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Invariants of Moduli Spaces
and Modular Forms
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Abstract. Generating functions for invariants of moduli spaces in
algebraic geometry of are often related to modular forms. In this paper
we give an overview of many instances of this phenomenon and in some
cases relate it to predictions from theoretical physics. In this paper we
only consider moduli spaces of objects on surfaces. The examples in-
clude Euler numbers of moduli spaces of sheaves on surfaces, Donaldson
invariants, and enumerative invariants of curves on surfaces.

Keywords: Moduli Spaces, Hilbert Schemes, Donaldson Invariants, Gromov-Witten

Invariants, Modular Forms.

MS Classification 2000: 14C05, 14D20, 14J15, 14H10, 14J80, 14N35, 11F03

1. Introduction

Moduli spaces are an important subject of study in algebraic geometry with
connections to a number of other fields like physics (in particular string the-
ory), differential geometry and number theory. A large number of mathe-
maticians study invariants of moduli spaces such as Betti numbers and Euler
numbers of moduli spaces, Donaldson invariants, Donaldson-Thomas invari-
ants and Gromov-Witten invariants. It has been noted more and more that
the best way to study invariants of moduli spaces is in terms of generating func-
tions. In this paper I want to review work by myself and many others which
relate generating functions for invariants of moduli spaces to modular forms.
In this whole paper we will work over the complex numbers, and a variety is a
quasiprojective variety over C.

I start by briefly explaining some of the concepts that I used above.

1.1. Generating Functions

Assume (an)n∈Z≥0
are some interesting numbers. The generating function for

these numbers is the formal power series

f(t) =
∑

n≥0

ant
n.
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When we study this generating function, our aim is to find a nice closed ex-
pression for f . This will not only explicitly give us all the numbers an, but
it will also give us an intimate relation which ties together all the different
numbers an.

Example 1.1 (Partitions). Let p(n) be the number of partitions of n, i.e. the
number of ways to write n as a sum of smaller numbers (up to reordering).
Thus p(0) = 1, p(1) = 1, p(2) = 2 and p(3) = 3 ((3), (2, 1), (1, 1, 1)). The
generating function for the numbers of partitions is

∑

n≥0

p(n)tn =
∏

k≥1

1

1 − tk
. (1)

(This is very elementary: expand each factor as a geometric series and mul-
tiply everything out. The coefficient of tn will be a sum of p(n) times the
summand 1).

1.2. Moduli Spaces

A moduli space in algebraic geometry is an algebraic variety M which
parametrizes (usually up to isomorphism) in a natural way some objects we
are interested in.

As an example we consider the moduli space of elliptic curves. By definition
an elliptic curve over C is a pair (E, 0) of E a nonsingular projective curve of
genus 1, and a point 0 ∈ E. Then (E, 0) will automatically be a commutative
group with neutral element 0. Topologically E is a torus. Every elliptic curve
is isomorphic to the quotient Eτ = C/(Zτ+Z) of the complex numbers divided
by the lattice Zτ + Z, where τ is an element of the complex upper half plane
H =

{
τ ∈ C

∣∣ ℑ(τ) > 0
}

of complex numbers with positive imaginary part.
The group Sl(2,Z) acts on H by

(
a b
c d

)
(τ) =

aτ + b

cτ + d
,

and it is not difficult to see that Eτ ≃ Eτ ′ , if and only if there exists an
A ∈ Sl(2,Z) with τ ′ = Aτ . This implies that the moduli spaces M1,1 of
elliptic curves is the quotient M1,1 = H/Sl(2,Z). (Strictly speaking, also for
the relation with modular forms below, it is more natural to take M1,1 as the
stack quotient [H/Sl(2,Z)] and not as the quotient variety, but we will not go
into this here). There is a natural compactification M1,1 = M1,1 ∪ ∞. The
extra point ∞ corresponds to a nodal curve.

If Γ ⊂ Sl(2,Z) is a subgroup of finite index, then H/Γ will be a moduli space
of elliptic curves with some extra structure and it will allow a compactification
H/Γ which parametrizes also some degenerations of these elliptic curves with
extra structure.
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1.3. Modular Forms

I briefly introduce modular forms. More details and many applications can be
found in [41, Chapter 2],[47],[4]. Modular forms are related to moduli spaces
(or rather moduli stacks) of elliptic curves. They can be viewed as functions
(or more precisely sections of line bundles) on these moduli spaces. For τ ∈ H

we write q := e2πiτ . For a in Q we also write qa := e2πiaτ .

Definition 1.2. Let k ∈ Z≥0. A modular form of weight k on Sl(2,Z) is a
holomorphic function f : H → C, such that

1.

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) ∀

(
a b
c d

)
∈ Sl(2,Z), (2)

2. f is “holomorphic at ∞”:

f(τ) =
∑

n≥0

anq
n q = e2πiτ , an ∈ C .

f called is a cusp form, if also a0 = 0.

Remark 1.3. 1. Sl(2,Z)/± 1 is generated by the elements

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
.

Condition 1. for T implies that f(τ) = f(τ + 1). Thus f has a Fourier
development (or q-development)

∑
n∈Z

anq
n. Condition 2. then means

that no negative power of q occurs in this Fourier development.

2. One can view q as local parameter of M1,1 at ∞, thus condition 2. of the
definition really means that f is holomorphic at ∞.

Example 1.4. 1. Eisenstein series:

Gk(τ) = −Bk

2k
+

∑

n≥1

(∑

d|n
dk−1

)
qn, k > 2 even.

Here Bk is the Bernoulli number. Gk is a modular form of weight k
on Sl(2,Z). This is proven by writing Gk(τ) in a different way: up to
multiplying by a nonzero constant, Gk(τ) is equal to

∑

(n,m)∈Z2\(0,0)

1

(mτ + n)k
.



58 LOTHAR GÖTTSCHE

One sees that dividing by (cτ+d)k and replacing τ by aτ+b
cτ+d corresponds to

a reordering of the summands, and thus gives the same result because the
sum is absolutely convergent (see Zagiers lectures in [4] for more details).
This argument fails for k = 2, because the sum is no longer absolutely
convergent, which leads to an extra term in the transformation behaviour.
In fact G2 is only a quasimodular form (see below).

2. Discriminant:
∆(τ) = q

∏

n≥1

(1 − qn)24

∆(τ) is a cusp form of weight 12 on Sl(2,Z). One can prove this by
noticing that 24G2 is the logarithmic derivative of ∆, and using the trans-
formation behavior of G2.

One also often considers the Dirichlet eta function

η(τ) := 24
√

∆(τ) = q1/24
∏

n≥1

(1 − qn).

Note that 1
η is by (1) the generating function for partitions (up to the

trivial factor q1/24).

The sum of two modular forms of weight k is obviously a modular form of
weight k, and the product fg of two modular forms of weight k and l is obviously
a modular form of weight k + l. Thus the modular forms on Sl(2,Z) form a
graded ring M∗ =

∑
k Mk. One shows that M∗ = C[G4, G6], in particular the

modular forms of a given weight form a finite dimensional vector space.
One can also consider meromorphic modular forms, which are meromorphic

functions on H satisfying the transformation properties of modular forms and
having only poles of finite order at ∞ (i.e. a Fourier development

∑
n≥−m anq

n).
These are obtained as quotients of modular forms. Particularly important are
weakly holomorphic modular forms, which are required to be holomorphic on
H, but are allowed to have poles of finite order at ∞ (an example is 1

∆ ).
In a similar way one can also define modular forms f on subgroups Γ of finite

index of Sl(2,Z), possibly with a character. In this case the transformation
property (2) is required only for elements A ∈ Γ, and f is required to be
holomorphic at all the cusps (i.e. all elements of (Q ∪ ∞)/Γ). One can find
more details for instance in [47]. Examples of subgroups of finite index are

Γ(N) =
{
A ∈ Sl(2,Z)

∣∣ A ≃ id modN
}
,

Γ0(N) =

{(
a b
c d

)
∈ Sl(2,Z)

∣∣∣∣ c ≃ 0 modN

}
.

A very important class of examples of modular forms are the theta functions.
Let Λ be a positive definite lattice, i.e. as a group Λ ≃ Zr, but it is equipped



MODULI SPACES AND MODULAR FORMS 59

with a positive definite quadratic form Q with values in Z. The theta function
of Λ is then

θΛ =
∑

v∈Λ

qQ(v).

It is a modular form of weight r/2 on some subgroup of Sl(2,Z).
r does not always have to be even, so we sometimes get modular forms of

half integral weight, which are explained in more detail in [47]. In particular

for Λ = Z with the quadratic form Q(n) = n2 we get θ3(τ) =
∑

n∈Z
qn2

, which
is a modular form of weight 1/2 on Γ0(4). This is the simplest example of a
modular form of half integral weight, i.e. we have the transformation formulas

θ3

(
aτ + b

cτ + d

)
= ǫc,d(cτ + d)

1
2 θ3(τ),

(
a b
c d

)

for ǫc,d a 4th root of unity depending on (c, d). A modular form f of weight
r+ 1/2 on Γ0(4) is then required to satisfy that f/θ2r+1

3 is invariant under the
action of Γ0(4).

There are some generalizations of modular forms that one can consider:
The ring QM∗ = C[G2, G4, G6] is the ring of quasimodular forms on Sl(2,Z)
(the formula for Gk above also makes sense for k = 2, only it is not a modular
form). Unlike the ring of modular forms, QM∗ is closed under differentiation
D = q d

dq .
A further generalization are Mock modular forms, which were first intro-

duced (as Mock theta functions) by Ramanujan in his last letter to Hardy. Re-
cently a theory of Mock modular forms was developed by Zwegers [49]. Mock
modular forms can be viewed as holomorphic parts of real analytic modular
forms, i.e. real analytic functions on H, which satisfy the transformation prop-
erties of modular forms. The interested reader can consult [48] for an overview
and background.

Modular forms are important for two reasons:

1. They come up in many different parts of mathematics and physics. Their
Fourier developments are the generating functions for interesting numbers
from many different areas.

2. As we have seen there are very few modular forms.

These two facts together mean that there will be many interesting relations
between generating functions for objects from different fields of mathematics.

In this paper we want to consider generating functions for invariants of
moduli spaces. That is we will want to look at moduli spaces Mn depending
on n ∈ Z≥0, and we want to study generating functions for their invariants.
For instance if the invariant is the topological Euler number e(Mn), then we
want to consider the generating function

∑
n≥0 e(Mn)qn and try to express
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it in terms of modular forms. At a first glance this looks like a completely
impossible task: moduli spaces are usually very complicated objects, and the
invariants of even one moduli space Mn are usually very difficult to determine.
So how can one even dream of computing the generating function, i.e. the
invariants of all Mn in one stroke?

The surprising thing is that often it is easier to determine the generating
functions than it would be to determine the invariants of the moduli spaces
one by one. The point is that there often is a geometric relation between the
moduli spaces Mn for different n. This, if one is lucky, will lead to relations
between the invariants for different n, which often translate into differential
equations for the generating function, which hopefully determine it.

In this article S will be a smooth projective algebraic surface. For a line
bundle L on S, we will usually just write L for c1(L) ∈ H2(S,Z). For classes
α, β ∈ H2(S,Q) we write 〈αβ〉 (or just αβ if there is no risk of confusion) for
their intersection number

∫
S
α ∪ β.

2. Hilbert Schemes of Points

Now we want to consider examples of generating functions of invariants of
moduli spaces which are given by modular forms. We start by looking at
moduli spaces of sets of points on an algebraic surface. First we will look at a
simple such moduli space, the symmetric power of the surface. One gets very
nice generating functions, but they are too simple to lead to modular forms.
Then we study Hilbert schemes of points, which can be viewed as a refinement.
Here indeed we will find modular forms, and a very rich structure reveals itself.

2.1. Symmetric Powers

Let S be a smooth projective surface. The symmetric group Sn acts on Sn by
permuting the factors. The symmetric power is the quotient S(n) = Sn/Sn.
It is known that S(n) is a projective variety of dimension 2n. However S(n) is
singular. The symmetric power S(n) can be viewed as a moduli space of n points
on S counted with multiplicities: points of S(n) are in bijective correspondence
with sets

{
(p1, n1), . . . , (pr, nr)

}
, where 1 ≤ r ≤ n, the pi are distinct points

on S and the ni ∈ Z>0 are their multiplicities, satisfying
∑

i ni = n. The
singular locus of S(n) consists of all

{
(p1, n1), . . . , (pr, nr)

}
for which at least

one multiplicity ni is bigger than one. In other words the smooth locus of S(n)

consists of n distinct points of S counted with multiplicity 1. We now recall
the classical MacDonald formula for the Betti numbers of the S(n).

We introduce the following notation: For Y a quasiprojective variety de-
note dimY its complex dimension , we denote by Hi(Y,Q) its cohomology,
and by bi(Y ) = dim(Hi(Y,Q)) its i-th Betti number. The Poincaré poly-
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nomial of Y is p(Y, z) :=
∑2 dim Y

i=0 bi(Y )zi and the Euler number is e(Y ) =∑2 dim Y
i=0 (−1)ibi(Y ) = p(Y,−1).

Theorem 2.1 (MacDonald formula).

∑

n≥0

p(S(n), z)tn =
(1 + zt)b1(S)(1 + z3t)b3(S)

(1 − t)b0(S)(1 − z2t)b2(S)(1 − z4t)b4(S)
.

Corollary 2.2. ∑

n≥0

e(S(n))tn =
1

(1 − t)e(S)
.

These are very beautiful formulas, determining all the Betti numbers (resp.
all the Euler numbers) of the symmetric powers in terms of just the Betti (resp.
Euler) numbers of S. It is the model for the kind of formulas that we will be
looking for, except that it is a bit too simple to involve modular forms.

2.2. Hilbert Scheme of Points

The Hilbert scheme S[n] of points on S is very closely related to the symmetric
power S(n). Like the symmetric power it parametrizes sets of n points on S
possibly with multiplicities. For a point of multiplicity ni > 1, the symmetric
power only remembers the multiplicity, but the Hilbert scheme records finer in-
formation: a nonreduced scheme structure of length ni at the point. The points
of S[n] are in bijective correspondence to the zero-dimensional subschemes of
length n on S. These can be thought of as the sets

{
(p1,O1), . . . , (pr,Or)

}
,

where the pi are distinct points in S and Oi is a quotient ring of vector space
dimension ni of the ring OS,pi

of germs of holomorphic functions near pi. For
instance when ni = 2, then giving Oi is equivalent to giving a complex tangent
direction at pi. It follows that S[2] is obtained from S(2) by blowing up the “di-

agonal” S
(2)
(2) ≃ S of all

{
(p, 2)

∣∣ p ∈ S
}
. In general there is a natural morphism

ωn : S[n] → S(n);
{
(p1,O1), . . . , (pr,Or)

}
7→

{
(p1, n1), . . . , (pr, nr)

}
.

It turns out that ωn is a birational morphism, and that S[n] is nonsingular.
Thus it is a natural desingularization of S(n). To study S[n] and its invariants,
it is natural to study the fibres of this map. The symmetric power S(n) has a
natural stratification into nonsingular locally closed subsets

S(n) =
∑

ν∈p(n)

S(n)
ν

parametrized by the partitions of n. Here, if ν = (n1, . . . , nr) is a partition of
n, we put

S(n)
ν :=

{{
(p1, n1), . . . , (pr, nr)

} ∣∣∣ pi distinct
}
.



62 LOTHAR GÖTTSCHE

Let S
[n]
ν = ω−1

n (S
(n)
ν ); these form a stratification of S[n] into locally closed

subsets. Let Rn be the set of ideals of colength n in the power series ring

C[[x, y]]. Then one proves that S
[n]
ν is a locally trivial fibre bundle (in the

complex topology) over S
[n]
ν with fibre

∏r
i=1Rni

. One can use this fact to de-
termine the invariants of S[n]: In [13] it is used to count the points of the S[n]

over finite fields. Then the Weil conjectures (proved by Deligne) are applied to
compute their Betti numbers. Later in [21] perverse sheaves and the decompo-
sition theorem are applied to ωn and this stratification to give a shorter proof,
which also detemines the Hodge numbers.

Theorem 2.3.

∑

n≥0

p(S[n], z)tn

=
∏

k≥1

(1 + z2k−1tk)b1(S)(1 + z2k+1tk)b3(S)

(1 − z2k−2tk)b0(S)(1 − z2ktk)b2(S)(1 − z2k+2tk)b4(S)
.

Corollary 2.4.

∑

n≥0

e(S[n])qn =
∏

k≥1

1

(1 − qk)e(S)
=

(
q1/24

η(τ)

)e(S)

.

Again we have very beautiful formulas expressing the Betti numbers and
the Euler numbers of the S[n] in terms of those of the original surface S. Note
that in both cases the first factor (for k = 1) gives the corresponding generating
functions for the symmetric powers S(n).

These results led to quite a lot of activity and there have been a number of
generalizations and refinements.

1. The ideal sheaf of a zero-dimensional scheme Z ∈ S[n] is a coherent sheaf
of rank 1 with Chern classes c1 = 0 and c2 = n (see later for more
details). Thus S[n] is also a moduli space of rank 1 coherent sheaves on
S. In [43] Vafa and Witten conjecture, based on physics arguments, that
the generating functions of the Euler numbers of moduli spaces of sheaves
on surfaces should be given by modular forms. The above example of the
Hilbert scheme of points is one of the main motivating examples.

2. The formula suggests that that one should look at all cohomology groups
Hi(S[n],Q) for all n and i at the same time. There should be a structure
which ties them all together. Thus we put

H :=
⊕

n

H∗(S[n],Q).
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Also in [43] Vafa and Witten suggested that H should be an irreducible
representation of the Heisenberg algebra modelled on H∗(S,Q). This
result was then proven by Nakajima [35] and Grojnowski [23]: For any
α ∈ H∗(S,Q), there are “creation” operators pk(α) : H∗(S[n],Q) →
H∗(S[n+k],Q) and “annihilation” operators p−k(α) : H∗(S[n],Q) →
H∗(S[n−k],Q) for k ∈ Z>0 satisfying the commutation relations of the
Heisenberg algebra, such that every element in H can be obtained from
the element 1 ∈ H0(S[0],Q) (note that S[0] is just a point) by repeated
application of creation operators. In other words there is a natural way
how all the cohomology of all the Hilbert schemes of points S[n] is created
out of the cohomology of S. For a nice readable account of this see [36]

Later starting with work of Lehn [25], very rich additional algebraic struc-
tures (Virasoro algebra, vertex algebras) were discovered on H and related
to the cohomology ring structure and natural cohomology classes of the
S[n] (see e.g. [26],[31],[6]).

3. The formula of Corollary 2.4 has a generalization to dimension 3. For X
a smooth 3-fold it is proven in [7] that

∑

n≥0

e(X [n])qn =
∏

k≥1

(
1

(1 − qk)k

)e(X)

.

Recently this formula has been related to Donaldson-Thomas invariants
[28],[3],[27], and there is a conjectural analogue of Theorem 2.3 for a
motivic version of the Donaldson-Thomas invariants corresponding to
X [n] in [2].

3. Moduli Spaces of Sheaves

In this section we consider moduli spaces of semistable torsion-free sheaves on
algebraic surfaces. Torsion-free sheaves are generalizations of vector bundles,
essentially they can be viewed as vector bundles which are allowed to have some
singularities: the dimensions of the fibres do not all have to be equal. The
reason for considering also torsion-free sheaves and not just vector bundles is
that degenerations of vector bundles do not always have to be vector bundles,
thus moduli spaces of vector bundles normally would not be compact. There
are too many torsion-free sheaves for a moduli space to exist. In order to
obtain moduli spaces of torsion-free sheaves one has to put the restriction that
the sheaves E are semistable. This essentially means that the subsheaves of E
should not be too large. This is measured in terms of an ample line bundle H
on S.



64 LOTHAR GÖTTSCHE

3.1. Stable Sheaves

Let S be a projective algebraic surface and let H be an ample line bun-
dle on S. For a sheaf E on S, let E(n) := E ⊗ H⊗n. Denote χ(S, E) =∑2

i=0(−1)i dimHi(S, E) the holomorphic Euler characteristic. Let rk(E) be
the rank of E .

Definition 3.1. A torsion-free sheaf E on S is called H-semistable, if for all
nonzero subsheaves F ⊂ E, we have

χ(S,F(n))

rk(F)
≤ χ(S, E(n))

rk(E)
, for all n≫ 0.

It is called H-stable if the inequality is strict.
We denote MH

S (r, c1, c2) the moduli space of H-semistable sheaves E on S
of rank r and with Chern classes c1 and c2. We will often restrict our attention
to the case of rank 2. In this case we write MH

S (c1, d) for MH
S (2, c1, c2), with

c2 − c21/4 = d.
We denote by NH

S (r, c1, c2), N
H
S (c1, d) the open subsets of vector bundles.

3.2. S-Duality Conjectures

In [43] Vafa and Witten consider the partition function

ZS,H
c1

(τ) :=
∑

d

e(MH
S (c1, d))q

d,

and they also consider

Y S,H
c1

(τ) :=
∑

d

e(NH
S (c1, d))q

d.

In other words these are just the generating functions for the Euler numbers
of the moduli spaces. Their S-duality conjecture predicts that these should be
(at least almost) meromorphic modular forms. Roughly they say the following:
ZS,H

c1
is the partition function of some physical theory. The fact that we can

write it in terms of q means that it is invariant under τ 7→ τ + 1. On the
other hand the theory should be invariant (or rather transform nicely) if one
replaces strong coupling by weak coupling, this corresponds to τ 7→ − 1

τ . As
the operation of Sl(2,Z) on H is generated by these two, it follows that ZS,H

c1
,

Y S,H
c1

are modular forms. A similar statement should hold for arbitrary rank;

the Hilbert schemes S[n] are an example of rank 1, because the ideal sheaf of
W ∈ S[n] has rank 1 and Chern classes c1 = 0, c2 = n.

We will briefly explain some instances where this conjecture applies.



MODULI SPACES AND MODULAR FORMS 65

3.3. Compatibility Results

We start with some compatibility results:

1. if ZS,H
c1

and Y S,H
c1

are meromorphic modular forms, obviously also their
quotient must be,

2. if ZS,H
c1

is a meromorphic modular form for all S, then the blowup in a
point change the generating function by a modular form.

This indeed turns out to be the case. For 2. there is a small complication: Let
Ŝ be the blowup of S in a point, and let E be the exceptional divisor. Let
H be ample on S, and denote by the same letter also its pullback to Ŝ. On

would like to compare Z
bS,H
c1

and ZS,H
c1

, but H is not ample on Ŝ. For n ∈ Z>0

sufficiently large Hn := nH − E is ample on Ŝ. Assume that c1H is odd.
Fix d > 0. Then MHn

bS
(c1, d) and NHn

bS
(c1, d) are independent of n as long as

n is large enough. By abuse of notation we write MH
bS

(c1, d) := MHn

bS
(c1, d),

NH
bS

(c1, d) := NHn

bS
(c1, d), and put

Z
bS,H
c1

(τ) :=
∑

d

e(MH
bS

(c1, d))q
d, Y

bS,H
c1

(τ) :=
∑

d

e(NH
bS

(c1, d))q
d.

Theorem 3.2 ([45],[17],[30],[29] ). Assume that Hc1 is odd.

1.

ZS,H
c1

=

(
q1/24

η(τ)

)2e(S)

Y S,H
c1

.

2. (blowup formula) Then

Z
bS,H
c1

= θ3(τ)

(
q1/24

η(τ)

)2

ZS,H
c1

, Y
bS,H

c1
= θ3(τ)Y

S,H
c1

Z
bS,H
c1+E = θ2(τ)

(
q1/24

η(τ)

)2

ZS,H
c1

, Y
bS,H

c1+E = θ2(τ)Y
S,H
c1

.

Here

θ3(τ) =
∑

n∈Z

qn2

, θ2(τ) =
∑

n∈Z

q(n+1/2)2 .

We have denoted the pullbacks of H and c1 to Ŝ by the same letter.

One can also verify the S-duality conjecture for special surfaces.
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3.4. K3 Surfaces

A particularly nice case is that of K3 surfaces. For S a K3 surface it is easy
to see that the dimension of the moduli spaces MH

S (r, c1, c2) is always even (in
case r = 2, the dimension is e = 4c2 − c21 + 6, and c21 is always even).

Theorem 3.3. Let S be a K3 surface. Assume all H-semistable rank r sheaves
are H-stable (if c1 ∈ H2(S,Z) is a primitive class, this is true for general
H). Then MH

S (r, c1, c2) has the same Betti numbers as S[e/2], where e is the
dimension of MH

S (r, c1, c2).

As the Euler number of a K3 surface is 24, we get from Corollary 2.4 that
the generating function for the Euler numbers of the S[n] is q

∆(τ) . It follows

that the generating function ZS,H
c1

can be expressed in terms of q
∆(τ) .

The theorem was first proven under some extra assumptions in the case r =
2 in [18]. Here an explicit birational correspondence between the Hilbert scheme
S[e/2] and the moduli space was found and analized to obtain the result. The
result was subsequently generalized in a number of papers mostly by Yoshioka.
Finally in [46] is proven that there is a sequence of birational correspondences
and deformations which relate the Hilbert scheme S[e/2] to MH

S (r, c1, c2) and
preserve the Betti numbers.

3.5. The Projective Plane

Next we look at the projective plane P2. In this case we actually do not get
modular forms but Mock modular forms. For m ∈ Z>0 the Hurwitz-Kronecker
class number H(m) is the number of quadratic forms ax2 + bxy + cy2 with
a, b, c ∈ Z and discriminant b2 − ac = −m counted with multiplicity 1 divided
by the order of their stabilizer in PSl(2,Z); one also puts H(0) = − 1

12 . One
finds H(3) = 1

3 , H(4) = 1
2 , H(7) = 1. Klyachko has computed the Euler

number of the moduli spaces in terms of these class numbers in [24]. Let
H = c1(OP2(1)) be the Poincaré dual to the class of a line in P2.

Theorem 3.4. e(NP2(2,H, n)) = 3H(4n− 1).

Klyachko proves his result by using the natural (C∗)2 action on P2. It lifts
to a (C∗)2 action on NP2(H,n) with finitely many fixpoints. Then Klyachko
determines the Euler number e(NP2(2,H, n)) as the number of fixpoints.

The generating function G3/2 :=
∑

n≥0 H(n)qn is in many ways the sim-

plest example of a Mock modular form (of weight 3
2 ). In fact the real

analytic function

G∗
3/2 =

∑

n≥0

H(n)qn +
1

16π
√

ℑ(τ)

∑

n∈Z

β
(
4πn2ℑ(τ)

)
q−n2

,
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with β(t) =
∫ ∞
1
x−3/2e−xtdx, is a real analytic modular form of weight 3

2 whose
holomorphic part is G3/2. Klyachko’s theorem says that

Y P
2

H =
3

2

(
G3/2(τ/4) −G3/2

(
(τ + 2)/4

))

Yoshioka [45] obtains a nice closed generating function for the Betti numbers
of the MP2(2,H, c2).

3.6. Wallcrossing and Rational Surfaces

Much of my own work on moduli spaces of sheaves has concentrated on wall-
crossing: By definition the moduli spaces MH

S (c1, d) depend on the ample line
bundle H, and the question is to determine the precise dependence.

For this we viewH (or rather its first Chern class) as an element inH2(S,R).
This has the advantage that now H can be varied in a continuous way. It turns
out that, when one varies H a little bit, usually the moduli spaces stay un-
changed, but there are certain “walls” i.e. hyperplanes in H2(S,R) such that,
when H crosses them, the moduli spaces will change. The change of the invari-
ants of the moduli spaces, when H crosses a wall, will be called the wallcrossing
term. It turns out to be a very fruitful approach to study the invariants of the
MH

S (c1, d) via their wallcrossing terms, because these are much easier to un-
derstand and follow a much simpler pattern than the invariants of the moduli
spaces themselves. Furthermore, at least for rational surfaces, it turns out that
one can always reduce to the case that the invariants of MH0

S (c1, d) vanish for
some fixed H0, thus everything is determined by wallcrossing.

Definition 3.5. Let c1 ∈ H2(S,Z), and d ∈ Z − c21/4. A class ξ ∈ H2(S,Z) +
c1/2 defines a wall of type (c1, d) if

1. d+ ξ2 ≥ 0.

2. 〈ξH〉 = 0 for some ample H.

In this case we call Wξ :=
{
H ∈ H2(S,R)

∣∣ 〈ξH〉 = 0
}

the wall defined
by ξ. Note that, as ξ is orthogonal to an ample class, its self-intersection ξ2 is
negative; condition 1. puts a bound on how negative it can be. Let H+ and
H− be two ample classes on S. Let ξ run through the classes defining walls

of type (c1, d) with 〈ξH−〉 < 0 < 〈ξH+〉. In [14], is is proven that M
H+

S (c1, d)

is obtained from M
H−

S (c1, d), by sucessively for all ξ deleting certain subsets
isomorphic to Pk-bundles over products S[n1] ×S[n2] with n1 +n2 = d+ ξ2 and
replacing them by Pl-bundles for suitable k and l = k + 2〈ξKS〉. In particular
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it follows that

e(M
H+

S (c1, d)) = e(M
H−

S (c1, d))

+
∑

ξ

∑

n1+n2=d+ξ2

2〈ξKS〉e(S[n1])e(S[n2]),

where ξ runs through the classes defining walls of type (c1, d) with 〈ξH−〉 <
0 < 〈ξH+〉. More precisely in [8] one obtains M

H+

S (c1, d) from M
H−

S (c1, d) by
an explicit sequence of blowups and blowdowns with centers projective bundles
over products of Hilbert schemes of points on S.

If H and L are ample line bundles on S, the walls of type (0, c2) between
L and H are given by the classes ξ ∈ H2(S,Z) with 〈Lξ〉 < 0 < 〈Hξ〉 and
−ξ2 ≤ c2. Thus it seems natural to introduce and study the “theta function”

ΘL,H(τ) :=
∑

〈Hξ〉<0<〈Lξ〉
q−ξ2

for the lattice H2(S,Z) with the negative of the intersection form as quadratic
form. Note that for a rational surface this is an indefinite lattice of type
(b2(S)−1, 1), i.e. with one negative eigenvalue of the intersection form, thus the
standard theory of theta functions does not apply. Then one can express the
difference of the invariants of MH

S (0, c2) and ML
S (0, c2) in terms of ΘL,H(τ),

and the difference of the invariants of MH
S (c1, d) and ML

S (c1, d) in terms of a
modification ΘL,H

c1
(τ). As mentioned above, for rational surfaces one can reduce

to the case where all the invariants of ML
S (c1, d) vanish, thus the invariants

of MH
S (c1, d) themselves are expressed in terms of ΘL,H

c1
(τ). The Donaldson

invariants that we will introduce below are also invariants of the moduli spaces
MH

S (c1, d), thus this statement also applies to them. In [22] we show that
under certain restrictions these theta functions ΘL,H(τ) are indeed modular
forms, and this is applied to prove some structural results for the Donaldson
invariants of rational surfaces. In [17] this result is used to show in some cases
that the generating functions ZS,H

c1
are meromorphic modular forms.

Motivated in part by [22], Zwegers developed in [49] a general theory of
theta functions ΘL,H(τ) for lattices of type (r − 1, 1). He showed that these
are always Mock modular forms. In [12] this result is used to show that for
a rational surface S the generating functions ZS,H

c1
are always Mock modular

forms, and to determine them explicitely in many cases.

4. Donaldson Invariants

Donaldson invariants are C∞ invariants of differentiable 4-manifolds X, which
are defined using gauge theory. They are defined as intersection numbers of
cohomology classes on moduli spaces of anti self-dual connections (which are
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solutions to certain partial differential equations) on a principal fibre bundle.
They depend on the choice of a Riemannian metric g on X.

If X is a projective algebraic surface S, then the Donaldson invariants can
be computed as intersection numbers on moduli spaces M = MH

S (c1, d) of
H-semistable sheaves on S, and the choice of H corresponds to the choice of g.

We sketch the definition of the Donaldson invariants. Assume for simplicity
that there exists a universal sheaf E over S×M . This means in particular that
the restriction of E to S× [E] (where [E] is the point of M corresponding to the
sheaf E) is just E itself. We also assume that the moduli spaceMH

S (c1, d) has as
dimension the expected dimension s(d) = 4d−3χ(OS). Let L ∈ H2(S,Q). Put

µ(L) :=
(
4c2(E) − c1(E)2

)
/L ∈ H2(M,Q).

Here / denotes the slant product as defined in [42, page 287]. The corresponding
Donaldson invariant is given by

ΦH
S,c1

(Ls(d)) =

∫

MH

S
(c1,d)

µ(L)s(d),

and we put ΦH
S,c1

(Ls) = 0 if s is not congruent to −c21 − 3χ(OS) modulo 4. We
consider the generating function

ΦH
S,c1

(eLz) =
∑

s≥0

ΦH
S,c1

(Ls)
zs

s!
.

4.1. Wallcrossing and Invariants of P2

As the Donaldson invariants are computed using the moduli spaces MH
S (c1, d)

under variation of H they are subject to wallcrossing, with the same walls as
above for the Euler numbers e(MH

S (c1, d)). For every class ξ of type (c1, d) one
can define wallcrossing terms δS

ξ (Ls) such that for all s ≥ 0

Φ
H+

S,c1
(Ls) − Φ

H−

S,c1
(Ls) =

∑

ξ

δS
ξ (Ls),

where again ξ runs through all classes defining a wall of type (c, d) with
〈ξH−〉 < 0 < 〈ξH+〉. Furthermore δS

ξ (Ls) = 0 for s < 4d − 3χ(OS). In [15] I

determined a generating function for all the wallcrossing terms δS
ξ (Ls). I give a

relatively complicated expression in meromorphic modular forms depending on
the numerical invariants of S, L, ξ, and the wallcrossing term is the coefficient
of q0 in the q-development. The proof makes use of the Kotschick-Morgan
conjecture, which says that the wallcrossing term indeed depends only on the
numerical invariants of S, L, ξ. No proof of the Kotschick-Morgan conjecture
has been published.
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However there is an analogue of the Donaldson invariants for the affine plane
A2 = C2 defined using equivariant cohomology. Their generating function is
called the Nekrasov partition function. The Nekrasov conjecture relates the
Nekrasov partition function to modular forms. It has been proven in [39], [37].
Using results of [8] and [9] we relate in [19] the wallcrossing terms δS

ξ (Ls) to the
Nekrasov partition function and give a new proof of the wallcrossing formula
of [15], independent of the Kotschick-Morgan conjecture.

Theorem 4.1. [15],[19] Let S be a simply connected algebraic surface with
b+ = 1. Let L ∈ H2(X,Q) and let ξ be a wall of class (c1, d) for some d. Then

δX
ξ (exp(Lz)) = −

√
−1

〈ξKS〉

Coeffq0

[
q−ξ2

exp
(
〈ξL〉hz + 〈L2〉Tz2

)
θ

σ(S)+8
3 h3

]
.

Here σ(S) is the signature of S, we put u := − θ4
3+θ4

2

θ2
3θ2

2
, h := 2

√
−1

θ3θ2
, T :=

−h2G2(2τ) − u
6 , θ3 :=

∑
n∈Z

qn2

, θ2 =
∑

n∈Z
q(n+ 1

2 )2 .

As mentioned above, for rational surfaces S, by possibly blowing up one
can reduce to the case where the Donaldson invariants ΦF

S,c1
are zero for some

F and thus all ΦH
S,c1

can be termined by wallcrossing.

As an example I give a formula for the Donaldson invariants of P2. Here H
is the class of a hyperplane.

Corollary 4.2. [15]

ΦP
2

H (exp(Hz))

=
∑

0<n≤m

Coeffq0

[
q

4m
2−(2n−1)2

4

√
−1

6n−2m+5 exp
(
(n− 1/2)hz + Tz2

)
θ93h

3

]
.

A different (and in some ways more attractive, although not simpler) for-
mula for the Donaldson invariants of P2 was later proposed in [34] by Moore and
Witten, based on physics arguments. The formula also contains the Eisenstein
series G3/2, that we already encountered in the context of the Euler numbers
of the corresponding moduli spaces on P2. Recently using the theory of Mock
modular forms in [33], it was shown that both formulas give the same Donald-
son invariants.

A refinement of the Donaldson invariants are the K-theoretic Donaldson
invariants. Instead of computing the intersection numbers

ΦH
S,c1

(Ls) =

∫

MH

S
(c1,d)

µ(L)s,
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one introduces a line bundle L̃ on MH
S (c1, d) with c1(L̃) = µ(L). The K-

theoretic Donaldson invariant is then the holomorphic Euler characteristic
χ(MH

S (c1, d), L̃), and one can again consider the generating function

ΨH
S,c1

(L, t) :=
∑

d

χ(MH
S (c1, d), L̃)td.

Again these invariants are subject to wallcrossing and, based on work in [38]
on a K-theoretic version of the Nekrasov partition function, we prove in [20]
a generating function for the wallcrossing of the K-theoretic Donaldson invari-
ants. It is very similar in structure to the wallcrossing formula for the usual
Donaldson invariants, if somewhat more complicated. Surprisingly, using this
wallcrossing formula one can prove in [11] that the generating functions of
the K-theoretic Donaldson invariants of rational surfaces are always rational
functions. For instance, putting ψk := 1 + ΨH

P2,0(kH, t), we obtain:

ψ1 =
1

(1 − t)3
, ψ2 =

1

(1 − t)6
, ψ3 =

1 + t2

(1 − t)10
, ψ4 =

1 + 6t2 + t3

(1 − t)15
,

ψ5 =
1 + 21t2 + 20t3 + 21t4 + t6

(1 − t)21
,

ψ6 =
1 + 56t2 + 147t3 + 378t4 + 266t5 + 148t6 + 27t7 + t8

(1 − t)28
.

Let gk =
(
k−1
2

)
be the genus of a smooth curve of degree k in P2. The reader

can check that

ψk =
pk(t)

(1 − t)(
k+2
2 )

,

with pk ∈ Z[t] satisfying pk(1) = 2gk . This is related to the strange duality
conjecture of Le Potier.

5. Curve Counting

Let S be a smooth projective surface, and L a holomorphic line bundle on S.
The zero set of a nonzero section of L will be a (possibly singular) curve on
S. Denote by |L| = P(H0(S,L)) the corresponding linear system of curves.
The arithmetic genus a(C) = χ(C,OC) of a curve C ∈ |L| is the genus of
a nonsingular curve in |L|. If C is singular its geometric genus g(C) is the
genus of a desingularization of C. One always has g(C) ≤ a(C), with equality
only if C is nonsingular. An irreducible curve C in |L| is rational if it is the
image of a nonconstant map P1 → S, or equivalently if g(C) = 0. We want
to consider generating functions for curves of given geometric genus in linear
systems |L| on surfaces S. The problem is related, but not identical, to the
study of Gromov-Witten invariants, which are a virtual count of such curves.
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5.1. Rational Curves on K3 Surfaces

Using partially physics arguments Yau and Zaslov [44] have given a generating
function for the numbers of rational curves on K3-surfaces. The argument was
then made precise in [1], [10].

Theorem 5.1. Let S be a K3 surfaces. Let L be a line bundle on S, such that
all curves C ∈ |L| are reduced and irreducible. Then:

1. The number of rational curves (counted with multiplicities) C ∈ |L| de-
pends only on L2 ∈ 2Z. Denote the number of these curves by nL2/2.

2. ∑

k∈Z

nkq
k =

1

∆(τ)
.

The multiplicity with which a curve is counted depends only on the singu-
larities of the curve. If all the singularities are just nodes, the multiplicity is 1.

Note that the generating function is the same as that for the Euler numbers
of the Hilbert schemes of points S[n]. The proof of the theorem consists in re-
lating the problem to Hilbert schemes of points: Let J(C) → |L| be the relative
compactified Jacobian. The fibre of J(C) over a point corresponding to a curve
C ∈ |L| is the compactified Jacobian J(C) of torsion-free rank 1 sheaves. One
proves that the Euler number e(J(C)) vanishes unless C is a rational curve.
Because of the additivity of the Euler number it follows that e(J(C)) is equal to
number of the rational curves in |L| counted with e(J(C)) as multiplicity. On
the other hand one proves that there is a birational correspondence between
J(C) and S[n] for n = L2/2 + 1 which preserves the Euler number. In [10] it is
shown that e(J(C)) is a reasonable notion of multiplicity related to (modified)
Gromov-Witten invariants. For K3 surfaces the usual Gromov-Witten invari-
ants are trivially zero, therefore one has to consider modified Gromov-Witten
invariants, which are defined by modifying the obstruction theory that is used
in their definition.

A little bit later a generalization of this result to arbitrary genus was proven
in [5] (not for the counting of curves, but for modified Gromov-Witten invari-
ants) for L a primitive line bundle on a K3 surface. This has been recently vastly
generalized by Maulik and Pandharipande (see [40]): in a suitable sense the
generating functions of “all” reasonable modified Gromov-Witten invariants of
K3 surfaces with respect to primitive line bundles L are given by quasimodular
forms, and conjecturally the line bundles do not need to be primitive.

5.2. General Conjecture

Parallely to the above mentioned work of [5] a general conjecture was formu-
lated in [16] about counting curves with a given number of nodes in linear
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systems |L| on surfaces S. The claim is that there is a universal formula, which
applies whenever the line bundle L is sufficiently ample, for instance when L
is a sufficiently high power of a very ample line bundle.

Let S be a smooth projective surface and L a line bundle on S. If L is
sufficiently ample we have that

dim(|L|) = χ(S,L) − 1 = L(L−KS)/2 + χ(OS),

and a general curve in |L| is nonsingular of genus L(L+KS)/2 + 1; the genus
of a singular curve with δ nodes will be smaller by δ. One expects that a node
imposes 1 linear condition on elements of L. Thus we expect the locus of curves
with δ nodes to ha

ve codimension δ in |L|, and this will be the case provided L is sufficiently
ample with respect to δ.

We denote by aδ(S,L) the number of curves with precisely δ nodes as only
singularities in a general χ(S,L) − 1 − δ dimensional sub-linear system of |L|.

Conjecture 5.2. 1. There exist universal polynomials Tδ ∈
Q[x, y, z, w] such that for all sufficiently ample L

aδ(S,L) = Tδ(χ(S,L), χ(OS), c1(L)KS ,K
2
S).

2. More precisely there exist power series B1, B2 ∈ Z[[q]] such that

∑

δ≥0

Tδ(x, y, z, w)(DG2)
δ =

(DG2/q)
xBz

1B
w
2

(∆(τ)D2G2/q2)y/2
.

In [32] a proof of this conjecture was published. The proof introduces new
gauge-theoretic invariants. It is very long (200 pages), complicated and difficult
to understand. It is not accessible to algebraic geometers.

Part of the original conjecture, which is not adressed in this proof is that
Tδ(x, y, z, w) is an explicit intersection number on S[3δ]. In this form it has
just been proven by Yu-jong Tzeng, using degeneration and cobordism argu-
ments that were originally developed by Levine-Pandharipande [27] to study
Donaldson-Thomas invariants.
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