(z, w))−
1

2

+∞
∑

m,n=0

fm,n(z, w)
√
ρm,n

LQ
m,n(ξ, ξ∗)

= (π−2e|z|
2+|w|2)−

1

2

+∞
∑

m,n=0

zmwn

√
πm!n!

e−
1

2
|ξ|2

LQ
m,n(ξ, ξ∗)√
πm!n!

= e−
1

2
(|z|2+|w|2)e−

1

2
|ξ|2

+∞
∑

m,n=0

zmwn

m!n!
LQ

m,n(ξ, ξ∗).

Now, making use of the generating function for the Laguerre 2D polynomials
[10, p. 675]:

+∞
∑

m,n=0

zmwn

m!n!
LQ

m,n(ξ, ξ∗) = exp

[

(z, w)Q
(

ξ

ξ∗

)

− 1

2
(z, w)

(

0 1
1 0

)

t

Q
(

z

w

)

]

,

one gets the announced result.

The constructed generalized coherent states give rise to a transform ac-
cording to Definition 3.2. Thus, the coherent state transform (CST) associ-
ated to ΦZ,Q; Q ∈ SU(2), is the unitary map BQ from the Hilbert space
HQ(C) ⊂ L2(C, dµ) into the Bargmann-Fock space F (C2) defined by

BQ [ϕ] (Z) := (ω(Z))
1

2 〈ΦZ,Q, ϕ〉L2(C,dµ) , ϕ ∈ HQ(C), (22)

Being motivated by this construction, we state the following definition

Definition 4.3. The coherent state transform BQ whose integral representa-
tion is given by

BQ [ϕ] (Z) =

∫

C

exp

(

ZQtΞ(ξ) − 1

2
ZΛtQtZ − 1

2
|ξ|2

)

ϕ(ξ)dµ(ξ) (23)

will be called a deformed Bargmann transform by the SU(2) matrix parame-
ter Q.

Remark 4.4. For the particular case of Q = I being the identity matrix, the
CST in (23) reduces further to

BI [ϕ] (z, w) =

∫

C

exp

(

− zw + wξ∗ + zξ − 1

2
|ξ|2

)

ϕ(ξ)dµ(ξ)

which has the same integral kernel as the transform considered in [2].
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BP. 523 Béni Mellal-Morocco
E-mail: mouayn@fstbm.ac.ma

Received September 9, 2009
Revised February 16, 2010


