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On Approximation of Linear Second

Order Elliptic Partial Differential

Equations with Analytic Coefficients

Devendra Kumar (∗)

Summary. - The linear second-order elliptic differential equation
with real-valued coefficients that are entire functions on ℑ2 and
whose coefficient c(x, y) ≤ 0 on the disk D : x2 + y2 ≤ 1 is given
by

∆2v + a(x, y)vx + b(x, y)vy + c(x, y)v = 0, (x, y)ǫE2.

The ideas of Bernstein and Saff have been applied by McCoy [9,
10] to study the singularities of certain second-order elliptic equa-
tions with singular coefficients. These results contains calcula-
tions of order and type of entire function potentials in terms
of best polynomial approximation errors. Here some inequali-
ties concerning order and type for the given equation have been
obtained.

1. Introduction

The linear second order elliptic partial differential equation be given
in normal form

L(v) =
∂2v

∂x2
+

∂2v

∂y2
+ a(x, y)

∂v

∂x
+ b(x, y)

∂v

∂y
+ c(x, y)v = 0 (1)
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with real analytic coefficients that are entire functions on ℑ2 and
whose coefficient c(x, y) ≤ 0 on the disk D : x2 + y2 ≤ 1 are con-
sidered here. There are so many applications of the singularities
of solutions to linear elliptic partial differential equations in several
areas of mathematical physics [5, 7], for example, in potential scat-
tering. Using function theoretic methods, R.P. Gilbert and D.L.
Colton [8] determined necessary and sufficient conditions concerning
the location of singularities of regular solution v in terms of corre-
sponding information for a unique associated analytic function f on
one complex-variable.

Using the standard procedure [1, 7, 8] the functions a(x, y), b(x, y)
and c(x, y) analytically continue as a(z, z∗), b(z, z∗) and c(z, z∗) by
change to the hyper - complex coordinates z = x + iy, z∗ = x − iy
for (x, y)ǫℑ2, reducing equation (1) to a complex valued hyperbolic
equation

L(U) =
∂2U

∂z∂z∗
+A(z, z∗)

∂U

∂z∗
+B(z, z∗)

∂U

∂z
+C(z, z∗)U

= 0, (2)

U(z, z∗) = v [(z + z∗)/2, (z − z∗)/2i]

A(z, z∗) = [a(z, z∗) + ib(z, z∗)] /4

B(z, z∗) = [a(z, z∗) − ib(z, z∗)] /4

C(z, z∗) = c(z, z∗)/4

and

V (z, z∗) = U(z, z∗) exp

{

∫ z∗

0
A(z, ζ)dζ − h(z)

}

for an arbitrary entire function h gives the Bergman canonical form
of equation (2) [1, 8],

β(V ) =
∂∗V

∂v∂z∗
+ D(z, z∗)

∂V

∂z∗
+ F (z, z∗)V = 0, (3)

F = Az + AB − C

D = h′ −

∫ z∗

0
Aζdζ + B. (4)

In view of [8] we have that regular V has a local representation
V = w[f ] about the origin that is defined from a unique w−associate
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analytic function f = f(z) by the integral operator w[f ],

v(z, z∗) = w[f(σ)] =

∫

L
E(z, z∗, t)f(σ)dµ(t),

σ = z(1 − t2)/2, dµ(t) = dt/(1 − t2)1/2

where L is the contour t = eiθ from −1 to +1. The Bergman
E−function follows

E(z, z∗, t) = 1 +
∞
∑

n=1

t2nzn
∫ z∗

0
P (2n)(z, ζ)dζ, P (2)

= −2F, (5)

(2n + 1)P (2n+2) = −2

[

P (2n)
z + DP (2n) + F

∫ z∗

0
P (2n)dζ

]

, (6)

n = 1, 2, · · ·. The principal branch of the function element V (z, z∗)
continues analytically from its initial domain of definition by contour
deformation to a (larger) domain of associated as given in the “En-
velope Method” [5, 6]. Using this method, Gilbert and Colton [8,
Theorem 1] show that the (principal branch) of V (z, z) is singular
at z = α if and only if, the w-associate f is singular at z = α/2.

Now first we define real valued rational functions of type (n, v)
as

rn,v(z)pn(z)/qv(z), n, v = 0, 1, · · · ,

the ratio of real-valued relatively prime polynomials of degree n and
v. It is clear that functions rn,0 are simply the polynomials pn(z).
Corresponding to w−associates the multi-valued function elements
are

ϕn,v(z, z∗) = w[pn(σ)/qv(σ)],

and

φn(z, z∗) = w[pn(σ)]

whose principal branches are selected to approximate V (z, z∗).
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Further we define (mini-max) best approximation error using
Chebyshev norms

en,v(f) = inf {||f − rn,v|| : rn,vǫRn,v} ,

||f − rn,v|| = sup {|f(z) − rn,v(z)| : zǫD} ,

En,v(V ) = inf {||V − ϕn,v|| : ϕn,vǫRn,v} ,

||V − ϕn,v|| = sup
{

|V (z, z∗) − ϕn,v(z, z∗)| : (z, z∗)ǫD2
}

,

n, v = 0, 1, · · · ,D2 = D ×D and the errors in the best ′′polynomial′′

approximates

en(f) = en,0(f), En(V ) = En,0(V ), n = 0, 1, · · ·

where

Dδ {zǫC : |z| ≤ δ} with D1 ≡ D

and

Rn,v = {ϕn,v : ϕn,v = w[rn,v], rn,vǫRn,v}

Pn = {φn : φnǫRn,0} .

The singularities of V (z, z) : β(V ) = 0. The study of the singu-
larities of V and U reveals equivalence because V (z, z∗) is singular
at (z0, z

∗
0)ǫℑ2 if and only if, U(z, z∗) is singular at (z0, z

∗
0). Further-

more, z∗ = z if and only if. (x, y)ǫE2 so the singularities of v may be
studied by noting those of V (z, z). So we shall recognize those entire
function element V whose analytic continuations from their initial
domains of definition have no singularities located at finite distances
from the origin. It follow via a function-theoretic extension of the
Bernstein theorem so that we select a polydisk as the initial domain
of definition.

The basis for this analysis is the Bergman and Gilbert Integral
Operator Method [1, 3, 5, 6] which extends the classical theorems of
S.N. Bernstein [2, 13] and E.B. Saff [12] from analytic function the-
ory. Those classical results analyze the polar singularities of analytic
f via approximation methods in the same way that the Hadamard
and Mandelbrojt theorems [4] analyze the polar singularities of f via
its Taylor’s coefficients.



ON APPROXIMATION OF LINEAR etc. 363

The Hadamard and Mandelborjt coefficient theorems have been
extended to solutions of various classes the partial differential equa-
tions [3, 5, 6] via the Integral Operator Method. The ideas of Bern-
stein and Saff have been applied [9-11] along with these methods to
study the singularities of certain second order elliptic partial differ-
ential equations with singular coefficients. Those results also contain
calculations of order and type of entire function potentials in terms
of best polynomial approximation errors. Here in this paper we shall
obtain some inequalities concerning order and type of entire function
element V (z, z) in terms of approximation errors defined above. Our
results and approach are different from those of P.A. McCoy [9-11].

Now we define the growth parameters such as order, lower order,
type and lower type of entire function element V (z, z) as

ρ(V )
λ(V )

= lim
δ→∞

sup
inf

log log M(δ, V )

log δ
(7)

T (V )
t(V )

= lim
δ→∞

sup
inf

log M(δ, V )

δρ(V )
. (8)

Similarly the order ρ, lower order λ, type T and lower type t of
the associated entire function f are defined as

ρ(f)
λ(f)

= lim
δ→∞

sup
inf

log log m(δ, f)

log δ
(9)

T (f)
t(f)

= lim
δ→∞

sup
inf

log m(δ, f)

δρ(f)
(10)

where

M(δ, V ) = sup
{

|V (z, z)| : (z, z)ǫD2
}

m(δ, f) = sup {|f(z)| : zǫDδ} .

2. Auxiliary Results

Lemma 2.1. Let V (z, z∗) be a regular solution of β(V ) = 0 on the
polydisk D2. If the function element V (z, z) has an analytic contin-
uation as an entire function solution then there exists a sequence of
mini-max polynomials {p∗n} such that

||f(z) − p∗n(z)|| ≤ K(β)m(β, f)(5/4β)n, β > 5/4, n ≥ 0. (11)
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Proof. For V (z, z∗) a regular solution of β(V ) = 0 on the polydisk
D2, we assume that the function element V (z, z) has analytic con-
tinuation as an entire function.

Let p∗n be the mini-max polynomial for en(f) and ϕ∗
n = w[p∗n].

The entire function f−p∗n expands on [−1+1] in a series of Chebyshev
polynomials

Tn(z) =
1

2

[n/2]
∑

k=0

n

n − k

(

n − k
k

)

(2z)n−2k , n = 0, 1, 2, · · ·

and continue analytically as

f(z) − p∗n(z) = 2
∞
∑

k=n+1

αkTk(z), αk = αk(f)

to the ellips

Eβ ≡ {zǫC : |z − 1| + |z + 1| < 2β} , β > 4.

The Chebyshev coefficients αk = αk(f) defined as contour inte-
grals of f over the boundary ∂Eβ are defined as

|αk| ≤ M (β, f)β−k, k = 0, 1, 2, · · · ,

where

M (β, f) = sup
{

|f(z)|, zǫEβ

}

.

We have

en(f) = ‖f(z) − p∗n(z)‖ ≤ sup







∣

∣

∣

∣

∣

∣

2
∞
∑

k=n+1

αkTk(z)

∣

∣

∣

∣

∣

∣







≤ 2
∞
∑

k=n+1

|αk| sup |Tk(z)|

≤
2M(β, f)

(β − 1)

∞
∑

k=n+1

(5/4β)k

≤
2M(β, f)

(β − 1)
(2/β)n, β > 2.
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The right hand inequality can be improved as

∞
∑

k=n+1

(5/4β)k < (5/4β)n for β > (5/2).

Hence we have

‖f(z) − p∗n(z)‖ ≤
2M(β, f)

(β − 1)
(5/4β)n, n ≥ 0, β > 5/2. (12)

Now define D1 = {z : |z| ≤ β} then we have Eβ ⊂ D1. Hence

M(β, f) ≤ m(β, f). (13)

Using (13) in (12) we get the required result.

Lemma 2.2. Let V (z, z∗) be a regular solution of β(V ) = 0 on the
polydisk D2. Then the function element V (z, z) has an analytic con-
tinuation as an entire function solution if, and only if,

lim
n→∞

[En(V )]1/n = 0. (14)

Proof. Let V (z, z) has an analytic continuation as an entire func-
tion. By the application of the maximum principle and w−operator
with [8, Theorem 1], the equation

V (z, z) = w[f(σ)]

the function

V (z, z) − ϕn(z, z) = w[f(σ) − pn(σ)], n = 0, 1, · · ·

for each pnǫPn and ϕn = w[Pn]. As the function V − ϕn are regular
on D2, the contour L is homogeneous to L0 = t = eiθ : θ decrease
from π to 0 and |σ| ≤ 1 if (z, t)ǫD × L0. We have

|V (z, z∗) − ϕn(z, z∗) ≤

∫

L0

|E(z, z∗, t)‖f(σ) − pn(σ)|d|µ|(t)

≤ C(E)‖f − pn‖, n = 0, 1, 2, · · · ,

where

C(E) = sup

{
∫

L0

|E(z, z∗, t)|d|µ|(t) : |z|, |z∗| ≤ 1

}
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on D2. The constant C(E) is finite and E(z, z∗, t) is continuous on
D2 × L0, so we have

|‖V − ϕn‖| ≤ C(E)‖f − pn‖

and
En(V ) ≤ C(E)en(f), n = 0, 1, 2, · · · . (15)

Combining (11) with (15) we get

En(V ) ≤ C(E)K(β)m(β, f)(5/4β)nβ > 5/4, n ≥ 0 (16)

or

lim
n→

[En(V )]1/n ≤ 5/4βforβ > 5/4,

it gives the equation (2.4) as β → ∞.
Now for only if part, let V (z, z∗) be regular on D2 and assume

that the Bernstein limit equation (14) is satisfied. The function V
satisfies the Goursat data [1, 8],

V (z, 0) = g(z) =

∫

L0

f(σ)dµ(t), V (0, z∗) = g(0), zǫD.

The analytic function g is singular at z = 2α if, and only if, f is
singular at z = α [8]. To prove that V (z, z) is an entire function we
have to show same for g(z). We observe the identities

g(z) − pn(z) = V (z, 0) − ϕn(z, 0), zǫD

pnǫPn, and
‖g − pn‖ ≤ ‖V − ϕn‖ ≤ |‖V − ϕn‖| . (17)

In view of classical Benrstein theorem, we have if

εn(g) = inf {‖g − pn‖ : pnǫPn}

and

[εn(g)]1/n → 0 as n →, then

g = g(z) is entire. So using equation (17), we get the estimate

[εn(g)]1/n ≤ [En(V )]1/n , n = 1, 2, · · · .

Hence the proof is completed in view of our assumption.
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Lemma 2.3. Let V (z, z) has an analytic continuation as an entire
function solution of β(V ) = 0 with w−associate f . Then the order,
type, lower order and lower type of an entire function element V (z, z)
are less than or equal to the order, type, lower order and lower type
of associate f respectively.

Proof. Since function element V (z, z) has analytic continuation as
an entire function, by [8, Theorem 1], the same holds true for the
w−associate f = f(z) and we have

V (z, z) = b2[f(σ)].

The non-negativity and normalization of the measure leads di-
rectly to the bound of above equality

M(δ, V ) ≤ m(δ, f), δ > 0. (18)

Using the definition(7), (8), (9) and (10) with (18) the proof is
completed. In view of above result, we get

ρ(V ) ≤ ρ(f), λ(V ) ≤ λ(f), T (V ) ≤ T (f), t(V ) ≤ t(f).

3. Main Results

Now we shall prove our main theorems:

Theorem 3.1. The entire function element V (z, z) is of finite order
ρ(V ) if and only if

ρ(f) ≥ lim sup
n→∞

n log n

− log En(V )
. (19)

Proof. Let

lim sup
n→∞

n log n

− log En(V )
= µ.

First let 0 < µ < ∞. Then for arbitrary ε > 0, we have

En(V ) > n−n/(µ−ε) (20)
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for a sequence of values of δ → ∞.
Using Lemma 2.1 with (13), we have

log m(β, f) ≥ log M(β, f)

≥ log En(V ) + log(β − 1) − log 2 + n log(4β/5)

− log C(E) + n log(4β/5). (21)

For the best approximate right hand side should be maximum.
So we define the sequence βk = e[nk]

1/(µ−ε), k = 1, 2, · · ·. For βk ≤
β ≤ βk+1, k > k0 we have from (20),

log m(β, f) >
−nk log nk

(µ − ε)
+ log(βk − 1) − log 2

− log C(E) + nk log(4βk/5)

= nk log

(

4e

5

)

+ log(βk − 1) − log 2 − log C(E)

=

(

βk+1

e

)

log

(

4e

5

)

+ log(βk − 1) − O(1)

>

(

βk+1

e

)µ−ε

log

(

4e

4

)

(1 + o(1)).

Hence for k > k0,

log log m(β, f) > (µ − ε) log(βk+1) + O(1)

> (µ − ε) log β + O(1).

or

log log m(β, f)

log β
> (µ − ε) + o(1)

or

ρ(f) = lim sup
β→∞

log log m(β, f)

log β
≥ µ.

This inequality holds for µ = 0 and if µ = ∞ then ρ(f) = ∞. To
prove the only if part let

lim sup
n→∞

n log n

− log En(V )
= ρ(V ) (22)
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is finite and positive. From (17) we have that

εn(g) ≤ En(V ) (23)

From (22) for ε > 0 and N = N(ε) we get

En(V ) ≤ 1/nn/(ρ(V )+ε), n ≥ N(ε). (24)

Combining (23) with (24), gives

ε1/n
n (g) ≤ 1/nn/(ρ(V )+ε), n ≥ N(ε)

and limn→∞ ε
1/n
n (g) = 0. Therefore g continues analytically as an

entire function of finite order by classical Bernstein theorem. The
same is true for the V (z, z). Hence the proof is completed.

Theorem 3.2. The entire function element V (z, z) is of lower order
λ(V ) if and only if

λ(f) ≥ max
{nk}

lim inf
k→∞

nk log nk−1

− log Enk
(V )

Proof. For any sequence {nk}, let us assume that

lim inf
k→∞

nk log nk−1

− log Enk
(V )

= µ∗(nk) = µ∗.

Let µ∗ > 0. Then for 0 < ε < µ∗, we have

Enk
(V ) > [nk−1]

−nk/(µ∗−ε), k > k0(ε). (25)

Now define the sequence βk = e[nk−1]
1/(µ∗−ε), k = 1, 2, · · ·. For

βk ≤ β ≤ βk+1, k > k0, we have from Lemma 2.1 with (13), (25 and
after a simple calculation as in Theorem 3.1,

λ(f) = lim inf
β→∞

log log m(β, f)

log β
≥ µ∗.

The inequality obviously holds if µ∗ = 0. Since {nk} was any
increasing sequence, we obtain

λ(f) ≥ maxµ∗(nk) = max
{nk}

lim inf
k→∞

nk log nk−1

− log Enk
(V )

.

The only if part can be proved in a similar manner as in Theo-
rem 3.1. Hence the proof is completed.
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Theorem 3.3. Let V (z, z∗) be a regular solution of β(V ) = 0 on
the polydisk D2. Then the function element V (z, z) has an analytic
continuation as an entire function of order ρ(V ) and type T (V ) if
and only if

T (f)

M
≥ lim sup

n→∞

n

eρ(f)
[En(V )]ρ(f)/n, (26)

where M = (4/5)ρ(f).

Proof. Let the entire function element V (z, z) be of finite order ρ(V )
and type T (V ). Then the associate f is of order ρ(f) and type T (f)
such that ρ(V ) ≤ ρ(f) and T (V ) ≤ T (f). Let T (f) < ∞. For
arbitrary ε > 0, we have by (10)

log m(β, f) < (T (f) + ε)βρ(f), β > β0(ε).

From (17), for any n and all β > β0,

En(V ) < K(β)

(

5

4β

)n

exp[(T (f) + ε)βρ(f)].

The right and side should be minimum for

β =

{

(n + 1)

ρ(f)(T (f) + ε)

}1/ρ(f)

.

The value of β is compatible with the condition β > β0 for large
values on n. Hence we have

En(V ) ≤ (5/4)nK(β)

{

eρ(f)(T (f) + ε)

n + 1

}(n+1)/ρ(f)

.

Hence

lim sup
n→∞

n[En(V )]ρ(f)/n ≤ (5/4)ρ(f)eρT (f).

This inequality holds if T (f) = ∞.
To prove sufficiency, let V (z, z∗) be regular in polydisk D2 for

which (26) holds. Then we can see that

lim
n→∞

[En(V )]1/n = 0.
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From Lemma 2.2, we have

lim
n→∞

[εn(g)]1/n ≤ lim
n→∞

[En(V )]1/n,

which implies that

lim
n→∞

[εn(g)]1/n = 0.

Using classical Bernstein theorem we see that g(z) is entire func-
tion. By [13] V (z, z) also admits as an entire function. By (26) we
also have, for a given ε > 0,

n

eρ(f)
[En(V )]ρ(f)/n <

(

5

4

)ρ(f)

(T (f) + ε), n > n0.

Hence

lim sup
n→∞

n log n

− log En(V )
≤ ρ(f).

Also we have ρ(V ) ≤ ρ(f), T (V ) ≤ T (f), it follows that V (z, z)
is of finite order ρ(V ). That V (z, z) is of type T (V ) follows from the
necessary part. Hence the proof is completed.

Theorem 3.4. Let V (z, z∗) be a regular solution of β(V ) = 0 on
the polydisk D2. Then the function element V (z, z) has an analytic
continuation as an entire function of order ρ(V ) and lower type t(V )
if

t(f)

M
≥ lim inf

n→∞

n

eρ(f)
[En(V )]ρ(f)/n.

Proof. Let

lim inf
n→∞

n

eρ(f)
[En(V )]ρ(f)/n = η, o < η < ∞.

For arbitrary ε, 0 < ε < η and all sufficiently large n > n0 =
n0(ε), we have

En(V ) >

[

eρ(f)(η − ε)

n

]n/ρ(f)

.



372 D. KUMAR

From (17) we have for β > 5/4

m(β, f) ≥
1

C(E)K(β)

(

4β

5

)5

En(V )

>
1

C(E)K(β)

(

4β

5

)5 [eρ(f)(η − ε)

n

]n/ρ(f)

, n > n0.

Hence

log m(β, f) > n log(4β/5) +
n

ρ(f)
log{eρ(f)(η − ε)/n}

− log C(E) − log K(β). (27)

Let

n = ρ(f)(η − ε)

(

4β

5

)ρ(f)

.

Then for large values of β, n > n0, we have

log m(β, f) > (η − ε)

(

4β

5

)ρ(f)

− log C(E) − log K(β).

or

lim
n→∞

log m(β, f)

βρ(f)
> (η − ε)

(

4

5

)ρ(f)

− o(1).

or

t(f) ≥ η

(

4

5

)ρ(f)

or

lim inf
n→∞

n

eρ(f)
[En(V )]ρ(f)/n ≤

(

5

4

)ρ(f)

t(f).

If η = ∞ then t(f) is infinite. This inequality also holds if η = 0.

This completes the proof of Theorem 3.4.
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