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Summary. - The main goal of this paper is to study the countability
properties, such as the countable chain condition, Lindeöf prop-
erty and second countability of the pseudocompact-open topology
on C(X), the set of all continuous real-valued functions on a Ty-
chonoff space X. But in order to make this study fruitful, these
countability properties of the pseudocompact-open topology are
compared with those of the point-open and compact-open topolo-
gies on C(X).

1. Introduction

The set C(X) of all real-valued continuous functions as well as the
set C∗(X) of all bounded real-valued continuous functions on a Ty-
chonoff space X has a number of natural topologies. Three com-
monly used among them are the point-open topology p, the compact-
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open topology k and the topology of uniform convergence u. The
compact-open topology and the topology of uniform convergence on
C(X) (or on C∗(X)) are equal if and only if X is compact. Because
compactness is such a strong condition, there is a considerable gap
between these two topologies. This gap has been especially felt in
the topological measure theory; consequently in the last five decades,
there have been quite a few topologies introduced that lie between
k and u, such as the strict topology, the σ-compact-open topology,
the topology of uniform convergence on σ-compact subsets and the
topology of uniform convergence on bounded subsets. (see, for ex-
ample, [2, 8, 10, 12, 16, 19, 20, 21, 30] and [31].

The pseudocompact-open topology ps is another natural and in-
teresting locally convex topology on C(X), from the viewpoint of
both topology and measure theory, though it has not received much
attention from the researchers until a formal study of this topology
was done in [18]. The spaces C(X), equipped with the point-open
topology p, the compact-open topology k and the pseudocompact-
open topology ps, are denoted by Cp(X), Ck(X) and Cps(X) respec-
tively.

In [18], in addition to studying some basic properties of Cps(X)
and comparing it with Ck(X), the submetrizability and metrizability
of Cps(X) have been studied. Also in [18], a characterization result
on the separability of Cps(X) has been given, but no illustrative
example on this result has been given there. An important family of
properties, the completeness properties of Cps(X), has been studied
in detail in [17]. But another important family of properties, the
countability properties of Cps(X), (except separability), is yet to be
studied. In this paper, we plan to do exactly that. More precisely, we
would like to study the ℵ0-boundedness, countable chain condition,
Lindelöf property and second countability of Cps(X) in comparison
with the corresponding properties of Cp(X) and Ck(X). Here we
would like to mention that these comparisons essentially turn this
paper into a sort of an expository research article. But we should
keep in mind that while a compact subset in a Tychonoff space is
C-embedded, a closed pseudocompact subset need not be so. Also a
closed subset of a pseudocompact subset need not be pseudocompact.
Often these two facts make the study of Cps(X) difficult.
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In Section 2 of this paper, we compare the possibilities of Cps(X)
and Ck(X) having the properties of ℵ0-bounded and countable chain
condition. In order to have a better perspective of the comparison of
these possibilities, we recall the result on the separability of Cps(X)
from [18] with the addition of one more equivalent condition. In
Section 3, we compare Cps(X), Ck(X) and Cp(X) in regard to the
Lindelöf property. In section 4, first we prove some equivalent char-
acterizations of the second countability of Cp(X). Then we move to
the second countability of Ck(X) and Cps(X) in order to show that
the situation for second countability of Cps(X) is similar to that of
separability, that is, Cps(X) is second countable if and only if Ck(X)
is second countable. Here we also present four important, but al-
ready known, equivalent characterizations of the second countability
of Ck(X) in term of the topological properties of X.

Throughout this paper, all spaces are Tychonoff spaces and R

denotes the space of real numbers with the usual topology. The
constant zero function defined on X is denoted by 0, more precisely
by 0X . We call it the constant zero function in C(X). The symbols
ω0 and ω1 denote the first infinite and the first uncountable ordinal
respectively. Given a set X, cardX denotes the cardinality of X. If
X and Y are two spaces with the same underlying set, then we use
X = Y , X ≤ Y and X < Y to indicate, respectively, that X and Y

have the same topology, that the topology on Y is finer than or equal
to the topology on X and that the topology on Y is strictly finer than
the topology on X. So for any space X, Cp(X) ≤ Ck(X) ≤ Cps(X).

2. Separability, ℵ0-boundedness and countable chain
condition

Similar to the point-open and compact-open topologies, there are
three ways to consider the pseudocompact-open topology ps on
C(X).

First, one can use as subbase the family {[A,V ] : A is a pseu-
docompact subset of X and V is an open subset of R} where
[A,V ] = {f ∈ C(X) : f(A) ⊆ V }. But one can also consider this
topology as the topology of uniform convergence on the pseudocom-
pact subsets of X, in which case the basic open sets will be of the
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form 〈f,A, ǫ〉 = {g ∈ C(X) : |g(x) − f(x)| < ǫ for all x ∈ A}, where
f ∈ C(X), A is a pseudocompact subset of X and ǫ is a positive real
number.

The third way is to look at the pseudocompact-open topology as
a locally convex topology on C(X). For each pseudocompact subset
A of X and ǫ > 0, we define the seminorm pA on C(X) and VA,ǫ

as follow: pA(f) = sup{|f(x)| : x ∈ A} and VA,ǫ = {f ∈ C(X) :
pA(f) < ǫ}. Let V = {VA,ǫ : A is a pseudocompact subset of X,
ǫ > 0}. Then for each f ∈ C(X), f + V = {f + V : V ∈ V} forms
a neighborhood base at f . This topology is locally convex since
it is generated by a collections of seminorms and it is same as the
pseudocompact-open topology ps on C(X). It is also easy to see
that this topology is Hausdorff.

In order to have a better perspective of ℵ0-boundedness and
countable chain condition, first we recall the result that Cps(X) is
separable if and only if Ck(X) is separable. More precise and detailed
statement follows.

Theorem 2.1. For a space X, the following assertions are equiva-
lent.

(a) Cps(X) is separable.

(b) Ck(X) is separable.

(c) Cp(X) is separable.

(d) X has a separable metrizable compression, that is, X has a
weaker separable metrizable topology.

(e) X is submetrizable and has a dense subset of cardinality less
than or equal to 2ℵ0 .

Proof. (a) ⇒ (b) ⇒ (c). These are immediate.

(c) ⇒ (d). This can be proved in a manner similar to Lemma 3
of [34].

(d) ⇒ (e). Let f : X −→ Y be a continuous bijection where
Y is a separable metric space. So cardX = card Y . But Y being
separable, card Y ≤ 2ℵ0 . Hence cardX ≤ 2ℵ0 .
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(e) ⇒ (a). Since X is submetrizable, every pseudocompact sub-
set of X is compact and consequently, Cps(X) = Ck(X). But by the
theorem in [33], (e) ⇒ (b).

Corollary 2.2. If Cps(X) is separable, then Cps(X) = Ck(X).

Remark 2.3. In Theorem 5.8 of [18], the equivalence of the condi-
tions (a), (b), (c) and (d) has been proved by using the Corollary
4.2.2 of [25]. But this corollary is essentially due to Warner [34].

Example 2.4. Suppose X is pseudocompact, but not metrizable.
Since a pseudocompact submetrizable space is metrizable, (see
Lemma 4.3 in [19]), X cannot be submetrizable either. Hence Cps(X)
cannot be separable. In particular for X = [0, ω1) or X = [0, ω1],
neither Cps(X) nor Ck(X) is separable. Note that for X = [0, ω1],
Cp(X) < Ck(X) = Cps(X), but for X = [0, ω1), Cp(X) < Ck(X) <

Cps(X).

Example 2.5. Since R is a separable metric space, Cps(R) is sepa-
rable. For this space, we have

Cp(R) < Ck(R) = Cps(R).

Example 2.6. For every infinite subset C ⊆ N, let xC be a point in
clβXC\N. Consider the space X = N∪{xC : C is an infinite subset of
N} with the relative topology induced from βN. So X is a Tychonoff
space. This space is also pseudocompact. Every compact subset of X

is finite. See [15]. Since X is pseudocompact but not compact, X is
not submetrizable. Consequently Cps(X) is not separable. For this
space X, we have

Cp(X) = Ck(X) < Cps(X).

Example 2.7. Consider the Fortissimo space F , (Example 25, page
53 in [32]), which is uncountable. This space is Lindelöf and every
compact subset of F is finite. Consequently every pseudocompact
subset of F is also finite. But F is not submetrizable, since there
exists a non-Gδ-point in F . Hence Cp(F ) is not separable. For this
space F , we have

Cp(F ) = Ck(F ) = Cps(F ).
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Example 2.8. Suppose X is a countable discrete space. Then
Cps(X) is separable. For this space X, we have

Cp(X) = Ck(X) = Cps(X).

Now we would like to study two closely related topological prop-
erties of Cps(X) and Ck(X), each of which is weaker than separabil-
ity. A space X is said to have the countable chain condition (called
ccc in brief) if any family of pairwise disjoint nonempty open subsets
of X is countable. The ccc is also known as the Souslin property.
It is clear that every separable space has ccc. Note that for every
nonempty set X, by [9, Corollary 2.3.18], RX has always ccc. But
for any space X, Cp(X) is dense in RX . Consequently for any space
X, Cp(X) has always ccc.

The second property, weaker than separability, is known as being
ℵ0-bounded. The precise definition follows.

Definition 2.9. Let G be a topological group (under addition). Then
G is said to be ℵ0-bounded provided that for each neighborhood U of
the identity element in G, there exists a countable subset S of G such
that G = S + U = {s + u : s ∈ S, u ∈ U}.

Arhangel’skii studied ℵ0-bounded topological groups in the Sec-
tion 9 of [1] in a more general setting of τ -bounded topologi-
cal groups. According to Arhangel’skii, the τ -bounded topological
groups were first studied by Guran in [14]. We would like to state
the following interesting and significant results on ℵ0-bounded topo-
logical groups mentioned in [1].

(a) The product of any family of ℵ0-bounded topological groups is
ℵ0-bounded.

(b) Any subgroup of an ℵ0-bounded topological group is ℵ0-
bounded.

(c) A topological group having a dense ℵ0-bounded topological
subgroup is itself ℵ0-bounded.

(d) The image of an ℵ0-bounded topological group under a contin-
uous homomorphism is ℵ0-bounded.
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(e) The class of ℵ0-bounded groups contains all subgroups of com-
pact Hausdorff groups.

(f) A topological group is ℵ0-bounded if and only if it is topolog-
ically isomorphic to a subgroup of a topological group having
ccc. Then obviously a topological group having ccc is itself
ℵ0-bounded.

(g) A Lindelöf topological group is ℵ0-bounded.

(h) A metrizable ℵ0-bounded group is separable.

In [25], an ℵ0-bounded topological group has been called totally
ℵ0-bounded. Here we would like to put a note of caution. In [4],
Arhangel’skii has used the term ‘ℵ0-bounded’ for an entirely different
concept. In [4], a topological space has been called ℵ0-bounded if the
closure of every countable subset of X is compact.

The next result gives a necessary condition for Cps(X) to be ℵ0-
bounded.

Theorem 2.10. For a space X, assume that Cps(X) is ℵ0-bounded.
Then every C-embedded pseudocompact subset of X is metrizable and
compact.

Proof. Let A be a C-embedded pseudocompact subset of X. Now
first we will show that Cps(A) is ℵ0-bounded. Since A is pseudocom-
pact, Cps(A) is metrizable. To avoid the confusion, for each f ∈ C(A)
and ǫ > 0, let us denote 〈f,A, ǫ〉A = {g ∈ C(A) : |f(x) − g(x)| <

ǫ ∀ x ∈ A}. Then for each f , the collection {〈f,A, ǫ〉A : ǫ > 0}
forms a neighborhood base of f in Cps(A). Let 〈0A, A, ǫ〉A be a ba-
sic neighborhood of the zero function 0A in Cps(A). Now 〈0X , A, ǫ〉
is a basic neighborhood of the zero function 0X in Cps(X). Since
Cps(X) is ℵ0-bounded, there exists a countable set B in Cps(X)
such that Cps(X) = B + 〈0X , A, ǫ〉. Now let BA = {f |A : f ∈ B}.
Let f ∈ C(A). Since A is C-embedded in X, there exists a contin-
uous extension f∗ of f to X. Then f∗ = h + g where h ∈ B and
g ∈ 〈0X , A, ǫ〉. Then h|A ∈ BA, g|A ∈ 〈0A, A, ǫ〉 and f = g|A + h|A.
Thus Cps(A) is ℵ-bounded. Now, ℵ0-bounded metrizable groups are
separable. Therefore, Cps(A) is separable. By Theorem 2.1, A is
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submetrizable. But by Lemma 4.3 in [19], a pseudocompact sub-
metrizable space is metrizable and compact. Thus A is metrizable
and compact.

Before stating the next corollary, we need to define a σ-
functionally normal space. A space X is called σ-functionally normal
if for any two disjoint closed sets A and B in X, there is a sequence
(fn) in C(X) such that if x ∈ A and y ∈ B, then there exists n

such that fn(x) 6= fn(y). Obviously a normal space is σ-functionally
normal, but the converse need not be true. The Niemytzki plane L

and the deleted Tychonoff plank T∞ are σ-functionally normal, but
not normal. Every closed pseudocompact subset in a σ-functionally
normal space is C-embedded. For details on σ-functionally normal
spaces, see [7].

Corollary 2.11. If X is a σ-functionally normal space and Cps(X)
is ℵ0-bounded, then every pseudocompact subset of X is metrizable
and compact.

Corollary 2.12. If Cps(X) is either Lindelöf or has ccc, then every
C-embedded pseudocompact subset of X is metrizable and compact.

Corollary 2.13. Suppose that X is pseudocompact and Cps(X) is
either Lindelöf or has ccc, then X is metrizable and compact.

By using Theorem 2.1, an alternate proof of Corollary 2.13 can
be given as follows. If X is pseudocompact, the pseudocompact-open
topology ps on C(X) is actually generated by the supremum metric
on C(X) and consequently Cps(X) is metrizable. So in addition, if
Cps(X) is either Lindelöf or has ccc, then Cps(X) would be separable
and consequently by Theorem 2.1, X would be submetrizable. But
a pseudocompact submetrizable space is metrizable and compact.

Corollary 2.14. If X is pseudocompact, then the following state-
ments are equivalent.

(a) Cps(X) is separable.

(b) Cps(X) has ccc.

(c) X is metrizable.
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Proof. (a) ⇒ (b). This is immediate.
(b) ⇒ (c). By Corollary 2.13, X is metrizable.
(c) ⇒ (a). If X is metrizable, then X, being pseudocompact,

is also compact. Hence X is separable and consequently by Theo-
rem 2.1, Cps(X) is separable.

Note that if Cps(X) has ccc, then Ck(X) also has ccc. So we
would like to find an example of a space X such that Ck(X) has
ccc, but Cps(X) does not have ccc. If there exists an infinite pseudo-
compact space X whose compact subsets are finite, then Cp(X) =
Ck(X) < Cps(X). So Ck(X) has ccc, but by Corollary 2.13, Cps(X)
will not have ccc. But does there exist such a space X? The an-
swer is affirmative and such a space has already been presented in
Example 2.6.

In the Corollary 4.2.7 of [25], we have a stronger version of Theo-
rem 2.10 for Ck(X). This corollary says that Ck(X) is ℵ0-bounded if
and only if every compact subset of X is metrizable. This corollary
also helps us to have the following converse of Theorem 2.10.

Theorem 2.15. If every pseudocompact subset of X is submetrizable,
then Cps(X) is ℵ0-bounded.

Proof. Here each pseudocompact subset of X is actually metrizable
and compact. Hence Cps(X) = Ck(X) and consequently Cps(X) is
ℵ0-bounded.

Corollary 2.16. Assume that X is σ-functionally normal. Then
Cps(X) is ℵ0-bounded if and only if every pseudocompact subset of
X is metrizable and compact.

If X itself is assumed to be submetrizable, then we get a stronger
conclusion that Cps(X) has ccc. This result can be proved in a
manner similar to Proposition 7.1.3 in [28].

Theorem 2.17. If X is submetrizable, then Cps(X) has ccc.

Proof. Let {〈fλ, Aλ, ǫλ〉 : λ ∈ Λ} be a family of pairwise disjoint
(nonempty) basic open sets in Cps(X). Here each Aλ is pseudocom-
pact and ǫλ > 0. Since X is submetrizable, each Aλ is actually
compact and metrizable, and consequently each Aλ is separable. For
each λ ∈ Λ, let Dλ be a countable dense subset of Aλ.
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If possible, suppose that Λ is uncountable. Then there exists
an uncountable subset Λ0 of Λ such that cardΛ0 ≤ 2ℵ0 . Let Y =
∪{Aλ : λ ∈ Λ0} and D = ∪{Dλ : λ ∈ Λ0}. It is easy to see that D is
dense in Y and cardD ≤ 2ℵ0 . But Y is also submetrizable. Hence
by Theorem 2.1, Cps(Y ) is separable and consequently Cps(Y ) has
ccc.

Now for each λ ∈ Λ0, let Wλ = 〈fλ|Y , Aλ, ǫλ〉. Note that each
Wλ is open in Cps(Y ). Also we claim that Wλ1 ∩Wλ2 = ∅ whenever
λ1, λ2 ∈ Λ0 and λ1 6= λ2. If possible, suppose that g ∈ Wλ1 ∩
Wλ2 . Since Aλ1 ∪ Aλ2 is compact in X, there exists h ∈ C(X) such
that h(x) = g(x) ∀ x ∈ Aλ1 ∪ Aλ2 . But then h ∈ 〈fλ1, Aλ1 , ǫλ1〉 ∩
〈fλ2 , Aλ2 , ǫλ2〉 = ∅. We arrive at a contradiction. Hence {Wλ : λ ∈
Λ0} is a family of pairwise disjoint nonempty open sets in Cps(Y ).
But since Cps(Y ) has ccc, Λ0 must be countable. We arrive at a
contradiction. Hence Λ must be countable and consequently Cps(X)
has ccc.

Corollary 2.18 (Proposition 7.1.3 of [28]). If X is submetrizable,
then Ck(X) has ccc.

The following counterexample shows that the converse of Theo-
rem 2.17 need not be true.

Counterexample. Consider the Fortissimo space F mentioned in
Example 2.7, For this space, we have Cp(F ) = Ck(F ) = Cps(F ). We
have already noted that for any space X, Cp(X) has always ccc. So
here for the Fortissimo space F , Cps(F ) = Cp(F ) has ccc. But F is
not submetrizable, since there exists a non-Gδ-point in F .

3. Lindelöf Property

In this section, we study the situations when possibly Cj(X) (j =
p, k, ps) can be Lindelöf. Since Cp(X) ≤ Ck(X) ≤ Cps(X), any
necessary condition for Cp(X) to be Lindelöf also becomes necessary
for Ck(X) as well as for Cps(X) to be Lindelöf. Therefore it becomes
expedient to search for criteria in term of topological properties of X

so that Cp(X) becomes Lindelöf. But here we should mention that
though many well-known mathematicians have searched and studied
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several such criteria, no satisfactory intrinsic characterization of the
space X, for which Cp(X) is Lindelöf, is yet to emerge. We would
also like to mention that while Arhangel’skii presented his works
on the conditions for Cp(X) to be Lindelöf in 5th Prague Topology
Symposium held in 1981, (see [3], the Section 4 of Chapter I in [4], pp.
29-32 in [5] and Exercise 3 in page 68 of [25]), the paper [23] appeared
in 1980. But an important necessary condition for Cp(X) to be
Lindelöf in term of the tightness of X was found earlier by Asanov
in 1979, see [6]. Recall that a space X is said to have countable
tightness if for each x ∈ X and A ⊆ X such that x ∈ A, there exists
a countable subset C of A such that x ∈ C.

Theorem 3.1 (M. O. Asanov [6]). If Cp(X) is Lindelöf, then for
every n ∈ N, Xn has countable tightness.

Proof. For the proof of a more general version of this result, see
Theorem I.4.1, page 33 in [4].

Remark 3.2. For n = 1, Theorem 3.1 was proved independently by
McCoy in [23].

Of-course, the condition in Theorem 3.1 is not sufficient for
Cp(X) to be Lindelöf. The following examples justify this assertion.

Example 3.3 (Example 3 in [23]). Let X be the interval [0, 1) with
the Sorgenfrey topology. It has been shown in [27] that Cp(X, [0, 1])
is not normal. Here Cp(X, [0, 1]) is the space C(X, [0, 1]) equipped
with the point-open topology and C(X, [0, 1]) = {f ∈ C(X) : f(X) ⊆
[0, 1]}. But Cp(X, [0, 1]) is closed in Cp(X). Hence Cp(X) cannot
be normal either. Consequently Cp(X) is not Lindelöf. Yet X is a
Lindelöf space such that for every n ∈ N, Xn has countable tightness.
Note that for this space X, Cp(X) < Ck(X) = Cps(X).

Example 3.4. Let X be a discrete space. Then Cp(X) = RX . If
X is countable, then RX is second countable and consequently it
is Lindelöf. Conversely, if we assume RX to be Lindelöf, then X

must be countable. In order to prove this, for each x ∈ X, let Z+
x

be the discrete space of positive integers. Now the product space
Π{Z+

x : x ∈ X} is closed in RX . If RX is Lindelöf, then RX is
normal and consequently Π{Z+

x : x ∈ X} will also be normal. But
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it has been shown in [32, Example 103] that Π{Z+
x : x ∈ X} is not

normal. So if X is an uncountable discrete space, then Cp(X) is
not Lindelöf, though Xn obviously has countable tightness for each
n ∈ N.

Example 3.5. The “double arrow” space X is first countable and
compact, but it is not metrizable. In literature, this space is also
called the “two arrows” space. For details on this space, see Exercise
3.10 C, page 212 in [9]. Also see page 30 in [5]. As argued in
Example 1 of [29], it can be shown that Cp(X) is not even normal.
But since X is first countable, Xn has countable tightness for each
n ∈ N. Note that for this space X, Cp(X) < Ck(X) = Cps(X).

On the other hand. by using the necessity of the countable tight-
ness of X, often we can conclude that Cp(X) is not Lindelöf. The
following examples justify this observation.

Example 3.6. Let X be the ordinal space [0, ω1]. Since X does not
have countable tightness, Cp(X) is not Lindelöf. Note that for this
space X, Cp(X) < Ck(X) = Cps(X).

Example 3.7. The Fortssimo space F does not have countable tight-
ness and consequently Cp(F ) is not Lindelöf. We have already noted
in Example 2.7 that Cp(F ) = Ck(F ) = Cps(F ).

Now we are going to have eleven more necessary conditions for
Cp(X) to be Lindelöf. But ten of these conditions can actually be
obtained as corollaries to Theorem 3.8. Most of these conditions first
appeared in [3] and [4] or in [23].

Theorem 3.8 (Proposition I.4.3 in [4]). Suppose that Cp(X) is Lin-
delöf and let Y be a C-embedded subset of X. Then Cp(Y ) is Lin-
delöf.

Proof. Consider the inclusion map i : Y −→ X. Then since Y is
C-embedded in X, the induced map i∗ : Cp(X) −→ Cp(Y ), given by
i∗(f) = f ◦ i, is a continuous surjection. But a continuous image of
a Lindelöf space is also Lindelöf.

Corollary 3.9. Suppose that Cp(X) is Lindelöf and let Y be a dis-
crete C-embedded subset of X. Then Y is countable.
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Proof. By Theorem 3.8, Cp(Y ) is Lindelöf. But since Y is discrete,
Cp(Y ) = RY . But it has already shown in Example 3.4 that unless
Y is countable, RY cannot be Lindelöf.

Corollary 3.10. Suppose that X is normal and Cp(X) is Lindelöf.
Then every point-finite family of open sets in X is countable.

Proof. Let V = {Vγ : γ ∈ Γ} be a point-finite family of nonempty
open sets in X. For each γ ∈ Γ, choose xγ ∈ Vγ and consider the set
Y = {xγ : γ ∈ Γ}. Note that since V is point-finite, Y is closed and
discrete in X. Hence by Corollary 3.9, Y is countable. Now since
Y is countable, again by using the point-finiteness of V, it can be
shown that Γ must be countable.

Corollary 3.11 (Corollary 2 in [23]). If X is metacompact and
normal, and if Cp(X) is Lindelöf, then X is Lindelöf.

Corollary 3.12. If X is paracompact and Cp(X) is Lindelöf, then
X is Lindelöf.

Remark 3.13. We have already noted that for any space X, Cp(X)
has always ccc. Hence Cp(X) is Lindelöf if and only if Cp(X) is
paracompact. So the Corollary 3.12 can be rephrased as follows : If
both X and Cp(X) are paracompact, then X is Lindelöf.

Corollary 3.14. If X is metrizable and Cp(X) is Lindelöf, then X

is Lindelöf.

Corollary 3.15. Suppose that X is normal and Cp(X) is Lindelöf.
Then every closed discrete subset of X is countable. Moreover, every
pseudocompact subset of X is metrizable and compact. In particular,
Cps(X) = Ck(X).

Proof. Since X is normal, the first part of the corollary follows from
Corollary 3.9, while the second part of the corollary follows from
Corollary 2.12.

Corollary 3.16. If X is normal, then Cps(X) is Lindelöf if and
only if Ck(X) is Lindelöf. Moreover in this case, Cps(X) = Ck(X).
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Corollary 3.17 (Theorem 3 in [23]). Suppose that X is normal and
Cp(X) is Lindelöf. Then every discrete family of closed sets in X is
countable.

Proof. Let {Aλ : λ ∈ Λ} be a discrete family of nonempty closed sets
in X. Hence Aλ1 ∩ Aλ2 = ∅ whenever λ1, λ2 ∈ Λ and λ1 6= λ2. For
each λ ∈ Λ, choose xλ ∈ Aλ and consider the set Y = {xλ : λ ∈ Λ}.
Note that Y is closed and discrete in X. Hence by Corollary 3.9, Y

is countable. But since card Y = cardΛ, Λ is also countable.

Corollary 3.18 (Proposition I.4.4 in [4]). If Cp(X) is Lindelöf,
then every discrete family of open sets in X is countable.

Proof. This corollary follows from Corollary 3.9. For a complete
proof, see Proposition I.4.4 in [4].

Now we would like to see if the normality condition on X in
Corollary 3.17 can be weakened. For this query, we have the following
interesting result.

Theorem 3.19 (Theorem 5 in [23], Corollary I.4.13 in [4]). Assume
that Cp(X) is Lindelöf and that the space X satisfies the condition
(α): whenever A and B are countable subsets of X with A ∩ B = ∅,
then there is an f in C(X) such that f(A) = {0} and f(B) = {1}.
Then X is normal.

Proof. For the proof, either see Theorem 5 in [23] or Corollary I.4.13
in [4].

The following example illustrates a nice application of Theo-
rem 3.19.

Example 3.20 (Example 4 in [23]). The Tychonoff plank T is defined
to be [0, ω1]× [0, ω0], where both ordinals spaces [0, ω1] and [0, ω0] are
given the interval topology. The subspace T∞ = T \ {(ω1, ω0)} is
called the deleted Tychonoff plank. The space T∞ is not normal,
but it is pseudocompact. For more details on T∞, see Example 87
in [32]. Now if A is a countable subset of T∞, then it can be shown
that A must actually be contained in some compact open subspace of
T∞. From this, it can easily be concluded that T∞ must satisfy the
condition (α) of Theorem 3.19. Hence Cp(T∞) is not Lindelöf. Note
that Cp(T∞) < Ck(T∞) < Cps(T∞).
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We do not know yet of any simple purely topological condition
sufficient for Cp(X) to be Lindelöf except one that X has a countable
network. In order to look at this sufficient condition from a larger
perspective, we need to define network and some related concepts.

Definition 3.21. A nonempty family F of nonempty subsets of a
space X is called a network provided that for each x ∈ X and each
open neighborhood U of x, there exists F ∈ F such that x ∈ F ⊆ U .
A space X is called a σ-space (cosmic space) if X has a σ-discrete
(countable) network.

A nonempty family F of nonempty subsets of a space X is called a
k-network provided that for each compact subset K and each open set
U in X such that K ⊆ U , there exists F ∈ F such that K ⊆ F ⊆ U .
A space X is called an ℵ0-space if it has a countable k-network.

Remark 3.22. Clearly an ℵ0-space is a cosmic space and a cosmic
space is a σ-space. In Theorem 4.11 of [11], it has been shown that
a regular T1-space has a σ-discrete network if and only if X has a
σ-locally finite network. In [26], a network has been called a point-
pseudobase, while a k-network has been called pseudobase. It has
been shown in [26] that a space X is cosmic if and only if X is an
image of a separable metric space under a continuous bijection. Now
it follows that a cosmic space is submetrizable, hereditarily Lindelöf
and hereditarily separable.

Theorem 3.23 (Proposition 10.5 in [26]). For a space X, Cp(X) is
a cosmic space if and only if X is a cosmic space.

Proof. See Proposition 10.5 in [26].

Corollary 3.24. If X is cosmic, then Cp(X) is Lindelöf.

Corollary 3.25. Suppose that X is a normal σ-space. Then Cp(X)
is cosmic if and only if Cp(X) is Lindelöf.

Proof. If Cp(X) is Lindelöf, then by Corollary 3.17, every σ-discrete
network is countable and consequently X is a cosmic space. Hence
by Theorem 3.23, Cp(X) is cosmic.

Theorem 3.26. For a space X, the following statements are equiv-
alent.
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(a) X is an ℵ0-space.

(b) Ck(X) is an ℵ0-space.

(c) Ck(X) is cosmic.

(d) Cps(X) is cosmic.

Proof. The equivalence of the conditions (a), (b) and (c) has been
proved in Proposition 10.3 in [26]. (a) ⇒ (d). If X is an ℵ0-space,
then X is submetrizable and consequently Cps(X) = Ck(X). Hence
by (c), Cps(X) is cosmic.

(d) ⇒ (c). It is immediate, since cosmicness is preserved by a
weaker topology.

Corollary 3.27. If X is an ℵ0-space, then Ck(X) is Lindelöf.
Moreover in this case, Ck(X) = Cps(X).

Corollary 3.28. If X is metrizable, then Ck(X) is Lindelöf if and
only if X is Lindelöf.

Proof. If X is metrizable as well as Lindelöf, then X is second
countable and consequently by Corollary 3.27, Ck(X) is Lindelöf.
Conversely, if Ck(X) is Lindelöf, then by Corollary 3.14, X is Lin-
delöf.

We end this section by having a few more examples in relation
to the Lindelöf property of Cj(X), (j = p, k, ps).

Example 3.29. Let X be a discrete space. Then RX = Cp(X) =
Ck(X) = Cps(X). It has already been proved in Example 3.4 that
RX is Lindelöf if and only if X is countable.

Example 3.30. From Corollary 3.28, it follows that for a separable
metric space X, Cps(X) is Lindelöf. In particular, for R, Cps(R) is
Lindelöf and Cp(R) < Ck(R) = Cps(R).

Example 3.31. Let X be the discrete irrational extension of R, that
is, in addition to the usual open sets, take the singleton irrational
points to be open. This space has been discussed in detail in Example
71 of [32]. This space X is paracompact, but not Lindelöf. Hence by
Corollary 3.12, Cp(X) is not Lindelöf. For this space X, Cp(X) <

Cps(X) = Ck(X).



COUNTABILITY PROPERTIES etc. 437

Example 3.32. Let X = [0, ω1). Since X is countably compact, the
pseudocompact-open topology on C(X) is actually generated by the
supremum metric on C(X) and consequently Cps(X) is metrizable.
If Cps(X) is Lindelöf, then it would be separable also. But in Ex-
ample 2.4, it has been shown that Cps(X) is not separable. Hence
Cps(X) is not Lindelöf. But by using Theorem 2 of [13], it has been
shown in [23] that Ck([0, ω1)) is Lindelöf. For this space X, we have
Cp(X) < Ck(X) < Cps(X)

4. Second Countability

In the last section of this paper, we study the second countability
of Cj(X), j = p, k, ps. We begin the study by first looking at
the second countability of Cp(X) from a larger perspective. Then
we show that Ck(X) is second countable if and only if Cps(X) is
second countable. The second countability of Cp(X) and Ck(X) has
been well-studied in the literature. While the second countability of
Cp(X) has been studied [3] and [4], the second countability Cp(X)
and Ck(X) has been studied from a general perspective in [22, 24]
and [25]). In particular, the second countability of Ck(X) has been
studied in [28]. For readers’ convenience, we present two known
results on the second countability of Ck(X) with complete proofs,
but obviously in the presence of Cps(X). For the first result in this
section, we need the following definition.

Definition 4.1. A space X is a q-space if for each point x ∈ X,
there exists a sequence {Un : n ∈ N} of neighborhoods of x such that
if xn ∈ Un for each n, then {xn : n ∈ N} has a cluster point.

Theorem 4.2. For a space X, the following statements are equiva-
lent.

(a) Cp(X) is second countable.

(b) Cp(X) is metrizable.

(c) Cp(X) is first countable.

(d) Cp(X) is a q-space.
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(e) X is countable.

Proof. (a) ⇒ (b) ⇒ (c) ⇒ (d). These are all immediate.

(d) ⇒ (e). Suppose that Cp(X) is a q-space. Hence there exists a
sequence {Un : n ∈ N} of neighborhoods of the constant zero function
0 in Cp(X) such that if fn ∈ Un for each n ∈ N, then {fn : n ∈ N}
has a cluster point in Cp(X). Now for each n, there exist a finite
subset Fn of X and ǫn > 0 such that 〈0, Fn, ǫn〉 ⊆ Un. We claim that
X = ∪∞

n=1Fn. If not, let x0 ∈ X\∪∞
n=1Fn. Then for each n ∈ N, there

exists a continuous function fn : X −→ [0, 1] such that fn(x0) = n

and fn(x) = 0 for all x ∈ Fn. It is clear that fn ∈ 〈0, Fn, ǫn〉.
But the sequence {fn : n ∈ N} does not have a cluster point. If
possible, suppose that this sequence has a cluster point f in Cp(X).
Then for each k ∈ N, there exists a positive integer nk > k such that
fnk

∈ 〈f, {x0}, 1〉. So for all k ∈ N, f(x0) > fnk
(x0)−1 = nk−1 ≥ k.

Since this is not possible, the sequence {fn : n ∈ N} cannot have a
cluster point in Cp(X) and consequently Cp(X) fails to be a q-space.
Hence X must be countable.

(e) ⇒ (a). If X is countable, then RX is second countable and
consequently Cp(X) is also second countable.

Theorem 4.3. For a space X, Cps(X) is second countable if and
only if Ck(X) is second countable. Moreover, in this case Cps(X) =
Ck(X).

Proof. If either Cps(X) or Ck(X) is second countable, then it is
separable and consequently by Theorem 2.1, X is submetrizable.
Hence in this case, Cps(X) = Ck(X).

For the next result on the second countability of Cj(X), j =
k, ps, we need the definition of π-base.

Definition 4.4. A family of nonempty open sets in a space X is
called a π-base for X if every nonempty open set in X contains a
member of this family.

The routine proof of the following lemma is omitted.

Lemma 4.5. Let D be a dense subset of a space X. Then D has a
countable π-base if and only if X has a countable π-base.
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Now Theorem 4.3 can be strengthened as follows.

Theorem 4.6. For a space X, the following statements are equiva-
lent.

(a) Cps(X) contains a dense subspace which has a countable π-
base.

(b) Cps(X) has a countable π-base.

(c) Cps(X) is second countable.

(d) Ck(X) is second countable.

(e) X is hemicompact and submetrizable.

Proof. By Lemma 4.5, (a) ⇔ (b) and by Theorem 4.3, (c) ⇔ (d).
(b) ⇒ (c). If Cps(X) has a countable π-base, then by Theorem 5.7
in [18], Cps(X) is metrizable. But it is easy to see that a space having
a countable π-base is separable. Hence Cps(X) is second countable.

(d) ⇒ (e). If Ck(X) is second countable, then it is submetrizable
as well as it is separable. Hence X is hemicompact and submetriz-
able.

(e) ⇒ (d). If X is hemicompact, then Ck(X) is metrizable. Note
that X, being hemicompact, is Lindelöf. Since X is also submetriz-
able, X has a separable metrizable compression and consequently
by Theorem 2.1, Ck(X) is separable. Hence Ck(X) is second count-
able.

In the next result, we would like to present a few more known
equivalent characterizations of hemicompact submetrizable spaces.

Theorem 4.7. For a space X, the following statements are equiva-
lent.

(a) X is hemicompact and submetrizable.

(b) X is a hemicompact ℵ0-space.

(c) X is a hemicompact cosmic space.

(d) X is a hemicompact σ-space.
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Proof. (a) ⇒ (b). Let {Kn : n ∈ N} be a countable family of compact
subsets of X such that for each compact subset K of X, there exists n

such that K ⊆ Kn. Note that X =
∞
[

n=1

Kn. Since X is submetrizable,

each Kn is metrizable and consequently each Kn is second countable.
It is easy to show that a second countable space has a countable k-
network, that is, a second countable space is an ℵ0-space. Hence each

Kn has a countable k-network Bn. Now we claim that B =
∞
[

n=1

Bn is

a k-network for X. Let K ⊆ U where K is a compact subset of X

and U is open in X. Then K ⊆ Kn for some n and so K ⊆ U ∩Kn.
Hence there exists B ∈ Bn such that K ⊆ B ⊆ U ∩ Kn. So there
exists B ∈ B such that K ⊆ B ⊆ U . Hence X is an ℵ0-space.

(b) ⇒ (c) and (c) ⇒ (d). These are immediate.
(d) ⇒ (a). If X is hemicompact, then it is Lindelöf. In addition,

if X is a σ-space, then it becomes a paracompact σ-space. Hence
by Theorem 4.4 in [11], X is a cosmic space and consequently X is
submetrizable.

In the next result, we show that in presence of local compactness
of X, the second countability of Cps(X) is equivalent to the second
countability of X. The precise and detailed statement follows.

Theorem 4.8. For a locally compact space X, the following state-
ments are equivalent.

(a) Cps(X) is second countable.

(b) Ck(X) is second countable.

(c) X is hemicompact and submetrizable.

(d) X is Lindelöf and submetrizable.

(e) X is σ-compact and submetrizable.

(f) X is the union of a countable family of compact metrizable
subsets of X.

(g) X is second countable.
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Proof. First we note that if X is locally compact, then X is hemicom-
pact if and only if X is either Lindelöf or σ-compact; see 3.8.C(b),
page 195 in [9]. Hence (c) ⇔ (d) ⇔ (e).

Clearly (e) ⇒ (f).
(f) ⇒ (g). First we note that a compact metrizable space is

second countable and consequently it is a cosmic space. Then as
argued in the proof of (a) ⇒ (b) in Theorem 4.7, it can be shown
that if X is the union of a countable family of cosmic subspaces,
then X is itself a cosmic space. Hence if (f) holds, then X becomes
a cosmic space. But a cosmic space is submetrizable.

Now since X is locally compact, for each x ∈ X, there exists an
open set Vx in X such that x ∈ Vx and V x is compact. Note that
{Vx : x ∈ X} is an open cover of X. But X, being σ-compact, is
Lindelöf and consequently, there exists a countable subset {xn : n ∈

N} of X such that X =
∞
[

n=1

Vxn
. But since X is submetrizable and

each V xn
is compact, each V xn

is second countable. Consequently
each Vxn

is also second countable and X becomes the union of a
countable family of second countable open subsets of X. Hence X

is second countable.
(g) ⇒ (a). If X is second countable, then X is metrizable as

well as X is Lindelöf. But since a locally compact Lindelöf space
is hemicompact, by Theorem 4.6, it follows that Cps(X) is second
countable.

Corollary 4.9. If X is locally compact and Cp(X) is second count-
able, then Ck(X) is also second countable.

Proof. If Cp(X) is second countable, by Theorem 4.2, X is countable.
Hence, X being locally compact, X is hemicompact. Also since
Cp(X) is separable, X is submetrizable. Hence by Theorem 4.8,
Ck(X) is second countable.

We end this paper with some examples in relation to the second
countability of Cj(X), j = p, k, ps.

Example 4.10. If X = Q, the space of rational numbers with the
usual topology, then Cp(Q) < Ck(Q) = Cps(Q). Here Cp(Q) is sec-
ond countable, but since Q is not hemicompact, Ck(Q) is not second
countable.
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Example 4.11. If X = { 1
n

: n ∈ N} ∪ {0} with the usual topology,
then Cp(X) < Ck(X) = Cps(X). Here both Cp(X) and Ck(X) are
second countable.

Example 4.12. If X is a discrete space, then RX = Cp(X) =
Ck(X) = Cps(X). Then Cp(X) is second countable if and only if
X is countable.

Example 4.13. If X = R, then Cp(X) < Ck(X) = Cps(X). Here
Cp(X) is not second countable, while Ck(X) is second countable.

Example 4.14. For the Sorgenfrey line Rl, Cp(Rl) < Ck(Rl) =
Cps(Rl). Since every compact subset in Rl is countable, Rl is not
even σ-compact. Here neither Cp(Rl) nor Ck(Rl) is second count-
able.

Example 4.15. If X = [0, ω1), then Cp(X) < Ck(X) < Cps(X).
Here none of Cj(X), j = p, k, ps, is second countable.

Example 4.16. For the space X mentioned in Example 2.6, none of
Cj(X), j = p, k, ps, is second countable.
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topology, M. Hušek, Miroslav and J. van Mill eds., North-Holland
Publishing Co. (1992), pp. 1–56.

[6] M.O. Asanov, On cardinal invariants of spaces of continuous func-
tions, Sovr. Topol. i Teor. Mnozhestv. Izhevsk 2 (1979), 8–12. In Rus-
sian.



COUNTABILITY PROPERTIES etc. 443

[7] C.E. Aull, Absolute C-embedding in functionally normal spaces and
related spaces, Colloq. Math. Soc. János Bolyai 23 (1978), 129–136.

[8] R.C. Buck, Bounded continuous functions on a locally compact space,
Michigan Math. J. 5 (1958), 95–104.

[9] R. Engelking, General topology, revised and completed ed., Helder-
mann Verlag, Berlin (1989).

[10] R. Giles, A generalization of the strict topology, Trans. Amer. Math.
Soc. 161 (1971), 467–474.

[11] G. Gruenhage, Generalized metric spaces, in Handbook of set-
theoretic topology, K. Kunen and J.E. Vaughan eds., Elsevier Science
Publishers B. V. (1984), 423–501.

[12] D. Gulick, The σ-compact-open topology and its relatives, Math.
Scand. 30 (1972), 159–176.

[13] S.P. Gul’ko, On properties of subsets of Σ-products, Soviet Math.
Dokl. 18, no. 6 (1977), 1438–1442.

[14] I.L. Guran, On embeddings of topological groups, L’vorsk Univ.,
L’vov, (1981). Manuscript deposited at VINITI.

[15] J.E. Jayne, Spaces of Baire functions. I, Ann. Inst. Fourier (Greno-
ble) 24, no. 4 (1974), 47–76.

[16] S. Kundu, Cb(X) revisited: induced map and submetrizability,
Quaest. Math. 27 (2004), 47–56.

[17] S. Kundu and Pratibha Garg, Completeness properties of the
pseudocompact-open topology on C(X), to appear in Math. Slovaca.

[18] S. Kundu and Pratibha Garg, The pseudocompact-open topology
on C(X), Topology Proc. 30, no. 1 (2006), 279–299.

[19] S. Kundu and R.A. McCoy, Topologies between compact and uni-
form convergence on function spaces, Internat. J. Math. Math. Sci.
16 (1993), 101–109.

[20] S. Kundu, R.A. McCoy and A.B. Raha, Topologies between com-
pact and uniform convergence on function spaces. II, Real Anal. Ex-
change 18 (1992/93), 176–189.

[21] S. Kundu and A.B. Raha, The bounded-open topology and its rel-
atives, Rend. Istit. Mat. Univ. Trieste 27 (1995), 61–77.

[22] R.A. McCoy, Countability properties of function spaces, Rocky
Mountain J. Math. 10, no. 4 (1980), 717–730.

[23] R.A. McCoy, Necessary conditions for function spaces to be Lindelöf,
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