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Strong Artin-Rees Property

in Rings of Dimension One and Two
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Summary. - Let (R,m) be a local noetherian ring and let N ⊆ M
be two finitely generated R-modules such that the dimM/N ≤ 1.
We give simple proof of the fact that there exists an integer h
such that InM ∩ N = In−h(IhM ∩ N), for all n ≥ h and for

all ideals I ⊂ R. We give upper bounds for such an integer h.

Moreover, we give two examples of rings of dimension two where

the property fails.

1. Introduction

Let R be a noetherian ring, I ⊂ R an ideal of R, and let N ⊆ M be
two finitely generated R-modules. By the Artin-Rees Lemma there
exists an integer h depending on I, M and N such that

InM ∩ N = In−h(IhM ∩ N), for all n ≥ h. (1)

A weaker property is often used in the applications, namely

InM ∩ N ⊂ In−hN, for all n ≥ h. (2)

Much work has been done to determine whether h can be chosen uni-
formly, in the sense that (1) or (2) would be satisfied simultaneously
for every ideal of a given family, see ([2], [3], [5], [4], [6], [10]).
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Following the definitions in [3], we say that the pair (N,M) has
the strong Artin-Rees property with respect to W with Artin-Rees

number h if (1) holds for all I ∈ W. Notice that in this case, every
integer bigger than h is an Artin-Rees number with respect to W
for the pair (N,M). We denote by arR(N,M ;W) the least of such
integers.

When W is the family of all ideals, we say that the pair (N,M)
has the strong Artin-Rees property and denote by arR(N,M) the
least of the Artin-Rees numbers.

Planas-Vilanova [6] proves that any pair (N,M) with
dim M/N ≤ 1 has the strong Artin-Rees property if R is an ex-
cellent ring. The proof comes down to the case of local rings. In this
note we give a simpler proof of the strong Artin-Rees property over
a one-dimensional local ring, with particular attention paid to upper
bounds for arR(N,M). Such bounds find application in the study of
other uniform Artin-Rees properties, see [7].

We also give an example of a family of ideals and two modules
N ⊂ M such that dim M/N = 2 for which there exists no integer h
such that (1) holds for all ideals in the family. If dimM/N = 3 the
strong Artin-Rees property was known to fail, see [10].

2. One-dimensional rings

In the rest of the paper (R,m, k) will denote a local noetherian ring
with maximal ideal m and residue field k.

We first show that it is enough to study the strong Artin-Rees
property with respect to the family of m-primary ideals. For this,
we first need a lemma.

Lemma 2.1. Let M be an R-module and let N1, N2 be two submodules

of M . There exists an h = h(N1 + N2 ⊆ M) such that

N1 ∩ (N2 + mnM) ⊆ (N1 ∩ N2) + mn−hN1,

for every n ≥ h.

Proof. By the Artin-Rees Lemma there exists h such that for every
n ≥ h the following holds:

mnM∩(N1+N2) = mn−h(mhM∩(N1+N2))⊂mn−h(N1+N2). (3)
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Then the following holds for n ≥ h:

N1 ∩ (N2 + mnM) = N1 ∩ (N2 + (mnM ∩ (N1 + N2))

= N1 ∩ (N2 + mn−h(mhM ∩ (N1 + N2)))

⊆ N1 ∩ (N2 + mn−h(N1 + N2))

⊆ N1 ∩ (N2 + mn−hN1)

⊆ N1 ∩ N2 + mn−hN1.

Remark 2.2. Notice that if h is an integer that satisfies Lemma 2.1,

then every bigger integer does as well.

Proposition 2.3. Let M be an R-module and N ⊂ M a submodule.

Let W be the family of m-primary ideals. Assume that (N,M) has

the strong uniform Artin-Rees property with respect to W. Then

arR(N,M) ≤ arR(N,M ;W).

Proof. Let h0 = ar(N,M ;W) and assume by contradiction that there
exists I ⊂ R and n ≥ h0 such that In−h0(Ih0M ∩ N) 6= InM ∩ N .

On the other hand, for all h >> 0 and for such a fixed n and h0,
the inclusions below hold. Inclusion (4) holds by the definition of h0,
inclusions (5) and (6) hold by expanding the powers of (I + mh).

InM ∩ N ⊆ (I + mh)nM ∩ N, (4)

⊆ (I + mh)n−h0((I + mh)h0M ∩ N), (5)

⊆ In−h0((I + mh)h0M ∩ N) + mhM, (6)

⊆ In−h0((Ih0 + mh)M ∩ N) + mhM, (7)

= In−h0((Ih0M + mhM) ∩ N) + mhM. (8)

Let h1 be an integer depending on (Ih0M + N) ⊆ M that satisfies
Lemma 2.1 with N1 = N , N2 = Ih0M . By Remark 2.2, we may
assume h1 ≥ n − h0 and obtain

(Ih0M + mhM) ∩ N ⊆ (Ih0M ∩ N) + mh−h1M,

for every h > h1. So for n ≥ h0 and h > h1, with h1 ≥ n − h0,

In−h0((Ih0M + mhM) ∩ N) + mhM (9)

⊆ In−h0(Ih0M ∩ N + mh−h1M) + mhM, (10)

⊆ In−h0(Ih0M ∩ N) + mh−h1+n−h0M + mhM, (11)

⊆ In−h0(Ih0M ∩ N) + mh−h1+n−h0M. (12)
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Putting together the right and the left end of the chain of inclusions
(3)–(11), we obtain that

InM ∩ N ⊆ In−h0(Ih0M ∩ N) + mh−h1+n−h0M,

for every h > h1. By taking the intersection of the right side
of the inclusion over all h > h1, we can conclude InM ∩ N ⊆
In−h0(Ih0M ∩ N). Since the reverse inclusion always holds, there
is equality In−h0(Ih0M ∩ N) = InM ∩ N , which contradicts the
assumption.

We also need another kind of reduction, see for example [3, (2.4)].

Lemma 2.4. Let (R,m, k) be a local noetherian ring. The exten-

sion R −→ R[x]
mR[x] is faithfully flat and R[x]

mR[x] has an infinite

residue field.

Let R → S be a faithfully flat extension. Let M be an R-module

and N ⊂ M a submodule. If (N⊗RS,M⊗RS) has the strong uniform

Artin-Rees property then arR(N ⊆ M) ≤ arS(N ⊗R S ⊆ M ⊗R S).

Proposition 2.5. Suppose (R,m, k) is a one-dimensional local

noetherian ring with infinite residue field. There exists an integer

r = r(R), such that for every m-primary ideal I there exists y ∈ I
so that In = yIn−1, for every n ≥ r.

Proof. First suppose that R is Cohen-Macaulay and let e be the
multiplicity of the ring. By [8, Chapter 3, (1.1)], we have that µ(I) ≤
e, where µ(I) denotes the minimal number of generators of I and I is
an arbitrary m-primary ideal. Therefore, µ(Ie) ≤ e < e + 1. Hence,
by [8, Chapter 2, (2.3)], there exists y ∈ I such that Ie = yIe−1, so
that for every n ≥ e we have In = yIn−1. Set r to be e.

Next suppose depth(R) = 0, and let 0 = q1 ∩ q2 · · · ∩ qs+1 be a
minimal primary decomposition of 0 where qs+1 is m-primary and
set J = q1 ∩ q2 · · · ∩ qs. Then R/J is Cohen-Macaulay and there
exists a h0 such that mh0J = 0. Let e1 be the multiplicity of R/J .
Then, by the above case, there exists a y ∈ I such that for every
n ≥ e1 we have In ⊆ yIn−1 + J and hence In ⊆ yIn−1 + In ∩ J , for
every n > e1. By [3, (4.2)], there exists a h1, depending just on R
and J , such that for every n ≥ h1 and every ideal I ⊂ R we have
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In ∩ J ⊂ In−h1J . Hence, for every n ≥ r = max{e1, h0 + h1} one
has the following inclusions:

In ⊆ yIn−1 + In

⊆ yIn−1 + In ∩ J

⊆ yIn−1 + In−h1J

⊆ yIn−1 + mh0J = yIn−1.

We are now ready to prove the main theorem. If M is a finite
length module we denote by ℓ(M) its length.

Theorem 2.6. Let (R,m, k) be a one-dimensional local ring. Then

every pair (N,M), with N ⊂ M , has the strong uniform Artin-Rees

property, and arR(N,M) ≤ max{r, ℓ(H0
m

(M/N))} + ℓ(H0
m

(M/N)),
where r = r(R) is an integer as in Proposition 2.5.

Proof. By Lemma 2.4, arR(N ⊆ M) ≤ arS(N ⊗R S ⊆ M ⊗R S), for
any ring extension R → S; thus we may assume that R has infinite
residue field. Let I be an m-primary ideal. Set h1 = ℓ(H0

m
(M/N))

and h = max{r, ℓ(H0
m

(M/N))} + ℓ(H0
m

(M/N)).
Assume first that M/N is Cohen-Macaulay. By Proposition 2.5

we can choose y ∈ I such that y is a non-zerodivisor in M/N , such
that for n > h = r,

InM ∩ N = yIn−1M ∩ N,

⊆ y(In−1M ∩ N), by the property of y,

⊆ I(In−1M ∩ N), since y ∈ I.

Now suppose that M/N is not Cohen-Macaulay and let M
′

/N =
H0

m(M/N). For every n ≥ h and every I ⊆ R we have:

InM ∩ N = InM ∩ M
′

∩ N, since N ⊂ M ′,

= In−r(IrM ∩ M
′

) ∩ N, since M/M ′ is Cohen-Macaulay,

⊆ In−r(IrM ∩ M
′

),

= In−r−h1Ih1(IrM ∩ M
′

), since n − r ≥ h1,

= In−r−h1(Ih1(IrM ∩ M ′) ∩ N), since Ih1M ′ ⊂ N,

⊆ In−r−h1(Ir+h1M ∩ M ′ ∩ N),

⊆ In−h(IhM ∩ N),
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where the last containment follows since r + h1 ≤ h and in general
In′

(Ih′

M ∩ N) ⊆ In′
−s(Is+h′

M ∩ N) for all n′, h′, and s ≤ n′.

3. Relation Type

Let I = (x1, . . . , xn) be an ideal in R. Map the polynomial ring, with
the standard grading, R[X1, . . . ,Xn] onto the Rees algebra R[It] by
sending Xi to xit. Let L be the kernel of this map. Then L is
an homogeneous ideal and the relation type of I is defined to be
the minimum integer h such that the ideal L can be generated by
elements of degree less than or equal to h. It is denoted by reltype(I).
This number does not depend on the choice of the minimal generators
of the ideal I.

Let I be an m-primary ideal in a Cohen-Macaulay local ring, it
holds that reltype(I) ≤ e, where e is the multiplicity of R, see [1].

The following lemma had been proved by Wang in [9] for param-
eters ideals. The same argument applies for every ideal, we include
it here for simplicity.

Lemma 3.1. Let (R,m, k) be a local ring and J be an ideal of R; let

R̄ denote R/J . Let I = (x1, . . . , xm) be an ideal of R and suppose

that reltype(IR̄) ≤ h, for some h > 0. Then for every n > h,

In ∩ J = In−h(Ih ∩ J).

Proof. Let n ≥ h and let x ∈ In ∩ J . Then there exists a poly-
nomial F in R[X1, . . . ,Xm], homogeneous of degree n, such that
F (x1, . . . , xm) = x. Modulo J , F̄ is a relation on the x̄i’s, so by
hypothesis there are polynomials Gi of degree h, and Hi, of degree
n−h, such that F̄ =

∑
ḠiH̄i in R̄[X1, . . . ,Xm] and Ḡi are relations

on the x̄i. Therefore, F =
∑

GiHi +K for some K ∈ R[X1, . . . ,Xm]
of degree n and coefficients in J . Since:

K(x1, . . . , xm) ∈ JIn ⊂ In−h(Ih ∩ J),

Gi(x1, . . . , xm) ∈ Ih ∩ J, and

Hi(x1, . . . , xm) ∈ In−h,

this shows that the element x = F (x1, . . . , xm) is in In−h(Ih∩J).
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Lemma 3.2. Let (R,m, k) a noetherian local ring. If J is an ideal

of R such that dim(R/J) ≤ 1 then (J,R) has the strong Artin-Rees

property.

Proof. If dim(R/J) = 0 then there exists a power of the maximal
ideal mh ⊂ J . Therefore, for n > h and for every ideal I we have
the following:

In ∩ J = In = IIn−1 = I(In−1 ∩ J).

Assume dim(R/J) = 1. By Lemma 2.1 it is enough to show that
(J,R) has the strong Artin-Rees property with respect to the family
of m-primary ideals. Suppose that R/J is Cohen-Macaulay; then
the conclusion holds by section 3 and by Lemma 3.1.

Suppose R/J has dimension one and it is not Cohen-Macaulay.
Let J ⊂ J ′ such that R/J ′ is Cohen-Macaulay and let h0 such that
mh0J ′ ⊂ J . By the Cohen-Macaulay case there exists an Artin-
Rees number h1 = h1(J

′ ⊂ R). We may assume h1 > h0. Let
h = h1 + h0.For every n ≥ h, the inequalities below follow.

In ∩ J = In ∩ J ′ ∩ J, since J ⊆ J ′,

= In−h1(Ih1 ∩ J ′) ∩ J, by definition of h1,

⊆ In−h1(Ih1 ∩ J ′)

= In−h1−h0Ih0(Ih1 ∩ J ′)

= In−h1−h0(Ih0(Ih1 ∩ J ′) ∩ J), since Ih0J ′ ⊆ J,

⊆ In−h(Ih ∩ J ′ ∩ J)

= In−h(Ih ∩ J).

Proposition 3.3. Let (R,m, k) be a local noetherian ring. Let M
be an R-module and N ⊆ M a submodule. Let J ⊂ ann(M/N) be an

ideal of R. If (J,R) and (N/JM,M/JM) have the strong uniform

Artin-Rees property, then

arR(N,M) ≤ max{arR(J,R), arR/J (N/JM,M/JM)}.

In particular, if dim(M/N) = 1 then arR(N,M) is bounded above by

max{arR(J,R),max{r(R/J), ℓ(H0
m

(M/N)} + ℓ(H0
m

(M/N)}.
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Proof. The second statement follows from the first and Theorem 2.6.
For the first part, let h = max{arR(J,R), arR/J (N/JM,M/JM)}.
Let φ : Rm → M , a surjection of a free module onto M . Denote by
K = ker(φ) and by L = φ−1(N), the pre-image of the submodule
N ⊂ M . Then, as shown in [2], it is enough to show that there exists
a h such that for every n ≥ h and for every ideal I ⊂ R, we have
InRm ∩ L = In−h(IhRm ∩ L). Therefore, without loss of generality
we may assume M is a free module.

Since h ≥ arR/J(N/JM,M/JM), for every n ≥ h and for every

ideal I, we have InM ∩ N ⊂ In−h(IhM ∩ N) + JM . Therefore,

InM∩N ⊂ In−h(IhM∩N)+JM∩InM = In−h(IhM∩N)+(In∩J)M,

where the last equality holds since M is a free module. Since h ≥
arR(J,R), we have In ∩ J = In−h(Ih ∩ J). Hence,

InM ∩ N = In−h(IhM ∩ N) + In−h(Ih ∩ J)M

= In−h(IhM ∩ N) + In−h(IhM ∩ JM)

⊂ In−h(IhM ∩ N), since JM ⊆ N.

4. Two-dimensional rings

The following example (see [10]), shows that the uniform Artin-Rees
property does not hold if dimM/N = 2.

Example. Let R = k[x, y, z]/(z2). Consider the following family
of ideals in R:

In = (xn, yn, xn−1y + z),

for every n ∈ N. Let J the ideal generated by z.

We want to show that In(In−1
n ∩ J) 6= In

n ∩ J , for every n ≥ 2. In
particular we will show that

x(n−1)2yn−1z ∈ In
n ∩ J but x(n−1)2yn−1z /∈ In(In−1

n ∩ J).

Denote x(n−1)2yn−1z by ξ.

The ideal In is a homogeneous ideal if we assign degree one to x
and y and degree n to z. With such a grading, ξ has degree (n−1)2+
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n−1+n = n2. Since x(n−1)2yn−1z = (xn−1y + z)n − (xn)n−1yn ∈ In
n

the first claim holds.

Suppose x(n−1)2yn−1z ∈ In(In−1
n ∩J). This remains true modulo

(x(n−1)2+1, yn). The ideal In−1
n modulo (x(n−1)2+1, yn)R is generated

by

{xn(n−1−i)(xn−1y + z)i | i = 0, 1, . . . , n − 1}.

Moreover,

xn(n−1−i)(xn−1y + z)i = xn(n−1−i)(x(n−1)iyi + x(n−1)(i−1)yi−1z)

= xn2
−n−iyi + xn2

−2n−i+1yi−1z.

But n2 − n− i ≥ (n− 1)2 + 1 for i ≤ n− 2. Therefore, In
n−1 modulo

(x(n−1)2+1, yn) is generated by

{x(n−1)2yn−1+x(n−1)(n−2)y(n−2)z, xn2
−2n−i+1yi−1z | i=1, . . . , n−2}.

Let

f = x(n−1)2yn−1 + x(n−1)(n−2)y(n−2)z,

gi = xn2
−2n−i+1yi−1z.

Let hf +
∑

higi be a homogeneous element of In−1
n ∩ J that

appears in the expression of ξ as element of In(In−1
n ∩ J). By degree

reasons we can assume h is not a constant polynomial.

Let m(x, y, z) be a homogeneous monomial of h. If z does not
divide m, then

m(x, y, z)f = m′(x, y)x(n−1)(n−2)+1y(n−2)z

or m(x, y, z)f = m′(x, y)x(n−1)(n−2)y(n−2)+1z;

if z does divide m then m(x, y, z)f = m′(x, y)x(n−1)2yn−1z, with
m′ possibly a unit. By a degree counting we can see that deg(hf) ≥
n2−n+1. Therefore, for every element a ∈ In−1 we have deg(ahf) >
n2 = deg(ξ). This shows a contradiction.

The following example refines the above in that now R is a re-
duced ring.
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Example. Let R = k[x, y, z]/xz. Consider the following family of
ideals:

In = (xn, yn, xn−1y + zn),

for every n ∈ N. Let J = (z). Again, we claim that In(In−1
n ∩ J) 6=

In
n ∩ J for every n ≥ 1. We will show that

zn2
∈ In

n ∩ J but zn2
/∈ In(In−1

n ∩ J).

Indeed, zn2
= (xn−1y + zn)n − (xn)n−1yn ∈ In

n and trivially zn2
∈ J .

On the other hand In−1
n is generated by:

{xn(n−1), x(n−1)2yn−1 + zn(n−1),

ynL, x(n−1)2+iyn−1−i | i = 1, . . . n − 1},

for some ideal L in R. Notice that if zn2
∈ In(In−1

n ∩ J) then this
also holds modulo yn. Moreover, if a homogeneous element

f(x, y)xn(n−1) + g(x, y, z)(x(n−1)2yn−1 + zn(n−1))

+

n−1∑

i=1

hi(x, y)x(n−1)2+iyn−1−i

is in J , writing g(x, y, z) = g′′(x, y) + zg′(x, y, z), we see that

f(x, y)xn(n−1)+g′′(x, y)x(n−1)2yn−1+
∑

hi(x, y)x(n−1)2+iyn−1−i = 0.

But if this is the case, since xz = 0 in R, we have

fxn(n−1) + g(x(n−1)2yn−1 + zn(n−1)) +
∑

hix
(n−1)2+i = zg′zn(n−1).

(13)
But zg′zn(n−1) is an homogeneous element of degree at least n2−n+1
and multiplication by any element in In increases the degree by n.
Therefore, any element in In(In

n ∩J) has degree at least n2 +1 while
zn2

has degree strictly smaller.
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