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Summary. - We show that, for any prime p, a knot K in S3 is
determined by its p-fold cyclic unbranched covering. We also in-
vestigate when the m-fold cyclic unbranched covering of a knot
in S3 coincides with the n-fold cyclic unbranched covering of an-
other knot, for different coprime integers m and n.

1. Introduction

There is an extensive literature on the determination of knots in S3

by their p-fold cyclic branched coverings; for example, the case of
odd prime numbers p is considered in [20] for hyperbolic knots and
in [2] for arbitrary prime knots, the case of 2-fold branched coverings
is considered in [17], [13] and [11] (see also the survey [21]). On the
other hand, less seems to be known for the case of cyclic unbranched
coverings (that is, of the complements of the knots). For a knot K in
S3, we denote by Mp(K) the p-fold cyclic unbranched covering of its
complement M1(K) = S3−N(K) (S3 minus the interior of a regular
neighbourhood of the knot), so Mp(K) is a compact orientable 3-
manifold with a torus boundary. The basic case here is, of course,
the case p = 1 or the fact that a knot K in S3 is determined by its
complement ([9]). In the present paper, we study the case of primes
p > 1 and prove the following
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Theorem 1.1. For any prime p, a knot K in S3 is determined by its
p-fold cyclic unbranched covering Mp(K) (i.e., any other knot with
the same p-fold cyclic unbranched covering is equivalent to K).

Here two unoriented knots are equivalent if there is a diffeomor-
phism of S3 which maps one to the other. Concerning different
branching orders, we introduce the following:

Abelian construction. Let m and n be distinct positive integers.
Let K̄ be a knot in a lens space L which represents a generator of
π1(L) ∼= Zn, and denote by K the knot which is the preimage of K̄ in
the universal covering S3 of L. Similarly, let K ′ be the preimage of a
knot K̄ ′ in a lens space L′, representing a generator of π1(L

′) ∼= Zm,
in the universal covering S3 of L′. Suppose that K̄ and K̄ ′ have
homeomorphic complements L − N(K̄) = L′ − N(K̄ ′); then the m-
fold cyclic unbranched covering of K coincides with the n-fold cyclic
unbranched covering of K ′, i.e. Mm(K) = Mn(K ′) (both are equal to
a regular unbranched (Zm×Zn)-covering of L−N(K̄) = L′−N(K̄ ′)).

Concentrating mainly on the basic case of hyperbolic knots, the
following holds.

Theorem 1.2. (i) Let K be a hyperbolic knot and K ′ be any knot
in S3 such that Mm(K) = Mn(K ′), for coprime positive in-
tegers m and n. Then K and K ′ are obtained by the Abelian
Construction. The same remains true for arbitray knots K and
K ′ if m and n are different prime numbers.

(ii) Let M be a compact orientable 3-manifold whose boundary is a
torus and whose interior has a complete hyperbolic structure of
finite volume. There are at most three coprime positive integers
m such that M is the m-fold cyclic unbranched covering of a
knot K in S3.

We think that part (i) of Theorem 1.2 remains true for arbitrary
knots K and K ′ and coprime integers m and n. We note that the
present formulation of part (i) of Theorem 1.2 uses the recent ge-
ometrization of free cyclic group actions on S3 after Perelman ([14],
[15]); without this, one concludes that, in the Abelian Construction,
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L and L′ are 3-manifolds with finite cyclic fundamental groups whose
universal covering is S3.

Let K0 be a knot in S3 which admits two non-trivial lens space
surgeries L and L′, with π1(L) ∼= Zn and π1(L

′) ∼= Zm. The cores of
the surgered solid tori give two knots K̄ and K̄ ′ in the lens spaces
L and L′ whose complements coincide with the complement of K0

in S3. By the Abelian Construction one obtains two knots K and
K ′ in S3 such that Mm(K) = Mn(K ′) = Mmn(K0). Note also that
M1(K) = Mn(K0) and M1(K

′) = Mm(K0). Examples of hyperbolic
knots in S3 with two non-trivial lens space surgeries can be found in
[1], [6].

The case of different branching orders for cyclic branched cover-
ings has been considered in [18], [21] for hyperbolic knots, see also
[3]; one main difference is that the isometry group of such a cyclic
branched covering (a closed hyperbolic 3-manifold) may, in principle,
be much more complicated than that of a cyclic unbranched cover-
ing (a 3-manifold with torus-boundary). In particular, the situation
for cyclic branched coverings is not well understood in the case of
non-solvable isometry groups; for example, it is not clear which fi-
nite non-abelian simple groups may occur as groups of isometries of
a cyclic branched covering.

We thank S. Friedl, L. Paoluzzi and M. Scharlemann for helpful
correspondence, and A. Reid for bringing to our attention the refer-
ences [7] and [16] on the related topic of commensurability classes of
hyperbolic knot complements.

2. Proof of Theorem 1.1

We start with the following

Lemma 2.1. For a prime p, let G = Zp × Zp be a finite group
of orientation-preserving diffeomorphisms of a mod p homology 3-
sphere M (i.e., for homology with coefficients in the integers mod
p). Then either there are exactly two subgroups Zp of G with non-
empty fixed point set (two disjoint circles) or, if p = 2, all three
involutions in G may have nonempty fixed point set (three circles
intersecting in exactly two points).
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Proof. By Smith fixed point theory, G does not act freely, and each
element of G has empty or connected fixed point set (see [4], Theo-
rems 7.9 and 8.1). Let X be a nontrivial cyclic subgroup of G with
nonempty fixed point set K which is a circle. Because G is abelian,
K is invariant under the action of G. The projection Ḡ of G to
M̄ := M/X is a cyclic group leaving invariant the projection K̄ of
K. It is easy to see that also M̄ is a mod p homology 3-sphere, and
hence Ḡ has empty or connected fixed point set.

Suppose that there is another nontrivial cyclic subgroup X ′ 6= X
of G with nonempty fixed point set K ′ different from K. If K and K ′

intersect then they intersect in exactly two points and p = 2 (because
K is invariant under X ′), and consequently we are in the second case
of the Lemma. Hence we can assume that K and K ′ do not intersect.
Note that K ′ is invariant under X which acts as a group of rotations
on K ′. As the fixed point set of Ḡ is connected (a circle) it consists
of the projection of K ′. The preimage of this projection is exactly K ′

which implies that X and X ′ are the only nontrivial cyclic subgroups
of G with non-empty fixed point set. Thus we are in the first case
of the Lemma.

Now suppose that X is the only cyclic subgroup of G with
nonempty fixed point set. Then Ḡ acts freely on the mod p homology
3-sphere M̄ . Let N := M̄/Ḡ be the quotient and L the projection of
K̄ to N . Note that M−K is a regular unbranched covering of N−L,
with covering group G ∼= Zp × Zp. By [10, page 92], H1(N − L; Zp)
is isomorphic to Zp; this implies that N −L has no abelian covering
with covering group Zp × Zp which is a contradiction.

This completes the proof of Lemma 2.1.

Starting with the Proof of Theorem 1.1 now, the p-fold cyclic
unbranched covering M = Mp(K) of the knot K is a compact 3-
manifold whose boundary is a torus; we denote by C ∼= Zp the cyclic
covering group acting freely on M . Suppose that M is also the p-fold
cyclic unbranched covering of another knot K ′, i.e. M = Mp(K

′),
with covering group C ′ ∼= Zp. We denote by Bp(K) the p-fold cyclic
branched covering of K, so M = Bp(K) − N(K̃) where N(K̃) de-
notes the interior of a regular neighbourhood of the preimage K̃ of
K in Bp(K). The action of the covering group C on M extends to
an action of C on Bp(K) with fixed point set K̃, giving the covering



ON THE DETERMINATION OF KNOTS etc. 341

group of the p-fold cyclic branched covering of K which will be de-
noted also by C. Similarly, C ′ extends to the p-fold cyclic branched
covering Bp(K

′) of K ′ fixing the preimage K̃ ′ of K ′.
We will show that, up to conjugation, the covering groups C and

C ′ commute; Theorem 1.1 then follows from the following:

Lemma 2.2. Suppose that the covering groups C and C ′ commute,
generating a group G = C ⊕C ′ ∼= Zp ×Zp of diffeomorphisms of M .
Then the knots K and K ′ are equivalent.

Proof. The action of C ′ on M extends to a free action of C ′ on
the p-fold cyclic branched covering Bp(K) of K (unless C = C ′: in
this case, K and K ′ have homeomorphic complements and hence are
equivalent). We can assume that the actions of C and C ′ commute
also on Bp(K) and hence generate a group G = C ⊕C ′ ∼= Zp ×Zp of
diffeomorphisms of Bp(K).

The p-fold cyclic branched covering Bp(K) of a knot K in S3 is a
mod p homology 3-sphere (see e.g. [8]). By Lemma 2.1, there are ex-
actly two subgroups Zp of G with non-empty (connected) fixed point
set; one of these is C which fixes K̃, and we denote by Ã the fixed
point set of the other which is contained in M . Now G projects to
a group H ∼= G/C ∼= Zp of symmetries of (Bp(K), K̃)/C = (S3,K),
with non-empty fixed point set A disjoint from K (the projection of
Ã). Hence K has cyclic period p.

By the positive solution of the Smith conjecture, H acts by stan-
dard rotations on the 3-sphere, so S3/H is again the 3-sphere. The
group H acts by rotations along K and maps a meridian of K to
p disjoint meridians of K. Its fixed point set is the projection Ā
of Ã resp. A, so (S3,K) is the cyclic branched covering of (S3, K̄)
branched along the trivial knot Ā in S3.

Now (S3 − N(K))/H = S3 − N(K̄) = M/G, and by symmetry
and with analogous notation, (S3 − N(K ′))/H ′ = S3 − N(K̄ ′) =
M/G, so S3 − N(K̄) = S3 − N(K̄ ′) (where H ′ ∼= G/C ′ ∼= Zp).
Hence (S3, K̄ ′) is obtained from (S3, K̄) by 1/n-surgery on K̄, for
some integer n, and this surgery transforms also Ā into Ā′ (note
that the projections Ā and Ā′ of Ã ⊂ M coincide as subsets of
M/G = S3 − N(K̄) = S3 − N(K̄ ′)).

If the surgery on K̄ is trivial (i.e., n = 0) then K̄ ′ = K̄ and
Ā′ = Ā, so K ′ = K and Lemma 2.2 is proved in this case.
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In the case of non-trivial surgery, since the result of the surgery is
again the 3-sphere, K̄ has to be a trivial knot by [9], and hence K̄∪Ā
is a hyperbolic link of two unknotted components. By [12, Corollary
3], a non-trivial 1/n-surgery on one component K̄ of a link of two
unknotted components K̄ ∪ Ā transforms the other component Ā
into a non-trivial knot (obtained from Ā by twisting n times around
a spanning disk for K̄), and hence Ā′ is non-trivial. This contradicts
the Smith conjecture since the p-fold cyclic covering of S3 branched
along Ā′ is the 3-sphere.

This finishes the proof of Lemma 2.2.

The proof of Theorem 1.1 follows now from the following:

Lemma 2.3. Up to conjugation, the covering groups C and C ′ com-
mute.

Proof. Since the proof is much easier if K is a hyperbolic knot we
will give the proof first for this case.

(i) Suppose that K is hyperbolic. Then M is a hyperbolic 3-
manifold of finite volume, with one torus-boundary or cusp. It is a
consequence of Mostow rigidity and Waldhausen’s theorem for Haken
3-manifolds [19] that also K ′ is hyperbolic, and hence we can assume
that both cyclic covering groups C of K and C ′ of K ′ act by isome-
tries on M . The covering groups C and C ′ act freely on M , and
hence by euclidean rotations on the boundary torus of the hyperbolic
3-manifold M (corresponding to a cusp of the hyperbolic 3-manifold
M ; the rotations lift to translations of the euclidean horospheres cor-
responding to the boundary torus of M in the universal covering of
M). It follows that the groups C and C ′ of isometries of M commute
elementwise (because they commute on the boundary torus of M).

This finishes the proof of Lemma 2.3 and Theorem 1.1 in the case
where K is hyperbolic.

(ii) Now let K be an arbitrary knot. We will apply the methods in
[2] to show that C and C ′ commute, up to conjugation. We consider
the JSJ- or torus-decomposition of M and the graph Γ dual to this
decomposition; note that Γ is a tree since Bp(K) is a mod p homology
sphere. By the equivariant torus-decomposition, we can assume that
both C and C ′ respect the decomposition and are geometric on the
pieces of the decomposition (i.e., isometries on the hyperbolic pieces,
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fiber-preserving on the Seifert fibered pieces; these pieces correspond
to the vertices of the graph Γ, the decomposing tori to the edges).
Then C and C ′ induce a finite group G of automorphisms of the tree
Γ which fixes the vertex corresponding to the piece containing the
boundary torus of M . Let Γf denote the subtree of Γ whose vertices
and edges are fixed by every element of G. Now one shows as in [2]
that, up to conjugation by diffeomorphisms of M , one can assume
that C and C ′ commute elementwise on the submanifold Mf of M
corresponding to the subtree Γf of Γ (in [2], only the case of odd
primes p is considered; however, in our situation the methods work
equally well for p = 2).

Denote by Mc the maximal connected submanifold of M corre-
sponding to a subtree Γc of Γ containing Γf on which C and C ′

commute, up to conjugation by diffeomorphisms of M . If Mc = M
we are done, so suppose that Mc 6= M . Consider a boundary torus T
of Mc connecting Mc with a piece U of the decomposition of M−Mc.
By the proof of [2, Claim 9], we can assume that the orbit of T under
both C and C ′ consists of the same p tori (in all other situations,
commutativity of C and C ′ can be extended to the G-orbit of U ,
contradicting maximality of Mc). The torus T projects to a torus T̄
of the torus-decomposition of the complement of K which seperates
S3 into a solid torus (containing K) and a knot space (the comple-
ment of a knot, containing the projection of U); in particular, there
is a well-defined meridian-longitude system on T̄ , and also on each
torus of the G-orbit of T which is invariant under the actions of C
and C ′. Now one replaces the knot complement by a solid torus
such that one obtains again the 3-sphere, and similarly performs C-
and C ′-equivariant surgery on T and its images under C and C ′.
Moreover, if the piece of Mc containing T is hyperbolic, one does
the surgery such that the resulting 3-manifold is still hyperbolic and
the central curve of the added solid torus is a shortest geodesic; if it
is Seifert fibered, one creates an exceptional fiber of high order by
the surgery. Doing this for each such boundary torus T of Mc, one
obtains a 3-manifold M̂c with induced actions of C and C ′ which are
still the covering groups of two p-fold cyclic unbranched coverings
of two knots in S3; moreover, by construction C and C ′ commute
on M̂c. By Lemma 2.2, the two corresponding knots are equivalent,
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hence the actions of C and C ′ on M̂c are conjugate; by the choice
of the surgeries, the conjugating diffeomorphism restricts to Mc and
then extends to M , hence we can assume that the actions of C and C ′

coincide on Mc. Now by [2, Lemma 10] the actions of C and C ′ coin-
cide on M , up to conjugation, hence K and K ′ have homeomorphic
complements and are equivalent.

This finishes the proof of Lemma 2.3 and of Theorem 1.1 in the
general case.

3. Proof of Theorem 1.2

The proof is along similar lines. For the proof of part (i) of Theo-
rem 1.2, let M = Mm(K) = Mn(K ′) and denote by C ∼= Zm and
C ′ ∼= Zn the two covering groups. As in case (i) of the proof of
Lemma 2.3, we can assume that the covering groups act by hyper-
bolic isometries, commute and generate a group G = C ⊕ C ′ ∼=
Zm ⊕ Zn

∼= Zmn of isometries of M . Both groups C and C ′ extend
to the m-fold cyclic branched covering Bm(K) of K, and C fixes
pointwise the preimage K̃ of K. The group G act freely on M , and
the only non-trivial subgroup of G with non-empty fixed point set
in Bm(K) is C. Then G projects to a cyclic group H ∼= G/C ∼= Zn

acting freely on (Bm(K), K̃)/C = (S3,K), so H is a group of free
symmetries of K of order n.

Similarly, G projects to a group H ′ ∼= G/C ′ ∼= Zm acting freely
on (Bn(K ′), K̃ ′)/C = (S3,K ′). By the geometrization of free cyclic
group actions on S3, the quotients S3/H and S3/H ′ are lens spaces.
The quotients (S3,K)/H = (L, K̄) and (S3,K ′)/H ′ = (L′, K̄ ′) de-
fine knots K̄ and K̄ ′ in lens spaces L and L′ such that L −N(K̄) =
L′ − N(K̄ ′) = M/G, hence K and K ′ are obtained by the Abelian
Construction.

This finishes the proof of Theorem 1.2(i) in the case where K
is hyperbolic. Now let K be an arbitrary knot and assume that m
and n are different primes. We want to show that again the covering
groups of the two knots commute, up to conjugation; then the proof
finishes as in the hyperbolic case. Now, in the situation of different
primes m and n, the methods in [3] apply and as in the proof of case
(ii) of Theorem 1.1 one obtains commutativity on the submanifold
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Mf corresponding to the subtree Γf of Γ fixed by the two covering
groups, and then one pushes out commutativity to all of M (this is,
in fact, easier than in the situation of two equal primes considered in
[2] (as applied in the proof of Theorem 1.1) where in principle some
obstruction against commutativity may arise). We remark that these
methods probably can be generalized to prove Theorem 1.2(i) for the
case of arbitrary knots and arbitrary coprime integers.

For the proof of part (ii) of the theorem, suppose that M is the
ni-fold cyclic unbranched covering of knots Ki in S3, for pairwise
coprime positive integers n1, . . . , nα. Denoting by n = n1 . . . nα their
product, the manifold M has now a free action of G ∼= Zn. This G-
action on M induces a free action of Gi

∼= Zn/ni
on S3 − N(Ki)

which extends to a free action on S3. The quotient S3/Gi is a lens
space Li, with fundamental group π1(Li) ∼= Gi, which contains the
projection K̄i of Ki. Now Li − N(K̄i) = M/G, so all lens spaces Li

are obtained by surgery (Dehn filling) on M/G. By [5], there are
at most three surgeries on a compact hyperbolic 3-manifold of finite
volume and with a single torus-boundary resulting in lens spaces,
hence α ≤ 3.

This finishes the proof of Theorem 1.2.
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