Rend. Istit. Mat. Univ. Trieste Vol. XXXIX, 387–394 (2007)

Note on Elongations of Summable *p*-Groups by $p^{\omega+n}$ -Projective *p*-Groups II

Peter V. Danchev (*)

SUMMARY. - We find a suitable condition under which a special ω elongation of a summable p-group by a $p^{\omega+n}$ -projective p-group is itself a summable p-group. This supplies our recent result on this theme in (Rend. Istit. Mat. Univ. Trieste, 2006).

Throughout the rest of this brief article, suppose all groups into consideration are abelian, *p*-primary for some prime *p*, written additively. Thus *A* is an abelian *p*-group with first Ulm subgroup $A^1 = \bigcap_{i < \omega} p^i A$, where $p^i A = \{p^i a \mid a \in A\}$ is the p^i -th power of *A*, and with p^n -socle $A[p^n] = \{a \in A \mid p^n a = 0\}$, where $n \in \mathbb{N}$. All other unstated explicitly notions and nomenclatures are classical and agree with [11].

In [14] (see [11] too) was defined the concept of a summable group that is a group A so that $A[p] = \bigoplus_{\alpha < \lambda} A_{\alpha}$ with $A_{\alpha} \setminus \{0\} \subseteq p^{\alpha} A \setminus p^{\alpha+1} A$ for each $\alpha < \lambda = length(A)$. It is well-known that $\lambda \leq \Omega$, the first uncountable limit ordinal not cofinal with ω . Moreover, following [16], a group A is said to be $p^{\omega+n}$ -projective if there is $P \leq A[p^n]$ with A/P a direct sum of cyclics.

Besides, in [1] we treat a more general situation by studying the so-called by us strong ω -elongations of summable groups by $p^{\omega+n}$ projective groups. Specifically, the group A is such a special ω elongation if A^1 is summable and there exists $P \leq A[p^n]$ such that

 ^(*) Author's address: Peter V. Danchev, 13, General Kutuzov Street, bl. 7, fl.
2, ap. 4, 4003 Plovdiv, Bulgaria; E-mail: pvdanchev@yahoo.com

Keywords: Summable Groups, ω -Elongations, $p^{\omega+n}$ -Projective Groups, n- Σ -Groups. 2000 AMS Subject Classification: 20K10.

 $A/(P + A^1)$ is a direct sum of cyclics (for the corresponding variant of totally projective groups see [3] and [4]). We showed there that under certain additional circumstances on P these elongations are of necessity summable groups; in fact $P \cap p^n A \subseteq A^1$ was taken, that is, P has a finite number of finite heights as calculated in A. In this way, the following simple technicality is a direct consequence of Dieudonné criterion from [10], but it also possesses an easy proof like this: Let $C \leq A$ such that A/C is a direct sum of cyclics. If there exists a positive integer n with $C \cap p^n A = 0$, then A is a direct sum of cyclics. Indeed write $A = \bigcup_{i < \omega} A_i, C \subseteq A_i \subseteq A_{i+1} \leq A$ and $A_i \cap p^i A \subseteq C$ for all $i: n \leq i < \omega$. Therefore, $A_i \cap p^i A \subseteq C \cap p^i A = 0$. Thus Kulikov's criterion from [15] works to conclude the wanted property for A. Note that according to this claim, we may directly argue the Main Theorem in [1].

On the other hand, in [4] was introduced the class of $n-\Sigma$ -groups, which is a proper subclass of the class of Σ -groups, as follows: Ais an $n-\Sigma$ -group if $A[p^n] = \bigcup_{i < \omega} A_i, A_i \subseteq A_{i+1} \leq A[p^n], \forall i \geq 1$: $A_i \cap p^i A \subseteq A^1$. We also proved there that every $n-\Sigma$ -group which is a strong ω -elongation of a totally projective group by a $p^{\omega+n}$ projective group is totally projective and vice versa; in particular each $n-\Sigma$ -group is $p^{\omega+n}$ -projective uniquely when it is a direct sum of countable groups of length at most $\omega + n$.

The aim of the present paper is to examine what is the relationship between the classes of n- Σ -groups and strong ω -elongations of summable groups by $p^{\omega+n}$ -projective groups, i.e. how n- Σ -groups are situated inside these special ω -elongations of summable groups by $p^{\omega+n}$ -projective groups, and whether there is an analogue with the strong ω -elongations of a totally projective groups by $p^{\omega+n}$ -projective groups.

Before doing that, we need some crucial preliminaries.

Following Hill, a group A is known to be *pillared* provided that A/A^1 is a direct sum of cyclics. Clearly such a group is necessarily an n- Σ -group, and hence a Σ -group (see [4] too), whereas the converse implication fails. The next affirmation answers under which extra limitations this holds true. Besides, a group A is said to be a strong ω -elongation (of a summable group) by a $p^{\omega+n}$ -projective group if there exists $P \leq A[p^n]$ with $A/(P + A^1)$ a direct sum of cyclics

(and A^1 is summable). Such a group has first Ulm factor which is of necessity $p^{\omega+n}$ -projective, while this property is not retained in a converse way that is there is a group with $p^{\omega+n}$ -projective first Ulm factor which is not a strong ω -elongation by a $p^{\omega+n}$ -projective group. That is why we have also named these groups as groups with strongly $p^{\omega+n}$ -projective first Ulm factor.

We are now endowed with enough information to proceed by proving the following main statement.

Theorem 1. An n- Σ -group is a strong ω -elongation by a $p^{\omega+n}$ -projective group if and only if it is a pillared group.

Proof. Write down $A[p^n] = \bigcup_{i < \omega} A_i, A_i \subseteq A_{i+1} \leq A[p^n]$ and $A_i \cap p^i A \subseteq A^1$ for all $i \geq 1$ along with $A/(P + A^1)$ a direct sum of cyclics for some existing $P \leq A[p^n]$. Furthermore, we observe that $A/A^1/(P + A^1)/A^1 \cong A/(P + A^1)$. Because $P \subseteq \bigcup_{i < \omega} A_i$, we deduce that $P = \bigcup_{i < \omega} (A_i \cap P)$ and thus $(P + A^1)/A^1 = \bigcup_{i < \omega} [(P_i + A^1)/A^1]$ by setting $P_i = A_i \cap P$. With the modular law in hand we compute that $[(P_i + A^1)/A^1] \cap p^i(A/A^1) = [(P_i \cap p^i A) + A^1]/A^1 = \{0\}$. That is why, appealing to [10], A/A^1 is a direct sum of cyclics. Finally, we conclude that A is pillared, in fact. The opposite implication is straightforward. □

As a non-trivial consequence, we obtain the following.

Proposition 2. An n- Σ -group is a strong ω -elongation of a summable group by a $p^{\omega+n}$ -projective group if and only if it is a summable pillared group.

Proof. Assume that A is the group in question. Since A is a Σ -group and A^1 is summable, it follows from our criterion for summability in [5] that A has to be summable as well. Moreover, we can also precise this statement by using Theorem 1 which ensures that A must be even pillared.

The converse implication is self-evident since A as summable assures that A^1 is so, and pillared groups are both $n-\Sigma$ -groups and strong ω -elongations by $p^{\omega+n}$ -projective groups by taking P = 0.

Remark 3. As the referee indicated "summable" could be replaced by any property of groups, $\mathcal{P}(G)$, such that $\mathcal{P}(G)$ holds whenever $\mathcal{P}(G^1)$ holds and G/G^1 is a direct sum of cyclics. For example, $\mathcal{P}(G)$ might be "G is totally projective" (see for instance [3]) or "G is fully starred".

As an immediate consequence, we derive the following assertion.

Corollary 4. Suppose A is a Σ -group which is a strong ω -elongation of a summable group by a $p^{\omega+n}$ -projective group and the $(\omega + m)$ -th Ulm-Kaplansky invariants of A are zero for each m so that $0 \le m < n-1$ if n > 1. Then A is a summable pillared group.

Proof. The vanishing of the Ulm-Kaplansky invariants gives that $A[p^n] = H[p^n] \oplus A^1[p^n]$ where H is a high subgroup of A. Since it is a direct sum of cyclics, one may write $H[p^n] = \bigcup_{i < \omega} H_i, H_i \subseteq H_{i+1} \leq H[p^n]$ where $H_i \cap p^i H = 0$. Furthermore, we obtain that $A[p^n] = \bigcup_{i < \omega} A_i$ by putting $A_i = H_i \oplus A^1[p^n]$. Knowing this, we compute with the help of modular law that $A_i \cap p^i A \subseteq A^1 + H_i \cap p^i A = A^1 + H_i \cap p^i H = A^1$ since H is pure in A. Consequently, A is an n- Σ -group and thus Proposition 2 works to infer the claim.

Before stating and proving our next result as well as a new proof of the previous corollary, we proceed with an assertion of independent interest (see [9] for more details).

Proposition 5. A group of length not exceeding $\omega + n - 1$ is an $n-\Sigma$ -group if and only if it is a direct sum of countable groups.

Proof. The sufficiency is obvious (see [4]). As for the necessity, we observe that, for such a group A, $A^1 \subseteq A[p^{n-1}]$ and hence $(A/A^1)[p] = \bigcap_{i < \omega} (p^i A + A[p])/A^1 \subseteq A[p^n]/A^1$ since $p(\bigcap_{i < \omega} (p^i A + A[p])) \subseteq A^1$. Moreover, we write $A[p^n] = \bigcup_{i < \omega} A_i, A_i \subseteq A_{i+1} \leq A[p^n]$ and $A_i \cap p^i A \subseteq A^1$. Consequently, $(A/A^1)[p] = \bigcup_{i < \omega} S_i$, where $S_i = ((A_i + A^1)/A^1) \cap (A/A^1)[p]$. But with the modular law at hand we have $S_i \cap p^i (A/A^1) = S_i \cap (p^i A/A^1) = [(A_i + A^1) \cap p^i A]/A^1 =$ $(A_i \cap p^i A + A^1)/A^1 = \{0\}$, whence A is pillared. Referring to [11], because A^1 is bounded, we derive the desired claim. \Box

We now intend to prove the following

Corollary 6. A group is an $n-\Sigma$ -group if and only if one (and hence each) of its $p^{\omega+n-1}$ -high subgroups is a direct sum of countable groups.

Proof. Let A be such a group and H its $p^{\omega+n-1}$ -high subgroup. In [4] we showed that A is an $n-\Sigma$ -group precisely when H is an $n-\Sigma$ -group. Henceforth, we wish apply the preceding Proposition to infer the claim.

Employing the last statement we can verify once again the validity of Corollary 4 because it is readily checked that a subgroup Hof A is p^{ω} -high (i.e. high) in A if and only if H is $p^{\omega+n-1}$ -high in A whenever the $(\omega + m)$ -th Ulm-Kaplansky invariants of A are zero for $0 \le m < n - 1$, that is $(p^{\omega}A)[p] = \cdots = (p^{\omega+n-1}A)[p]$.

Imitating [12], a group A is said to be a strong $(\omega + n - 1)$ elongation of a summable group by a totally projective group if $p^{\omega+n-1}A$ is summable and there is a nice subgroup $N \leq A$ such that $N \cap p^{\omega+n-1}A = 0$ and $A/(N \oplus p^{\omega+n-1}A)$ is totally projective.

So, we are now in a position to prove our final claim which is parallel to Proposition 2 (for the corresponding variant of totally projective groups see [8]).

Theorem 7. An n- Σ -group is a strong $(\omega + n - 1)$ -elongation of a summable group by a totally projective group if and only if it is a summable pillared group.

Proof. Observe that $A/(N \oplus p^{\omega+n-1}A) \cong A/p^{\omega+n-1}A/(N \oplus p^{\omega+n-1}A)/p^{\omega+n-1}A$ is totally projective. Moreover, since $N \cap p^{\omega+n-1}A = 0$, N is contained in some $p^{\omega+n-1}$ -high subgroup of A, say H. In accordance with Corollary 6, H is totally projective of length at most $\omega + n - 1$. Hence by [13] we may write that $H = \bigcup_{i < \omega} H_i$, where $H_i \subseteq H_{i+1} \leq H$ and all H_i are height-finite in H, whence in A because H is isotype in A. Therefore, $(N \oplus p^{\omega+n-1}A)/p^{\omega+n-1}A = \bigcup_{i < \omega} [((H_i + p^{\omega+n-1}A)/p^{\omega+n-1}A) \cap ((N \oplus p^{\omega+n-1}A)/p^{\omega+n-1}A)]$. Likewise, it is not hard to verify that $(H_i + p^{\omega+n-1}A)/p^{\omega+n-1}A$ are height-finite in $A/p^{\omega+n-1}A$. Moreover, $(N \oplus p^{\omega+n-1}A)/p^{\omega+n-1}A$ is nice in $A/p^{\omega+n-1}A$ by consulting with [12] and [11]. Thus, in view of [6] or [7], we deduce that $A/p^{\omega+n-1}A = A/p^{\omega+n-1}A/p^{\omega}(A/p^{\omega+n-1}A)$ should be a direct sum of cyclics in virtue of [11]. That is why, A is pillared.

On the other hand, $p^{\omega+n-1}A$ being summable implies that so is $p^{n-1}(p^{\omega}A)$ which implies by [5] that $p^{\omega}A$ is summable. Finally, by

what we have just shown above, again [5] applies to conclude that A has to be summable, thus it is summable pillared as asserted.

As an immediate consequence for n = 1 we yield the following (compare with Corollary 4).

Corollary 8. A Σ -group is a strong ω -elongation of a summable group by a totally projective group if and only if it is a summable pillared group.

Remark 9. It is well-known that there is a Σ -group which is not pillared; in fact it is well-known that there exists a Σ -group with unbounded torsion-complete first Ulm factor. Even more, there is a Σ -group which is not an n- Σ -group for any $n \ge 2$ (see [2], [3] and [4] too). The above Corollaries 4 and 8 provide us with some natural conditions under which a Σ -group is a pillared group and thereby an n- Σ -group. These restrictions on the Ulm-Kaplansky invariants are essential and cannot be dropped off (we note once again that in [2] and [3] it was constructed a $p^{\omega+2}$ -projective Σ -group with nonzero (ω +1)-th Ulm-Kaplansky invariant which is not a 2- Σ -group, whence it is not pillared).

The expert referee suggests the author the following original approach to summarize in one single statement Theorems 1 and 7. To begin, we elementarily observe that a group A is pillared, i.e., $A/p^{\omega}A$ is a direct sum of cyclics, if and only if for some $n < \omega$ (and hence for all such n) $A/p^{\omega+n}A$ is a direct sum of countables. It appears that both main theorems are consequences of the following central statement, which is essentially Theorem 7 for the case of groups of length at most $\omega + n$ (for lengths less than or equal to $\omega + n - 1$ see Proposition 5).

Theorem 10. Suppose $0 < n < \omega$ and H is an $n-\Sigma$ -group of length not exceeding $\omega + n$. Then H is a direct sum of countables if and only if it has a nice subgroup K such that $K \cap p^{\omega+n-1}H = 0$ and H/K is a direct sum of countables.

This formulation has several other advantages: First, in this form, Theorem 1 and Theorem 7 follow by considering $H = A/p^{\omega+n}A$, and either, in Theorem 1, $K = (P + p^{\omega+n}A)/p^{\omega+n}A \cong$

 $P/(P \cap p^{\omega+n}A)$, or in Theorem 7, $K = (N + p^{\omega+n}A)/p^{\omega+n}A \cong N/(N \cap p^{\omega+n}A)$.

Second, it visually clarifies that what we are looking at this is a generalization from the case of groups of length ω , considered by Dieudonné, to those of length $\omega + n$ considered here.

Third, this new version proposes a proof that more clearly indicates the relationship to Dieudonné's theorem from [10]. So, we come to

Sketch of proof of Theorem 10. Note that in virtue of [11] we have that H is a direct sum of countables if and only if $H/p^{\omega}H$ is a direct sum of cyclics, since $p^{\omega}H$ is bounded by p^n . Given such a nice subgroup K, then similarly to above the hypothesis that H is an $n-\Sigma$ -group implies that Dieudonné's theorem applies to the exact sequence

$$0 \to K/(K \cap p^{\omega}H) \to H/p^{\omega}H \to H/K/p^{\omega}(H/K) \to 0,$$

where $K/(K \cap p^{\omega}H) \cong (K + p^{\omega}H)/p^{\omega}H$ and $H/K/p^{\omega}(H/K) = H/K/(K + p^{\omega}H)/K \cong H/(K + p^{\omega}H) \cong H/p^{\omega}H/(K + p^{\omega}H)/p^{\omega}H$, to show that $H/p^{\omega}H$ is a direct sum of cyclics, thus showing that H is, indeed, a direct sum of countables, as required.

We close with the following challenging

Problem. Decide whether or not a group is an n- Σ -group for every $1 \leq n < \omega$ if and only if it is pillared, i.e., its first Ulm factor is a direct sum of cyclics.

Acknowledgment. The author would like to thank the specialist referee for his valuable organizational suggestions led to improving the present manuscript.

References

- P.V. DANCHEV, Note on elongations of summable p-groups by p^{ω+n}projective p-groups, Rend. Istit. Mat. Univ. Trieste **38** (2006), 45–51.
- [2] P.V. DANCHEV, Notes on $p^{\omega+1}$ -projective abelian p-groups, Comment. Math. Univ. St. Pauli 55 (2006), 17–27.

- [3] P.V. DANCHEV, Note on elongations of totally projective p-groups by $p^{\omega+n}$ -projective p-groups, Liet. Matem. Rink. **46** (2006), 180–185.
- [4] P.V. DANCHEV, Primary abelian n-Σ-groups, Liet. Matem. Rink. 47 (2007), 155–162.
- P.V. DANCHEV, Commutative group algebras of summable p-groups, Commun. Algebra 35 (2007), 1275-1289.
- [6] P.V. DANCHEV, Generalized Dieudonné and Honda criteria, Algebra Colloq. 15 (2008).
- [7] P.V. DANCHEV, Generalized Dieudonné and Hill criteria, Portugal. Math. 65 (2008), 121–142.
- [8] P.V. DANCHEV, On elongations of totally projective groups and α - Σ -groups, submitted.
- [9] P.V. DANCHEV AND P.W. KEEF, *Generalized Wallace theorems*, to appear in Math. Scand.
- [10] J.A. DIEUDONNÉ, Sur les p-groupes abéliens infinis, Portugal. Math. 11 (1952), 1–5.
- [11] L. FUCHS, Infinite Abelian Groups, I and II, Mir, Moskva (1974) and (1977) (in Russian).
- [12] L. FUCHS AND J.M. IRWIN, On elongations of totally projective pgroups by $p^{\omega+n}$ -projective p-groups, Czechoslovak Math. J. **32** (1982), 511–515.
- [13] P.D. HILL AND W.D. ULLERY, Commutative group algebras of mixed groups, Commun. Algebra 25 (1997), 4029–4038.
- [14] K. HONDA, Realism in the theory of abelian groups III, Comment. Math. Univ. St. Pauli 12 (1964), 75–111.
- [15] L.Y. KULIKOV, On the theory of abelian groups of arbitrary power II, Mat. Sb. 16 (1945), 129–162 (in Russian).
- [16] R.J. NUNKE, Purity and subfunctors of the identity, Scott, Foresman and Co., Chicago, Illinois U.S.A. (1963), pages 121–171.

Received March 2, 2007.