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Variations on Hartogs

and Henkin-Tumanov Theorems

Raffaella Mascolo (∗)

Summary. - There are equivalent characterizations for holomorphic
functions defined on open sets of C

n; first of all, they can be rep-
resented locally as sums of convergent power series. It is obvious
that a holomorphic function of several complex variables is sepa-
rately holomorphic in each variable. Just separating variables, a
lot of the well-known properties of holomorphic functions of one
complex variable, as the integral Cauchy formula, have a corre-
sponding version in several complex variables; for separation of
variables, we need the function to be continuous. Surprisingly, a
function which is separately holomorphic, is indeed C0 and even
C1 and therefore holomorphic (Hartogs Theorem, 1906).

This short note deals with the problem of separate analyticity
and extends the discussion to the case of separately CR functions
defined on CR manifolds. We present our result of [5] and explain
how it is related to the former literature. In particular, we explain
its link with former results by Henkin and Tumanov of 1983 and
by Hanges and Treves of 1983.

1. Introduction

In complex analysis in several variables, the study of the properties
of holomorphic functions on domains of C

n shows great differences
from the case of one complex variable. In particular, the theme
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of separate analyticity has meaning only in the setting of several
complex variables.

Let us recall some properties of holomorphic functions in the case
of one complex variable: the real and imaginary parts of an analytic
function are harmonic functions, which are conjugate to each other; a
harmonic function is uniquely determined by its boundary values; we
can construct a harmonic function with prescribed boundary values
and construct locally its harmonic conjugate, which is unique up to
an additive constant.

In actual research, several complex variables play a more crucial
role. Their theory is quite difficult to treat, compared with the the-
ory of one complex variable; the real and imaginary parts of an ana-
lytic function are now pluriharmonic; this fact imposes a restriction
stronger than being merely harmonic, and it is not always possible to
construct a pluriharmonic function with prescribed boundary values
on a given part of the boundary.

The most relevant phenomenon, which makes the difference be-
tween the cases of one and several variables, is connected to the
concept of domain of holomorphy (this is a domain Ω in C

n which
is the natural domain of a holomorphic function, so there does not
exist Ω1 ⊃ Ω, where all the holomorphic functions on Ω extend). In
C, all the domains are domains of holomorphy, while it is not true
that every domain in C

n is the natural domain of a holomorphic
function.

On a domain of C, we can easily construct a holomorphic func-
tion, which is singular at a point of the boundary, while this is not
always possible in C

n. In fact, there exist domains Ω̃ in C
n such that

all holomorphic functions holomorphically extend to Ω̃1 ⊃ Ω̃.

The note is divided into four parts: in the first part, after the
definition of holomorphic and separately holomorphic function on a
domain of C

n, we introduce CR functions on CR submanifolds of C
n.

The second part is used to present some properties of holomorphic
functions in several complex variables, as Cauchy integral formula,
to give the first results on separate analyticity with the hypothesis
of continuity and boundedness on compacts.

Then, the third part introduces Hartogs Theorem (1906), which
is really strong, because it does not require any hypothesis for a sep-
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arately holomorphic function to be jointly holomorphic; and finally,
in the last part, we explain the setting of separately CR functions
and we regain and generalize a result of Henkin and Tumanov (1983),
using the technique of approximation.

2. Holomorphic functions and CR functions

We want to consider functions f : C
n → C. Let

(x, y) 7→ (z, z̄) = (x + iy, x − iy)

be the identification of R
2n with the diagonal of C

n × C̄
n and use

(z, z̄) as coordinates in C
n.

Definition 2.1. A function f , defined on a domain Ω in C
n, is

holomorphic if it is C1 and satisfies the differential system ∂z̄j
f = 0,

∀j = 1, ..., n.

Definition 2.2. A function f , defined on a domain Ω in C
n, is

separately holomorphic if it satisfies the differential system ∂z̄j
f = 0,

∀j = 1, ..., n.

This differential system is the well-known Cauchy-Riemann sys-
tem. It is an immediate remark that a holomorphic function is sepa-
rately holomorphic; what we want to show is that the hypothesis of
separate analyticity suffices to conclude that the function is C1, so
it is jointly holomorphic.

We want to introduce CR manifolds and CR functions as gener-
alizations of complex manifolds and holomorphic functions.

The starting point is to notice that, given a smooth submanifold
M of C

n, its tangent space at a point z ∈ M is not invariant, in
general, under the moltiplication for i; so it makes sense to look for
the largest i-invariant subspace of TzM .

Definition 2.3. For a point z ∈ M , the complex tangent space of
M at z is the vector space T C

z M = TzM ∩ iTzM .

While TM is a bundle, it is not always true that the dimension
of T CM is constant.
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Definition 2.4. M is called a CR submanifold of C
n if the dimen-

sion of T CM is constant.

Example 2.5. In C
n, any complex submanifold is a CR submani-

fold, because, for a complex submanifold M , the real tangent space
is already i-invariant, so TzM = T C

z M ; another example of CR sub-
manifold is the class of real hypersurfaces in C

n. Instead, if we
consider the manifold M = {z ∈ C

n : |z| = 1, Im z1 = 0}, which
is the equator of the unit sphere in C

n, this is not a CR submani-
fold of C

n, because at every point z 6= (±1, 0, . . . , 0) in M we have
dimCT C

z M = n − 2, while, at z = (±1, 0, . . . , 0) ∈ M , TzM is i-
invariant, so dimCT C

z M = dimCTzM = n − 1.

We give other definitions

• T 1,0(Cn) := Span{∂zj
} and T 0,1(Cn) := Span{∂z̄j

}.

• M is called totally real if T C
z M = {0}, for every z ∈ M .

• M is called generic if TzM + iTzM = TzC
n, for every z ∈ M .

• T 1,0M := T 1,0
C

n∩(C⊗TM) and T 0,1M := T 0,1
C

n∩(C⊗TM).

Now, for a CR submanifold M of C
n, it is possible to introduce the

notion of CR function on M . Let M be a generic CR submanifold of
C

n, defined by a system ρ1 = 0, . . . , ρd = 0 of independent equations.
The following two definitions are equivalent

Definition 2.6. A C1 function f : M → C is CR if L̄f = 0, for
every L̄ ∈ T 0,1M .

Definition 2.7. A C1 function f : M → C is CR if ∂̄f̃ ∧ ∂̄ρ1∧ . . .∧
∂̄ρd = 0 on M , where f̃ : C

n → C is any C1 extension of f .

CR functions on CR manifolds are analogous to holomorphic
functions on complex manifolds, though there are relevant differ-
ences, as the fact that CR functions are not always smooth. For the
analogies, the first is that the restriction of a holomorphic function to
a CR submanifold is a CR function; in particular, if M = C

n, holo-
morphic functions are CR, while, for the converse, we need M and f
to be Cω. In general, the class of CR functions is strictly larger than
the class of restrictions of holomorphic functions. In other terms,
CR functions not always extend as holomorphic functions.
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Example 2.8. M = R × R is a totally real and generic submani-
fold of C

2 and T 0,1M = {0}, so all the functions f(x1, x2) of class
C1 on M are CR. M = R × C is a generic submanifold of C

2, such
that T 0,1M is spanned by the vector field ∂z̄2 . Thus every function
f(x1, z2) of class C1 on M , which satisfies ∂z̄2f = 0, is CR. These
functions are separately holomorphic in z2 and the holomorphic ex-
tension needs f to be Cω. Finally, M = C×C is a complex subman-
ifold and T 0,1M is spanned by ∂z̄1 and ∂z̄2 ; thus, CR functions and
holomorphic functions coincide in this case.

3. Properties of holomorphic functions of several

complex variables

Theorem 3.1 (Cauchy integral formula on polydiscs). Let f be a
continuous function on the closure of a polydisc P = D1× . . .×Dn ⊂
C

n, which is, for any j, a holomorphic function of zj, when the other
variables zk, for k 6= j, are fixed. Then, for any z ∈ P , we have

f(z) = (2πi)−n

∫

∂0P

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 ∧ ... ∧ dζn,

where ∂0P = ∂D1 × . . . × ∂Dn.

This is the generalization of Cauchy formula on the complex
plane, which is a consequence of Stokes formula. For f ∈ C1(Ω̄),
where Ω is a bounded open set of C, it says that

∫
∂Ω fdz =

∫ ∫
Ω df ∧

dz =
∫ ∫

Ω
∂f
∂z̄

dz̄ ∧ dz. In particular, if f is C1(Ω̄) and analytic, then∫
∂Ω fdz = 0.

The C1-regularity in each zj is needed for Stokes formula, and
the joint C0-regularity is needed for Fubini Theorem.

Corollary 3.2. If f is C0(Ω) and separately holomorphic in each
zj , when the other variables are fixed, then f is C∞(Ω). (In partic-
ular f is holomorphic on Ω.)

It suffices to consider Cauchy formula on a polydisc contained in
Ω; the integrand is C∞ and analytic in z when (ζ, z) ∈ ∂0P × P , so
we can derive under the integral.
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Theorem 3.3 (Cauchy inequalities). Let f be holomorphic on P and
continuous on P̄ . Then

|fα(zo)| ≤
α!

rα
sup ∂0P (zo,r)|f |.

Corollary 3.4. Let {fn} be a sequence of holomorphic functions
on Ω, and {fn} converges uniformly to f on compact sets of Ω; then
f ∈ hol(Ω) and {∂αfn} converges uniformly to ∂αf on compact sets
of Ω.

Corollary 3.5 (Stjelties-Vitali). Let {fn} be a sequence of holo-
morphic functions on Ω, uniformly bounded on compact sets of Ω;
then, there exists a subsequence {fnk

} uniformly convergent on com-
pact sets of Ω, and its limit is holomorphic.

Another result on separate analyticity is then given through the
hypothesis of boundedness on compact sets, using the technique of
the Theorem of Stjelties-Vitali: for holomorphic functions, uniform
boundedness is equivalent to equicontinuity.

Proposition 3.6. If f is separately holomorphic and bounded on
compact sets of Ω, then f is holomorphic on Ω.

4. Hartogs Theorem

Theorem 4.1 (Hartogs, 1906). If f : Ω → C is separately holomor-
phic, then it is holomorphic. (We do not need any hypothesis on the
initial regularity of f ; this is C1 as a consequence.)

Remark 4.2. A corresponding result for real analytic functions is
false, as the following example shows

f : R
2 → R

f(x, y) =

{
xy/(x2 + y2) (x, y) 6= (0, 0)
0 (x, y) = (0, 0).

f is separately Cω in x (when y is fixed) and in y (when x is fixed),
f is bounded on the plane, but f is not continuous at (0,0).
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The proof of Hartogs Theorem needs a result on subharmonic
functions, which is known as Hartogs lemma.

Lemma 4.3 (Hartogs lemma). Let vk be a sequence of subharmonic
functions, which are uniformly bounded on any compact subset of Ω.
Let lim supk→∞vk(z) ≤ C, ∀z ∈ Ω; then, ∀ǫ > 0 and ∀K ⊂⊂ Ω,
there is k0 such that

supz∈Kvk(z) ≤ C + ǫ, ∀k ≥ k0.

The proof is an application of Fatou’s lemma in the integrals
which enter in the submean property. For sequences of functions
which admit integral representations, or estimates by integrals like
submeans, in case they have a uniform bound, then the pointwise
“lim sup” enters into the integrals and becomes “uniform”.

The proof of Hartogs Theorem can be divided into two parts:
the first is an application of Baire Theorem, the second uses Hartogs
lemma.

Proof. The statement is local and can be proved by adding, one by
one, the directions of separate analyticity: so we can consider the
bidisc ∆̄ × ∆̄ ⊂⊂ Ω in C

2 and prove these two steps

STEP 1: Analyticity on ∆ǫ × ∆. We prove that f , which is
separately holomorphic in z1 and z2, is holomorphic on ∆ǫ × ∆.

Let us define El := {z1 ∈ ∆ : supz2∈∆|f(z1, z2)| ≤ l}. El is
closed and ∪lEl = ∆. By Baire Theorem, there exists l0 such that
Int(El0) 6= ∅; so f is holomorphic on Int(El0) × ∆ and, repeating
the same construction with different sets El on any open subset of
∆, we can say that f is holomorphic on B × ∆, for an open dense
subset B ⊂ ∆. Also, we can assume, without loss of generality, that
0 ∈ B, so f is holomorphic on the strip ∆ǫ × ∆.

STEP 2: Analyticity on ∆ × ∆. At this point, we can even
forget that f is separately holomorphic in z2, when z1 is outside ∆ǫ.

So we prove that, if f is holomorphic on ∆ǫ ×∆, and separately
holomorphic for z1 ∈ ∆ when z2 is fixed, then f is holomorphic on
∆ × ∆.
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We consider the Taylor series of f with respect to z1, at z1 = 0:

f(z1, z2) =
∑

k

∂k
z1

f(0, z2)

k!
zk
1 ;

it converges uniformly for z2 ∈ ∆ and normally for z1 ∈ ∆ǫ. We
define

vk(z2) :=

(
|∂k

z1
f(0, z2)|

k!

) 1
k

.

Cauchy inequalities yield, by the assumption of separate analyticity
of f in z1 ∈ ∆, for fixed z2, lim supk→∞vk(z2) ≤ 1; on the other
hand, by the assumption of analyticity of f on ∆ǫ × ∆, they yield
lim supksupz2∈∆vk ≤ ǫ−1. By Hartogs lemma, the pointwise esti-
mate in z2 becomes uniform

lim supk sup∆vk ≤ 1.

Hence, the power series in z1, with holomorphic coefficients in z2,
converges normally for z1 ∈ ∆ and uniformly for z2 ∈ ∆, so the sum
is a holomorphic function on ∆ × ∆.

Remark 4.4. Note that Hartogs Theorem consists only in Step 2;
Step 1 is a preliminary by Baire. In the second step we prove two
important results: the uniformity in ∆ and the propagation. When
we say that “we can even forget that f is separately holomorphic in
z2, when z1 is outside ∆ǫ”, even if we suppose that f is continuous,
it is not easy to prove the analyticity on the bidisc: the problem has
become a problem of propagation.
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We can appreciate the proof through this figure

STEP 1

STEP 2

Figure 1: Hartogs Theorem

5. Separately CR functions

The first remark of this section is an application of Hartogs Theorem;
we can easily prove it just iterating the technique of “doubling” the
radius of convergence.

Remark 5.1. Let f be separately holomorphic on ∆+ × ∆ =
{(z1, z2) ∈ ∆ × ∆ : Re z1 > 0} and holomorphic on ∆+

ǫ × ∆ =
{(z1, z2) ∈ ∆+ × ∆ : |z1| < ǫ}; then, f is holomorphic on ∆+ × ∆.

When the leaves of the foliation are complex curves, the problem
changes again; it is a problem of propagation, as Step 2 was, for
a non-holomorphic foliation; in full generality, the validity of the
statement is an open question. If we suppose that f is C0, we have
the following statement

Let {γλ}λ∈Λ be a foliation of ∆+ × ∆ by complex curves, such that
γλ∩(∆+

ǫ ×∆) 6= ∅, ∀λ ∈ Λ. Let f be a C0 function on ∆+×∆, such
that f is holomorphic on ∆+

ǫ × ∆ and f|γλ
is holomorphic, ∀λ ∈ Λ;

then, f is holomorphic on ∆+ × ∆.

The result can be proved in several ways. (For instance, it is also
a corollary of the subsequent Theorem 5.6.)
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2z
+

Figure 2: Foliation by complex curves.

The former statement can be generalized in many directions:
first, in replacing the open set ∆+ × ∆ by a CR manifold M , and
∆+

ǫ ×∆ by an open set Mǫ ⊂ M (that can even be shrunk to a proper
submanifold N), and also in replacing the foliation {γλ} of complex
curves by a foliation {γλ} of CR manifolds of CR dimension 1.

Theorem 5.2 (Mascolo). Let M be a CR connected manifold with
boundary N , foliated by a family {γλ} of CR manifolds of CR dimen-
sion 1, issued from N , with T Cγλ transversal to TN at any common
point of γλ ∩ N . Let f be a C0 function on M , which is CR along
N , CR and C1 along each γλ. Then, f is CR all over M .

Remark 5.3. Since M is CR, then N is also CR. In fact, its CR
codimension is always ≤ 1, but it is in fact ≡ 1 because we have a
foliation by leaves whose complex structure is transversal to N .

Remark 5.4. M is a CR manifold of C
n; by a projection C

n →
TzM + iTzM , which is a diffeomorphism when restricted to M , we
can assume without loss of generality that M is generic.

An idea of the proof, which is divided into two steps, is to select a
totally real manifold Eo ⊂ N , invariant under the foliation {Lλ∩N},
and define an approximation of f by entire functions {fα}, defined
by

fα(z) =
(α

π

)n
2

∫

+Eo

f(ξ)e−α(ξ−z)2dξ1 ∧ . . . ∧ dξn.

By deforming the manifold Eo, we see that the above sequence pro-
vides in fact a uniform approximation of f in a neighbourhood Mǫ of
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Eo in M ; hence f is CR in that neighbourhood. (The same method
of polynomial approximation was first exploited by Tumanov in [6],
in proving that a given function is CR.) A repeated use of this tech-
nique and a connectedness argument yield the global theorem.

N

M M

Mε

M

Figure 3: CR extension from N to Mǫ, and global extension.

Our Theorem is a generalization of the following Theorem by
Henkin and Tumanov

Theorem 5.5 (Henkin-Tumanov, 1983). Let {γλ} be a foliation of
M by complex curves which are transversal to N at any common
point of γλ ∩ N , and let f be C0 on M , CR on N and holomorphic
along each γλ; then, f is CR on M .

In turn, Theorem 5.5 is related to the following

Theorem 5.6 (Hanges-Treves, 1983). Let M be a hypersurface of
C

n, Ω one side of M , γ a complex curve of M , zo a point of γ, f a
holomorphic function on Ω, such that |f(z)| ≤ Cdist(z, ∂Ω)−N for
suitable C and N . Then, if f extends across M at zo, it also extends
at any other point z1 ∈ γ.

On one hand, Theorem 5.5 is far more general, because what is
propagated is the property of f of being CR, not necessarily holo-
morphic. On the other hand, in Theorem 5.6 we do not have any
foliation by complex curves: there is only one leaf, which has the
property of “being a propagator”. (Cf. [1] and [2] for a more de-
tailed account on propagation; note that the techniques of [1] and
[2] apply also to a function f which is not tempered at ∂Ω.)

Example 5.7. In C
4 we consider M = {z = (z1, z2, z3, z4) ∈ C

4 :
y1 ≥ −(|z2|

2+|z3|
2+|z4|

2)}, with boundary N = {z = (z1, z2, z3, z4) ∈



406 R. MASCOLO

C
4 : y1 = −(|z2|

2 + |z3|
2 + |z4|

2)}. Let (γa,b,c)a,b,c∈R be manifolds in
C

4 defined by 



y2 = |z1|
2 + a

y3 = |z1|
2 + b

y4 = |z1|
2 + c.

The setting of this example is good for our Theorem; the use of
Henkin-Tumanov Theorem is not possible, because the γa,b,c are
strictly pseudoconvex, so they can not be foliated by complex curves.
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