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Some Remarks
on Homogeneous Minimal Reductions

WALTER SPANGHER )

To the memory of prof. Fabio Rossi

SUMMARY. - Let I be a homogeneous ideal of a graded affine k-
algebra R such that there exists some homogeneous minimal re-
duction. We prove that the degrees (of a basis) of every homo-
geneous minimal reduction J of I are uniquely determined by I;
moreover if the fiber cone F(I) is reduced, then the last degree
of J 1is equal to the last degree of I. Moreover, if R is Cohen—
Macaulay and I is of analytic deviation one, with 0 < ht(I) := g,
it is shown that the first g degrees of J are equals to the first g
degrees of 1.

These results are applied to the ideals I of k[xo, ..., x4-1], which
have scheme—th. generations of length < ht(I) + 2.

Some examples are given.

1. Introduction

In [17] the author has proved the following:

THEOREM 1.1. Let I be a homogeneous quasi—complete intersection
ideal of a polynomial ring R = k[zg,...,zq—1] (k infinite field), with
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ht(I) = g < d—1. Then the degrees (of the bases) of all the scheme—
theoretic generations J of I of the minimal length (i.e. with p(J) =
g+ 1) are uniquely determined.

The main goal of this paper is to generalize this result, in two
directions.

First of all, we observe that, in the previous theorem, the subideal
J(C I) is a homogeneous minimal reduction of I. Therefore we want
to study the degrees (of the bases) of the homogeneous minimal
reductions J (if there exist) of a homogeneous ideal I. On the other
hand, we want also to work in a general positively graded affine k-
algebra (not only in a polynomial ring) where k is always an infinite
field.

The main result (Theorem 2.4) gives the uniqueness of the de-
grees of the (bases of the) homogeneous minimal reductions in a
general k-algebra. Moreover, inspired by the results of Aberbach
and Huneke in [1] on the special reductions and by the formula of
Johnson [11, Thm.5], we can improve the cited theorem in [17], for
equidimensional, generic complete intersection ideal I of analytic
deviation one in a graded Cohen—Macaulay k-algebra; but, for a
complete individuation of the degrees of the minimal homogeneous
reductions of I we need the reducedness of the fiber cone F(I).

In 3 we apply these results to the ideals I of k[zg, ..., z4_1] which
are quasi—complete intersections or which have some scheme—th. gen-
eration of length ht(I) 4 2; at last, several examples and counterex-
amples are given.

Throughout this paper, unless stated otherwise, we denote by
R a positively graded d-dimensional affine k—algebra where k is an
infinite field; all ideals will be assumed to be homogeneous, and m
denotes the maximal homogeneous ideal of R. We define F(I) =
D2, If/mI* (with I° = R) to be the fiber cone of I; we denote
with f¢ the element f modulo mI of [F(I)];, where f € I. The fiber
cone F(I) with respect to the homogeneous ideal I has a natural
bigrading on it, and the graded piece of degree (r, s) in this bigrading
is [I"]s/[mI"]s.

We can consider the local ring (A = Ry, n = my,) and the ideal
a := Iy; there exist a canonical isomorphism between I°/mI° and
a®/na® for every s and such that to f¢ correspond (f/1)° where
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f € I; moreover, we have also a graded isomorphism between F(I)
and the classical fiber cone ring F'(a). In [15] the reader can find the
definitions of reduction, minimal reduction, analytic spread and its
properties; therefore, the Krull-dimension dim(F'(I)) is the analytic
spread [(I) of I (or of a). We denote by ad(I) the analytic deviation
of I (i.e. ad(I) :=I(I) — ht(I)).

We also need to observe that a homogeneous ideal I may have no
homogeneous minimal reductions (i.e. its minimal reductions may
be all non-homogeneous). The analytic spread is a local concept,
but the homogeneous minimal reductions - when they exist - possess
many good properties. On the other hand, a subideal J(C I) with
J=(f1,-..,fs) is a reduction of I iff dim F'(I)/(f?,...,f2) =0.

We will write p(7) for the minimal number of generators of the
ideal I, o(I) for the minimal number of the scheme-theoretic gen-
erations of I, po(I) for the minimal number of the punctured gen-
erations of a := Iy (see [17]). An unmized ideal is an ideal without
embedded components and whose minimal primes all have the same
height. We say that I has some property generically if it has that
property locally at each p € Min(/). We say that a homogeneous
ideal I of R has some property locally if it has that property locally
at each p € Proj(R). For a basis of I we mean a minimal system of
generators of I. We recall that grade([l) is the length of a maximal
R-(regular) sequence in I.

Let I C R be a homogeneous ideal with g := ht(I); we say that
I is a quasi complete intersection (q.c.i. for short) if I is unmixed,
generic complete intersection and o(I) = g + 1.

Our general reference for the paper is [14].

REMARK 1.2. In this paper, several propositions (for ideal-reductions)
can be generalized for reduction of modules, following the existing
(last and not) literature.

2. On the degrees of homogeneous minimal reductions

Throughout this section, let I be a homogeneous ideal of the d—
dimensional graded affine k—algebra R (where k is an infinite field)
with analytic spread | := (), p := u(I), o := o(I) and we set
di < ... < d, for the sequence of the degrees (of a basis) of I.
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LeEmMA 2.1. If J = (f1,..., fi) is a homogeneous minimal reduction
of I where deg(f;) = §; with 61 < ... < 0y, then:

(i) if R or F(I) is reduced, then & = d ;

(ii) if J' = (fi',..., fi') is another homogeneous minimal reduction
of I where deg(fi') =6 and 61" < ... <6/, we have &, = 61’
and 8, = /. Moreover, if F(I) is reduced, then §; = d,,.

Proof. (i) We recall that F'(.J) is a subring of F(I), both bigraded
k—algebras, and that F'(I) is integral over F'(J). We can con-
sider a bihomogeneous relation of integral dependence of ¢°
over F(J) (where g € I\ ml with deg(g) = d1) : (¢°)" +
b1(g°)" ' +...+b, = 0 where b; € F(J) with deg(b;) = (i, id,).
If 1 > dy, then we have that all b = 0 and so (g°)" = 0, i.e.
g" € mI™. But, if F(I) is reduced, then ¢g° = 0 and by g ¢ mI,
this is impossible; on the other hand, if R is reduced, by the
minimality of the degree of g in I, and by ¢" € mI", we have
g" =0, and so g = 0.

(i) We take §; < &;’. Then, we consider a bihomogeneous rela-
tion of integral dependence of f(€ F(J) C F(I)) over F(J'):
(for + b/ (fO)t +... + b,/ = 0, where b/ € F(J') and
deg(b;') = (4,101 ); therefore (f2)" = 0, but f? is transcendent
over k. On the other hand, we assume that §;' < §;. Then, I
verifies a bihomogeneous relation of integral dependence over
F(J): (fO)"+ b (fO)" 1+ ...+ by = 0, where b/ € F(J')
with deg(b;") = (4,i0;); therefore (ff)™ = 0, in contradiction
with the transcendence of f over k. Finally, we can consider
a bihomogeneous integral relation over F'(J) of f7; if § < d,
working as above, we have that fj is nilpotent, in contrast with
the reducedness of F'(I).

O

If I is a quasi-complete intersection of the polynomial ring
klxo,...,xq—1] with ht(I) < d—2, then the author in [17] proved the
uniqueness of degrees of all scheme—theoretic generations of minimal
length (i.e. of length ht(I) + 1); it is also pointed out by several
examples that the condition ht(/) < d — 2 is essential. We recall
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that if I is a q.c.i. of codimension two in a polynomial ring (with
the usual restriction for the dimension), this uniqueness of degrees is
proved, first of all, by D.Y. Kuznetsov [13, Proposition 2.10]; more-
over, in codimension two also, is noteworthy the proof in [4, Theorem
1.7]. Now, from Lemma 2.1, we can easily give another proof of the
uniqueness of degrees for quasi-complete intersection of codimension
two. More exactly:

COROLLARY 2.2. Let I be a quasi-complete intersection with 2 =
ht(I) < d—2 of the polynomial ring klxg, ..., zq—1]. If J = (f1, f2, f3)
is a scheme-th. generation of I, then the degrees deg(f;) = 0; are
defined uniquely by I.

Proof. Since J is a minimal reduction of I and if §; < d2 < d3, then
Lemma 2.1 implies the uniqueness of §; and d3. On the other hand,
from the “enumerative geometry formula” (see [6], [18, Theorem 5]
and [10, Theorem 4.5]) we deduce the uniqueness of Js. O

Following this way, also for ideals of greater codimension, we need
other formulas, as, for example, the one of [10, Theorem 4.11]. Of
course, there exist various formulas (all interesting); however (over
the difficulty of its discovery) we have to prove that these formu-
las are sufficient to determine the uniqueness of the degrees for a
scheme—th. generation (of minimal length) of a quasi complete in-
tersection. This method is unhappy. On the other hand, we have
just see that the momentous notion, for decision on the degrees for
a scheme—th. generation of a quasi complete intersection, is the ho-
mogeneous minimal reduction.

The first idea, after the uniqueness of the first and the last
degree of the basis of the homogeneous minimal reductions J, is
to consider (for induction on the analytic spread) quotients of the
minimal reductions J/(f) modulo a suitable homogeneous element
f € J\ mJ. Following the plan of S. Huckaba in [9], one can prove
that I(J/(f)) = I(J) — 1; the equality I(J/(f)) = 1(J) — 1 is verified
if f is a superficial element for an ideal K with J C K C .J, where J
denote the integral closure of J; for the existence of such a element,
see [12].

In the local case, it is well-known that superficial elements exist
for any (non-nilpotent) ideal I; moreover, there exists a non—empty
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open subset U of I/mI such that whenever x € U, then every preim-
age of x in [ is a superficial element of I. (see [3, Chapitre 8, §7, n.5,
Remarque 4]); moreover after [19], I(]) is also the maximal length of
a superficial sequence for I and every maximal superficial sequence
for I generate a minimal reduction.

In the graded case there is a complication: even if I has a homo-
geneous minimal reduction J, it is very hard to determine a homoge-
neous superficial sequence for .J or for some ideal K with J C K C J.

We can avoid this difficulty, through the trick of the following

LEMMA 2.3. Assume that R is a graded affine k—algebra, I a homo-
geneous ideal of R such that there exists some homogeneous minimal
reduction. If 5, < ... < 8 and &' < ... < & are the sequences of
the degrees of the basis of two homogeneous minimal reductions J

and J' of I, then:

{ilo; =01} ={j| =0}

and

{iloi=0a}={jld=a}

Proof. We set J = (fi,...,f1) and J" = (f],...,f]) where

deg(f;) = ¢6; and deg(f/) = 0. By Lemma 2.1, we
have 6; = ¢} and 6 = Jd;. Moreover, we suppose that
max{i | & = 01} > s = max{j | 07 = d}. We consider

J + J' as a reduction of I and we look for particular homo-
geneous minimal reduction in J + J'. There exists an open
non empty subset U of k2 such that the ideal Ooryanf? +
Z;:l blj jl»o, ceey Zle asifio + Z;:l bsj ]{O, soJrl, .. ,flo) is irrele-
vant in F(I) for (ai1,...,016,-.,0s5,011,--,015,.-.,bss) € U.
Analogously,  there exists an open non empty sub-
set U’ of k** such that the ideal i anf? +
Z;:l b jl‘Oa i Gy + Z;:1 bs; ](07 £+1Oa L f0) is i
relevant in F(I) for (aii,...,ass,b11,-..,bss) € U’'. From a
choice of (ai1,...,ass,b11,..-,bss) € U N U' we obtain elements
hi,...,hs € J+ J" with deg(h;) =1 (j =1,...,s), such that both
J1 = (h17---7h57f5+17---7fl) and J{ = (hl,...,hs,f£+1,...,fll) are

minimal reductions of I.
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We can, now, consider a bihomogeneous relation of integral de-
pendence of f2,; over F(J{): (fo )" +c(fo)" '+ ...+ ¢ =0
where ¢; € F(J7) with deg(¢;) = (4,i01); it is necessary that ¢; is
a homogeneous polynomial in hq,..., hs; but this is a contradiction
with the k—algebraic independence of hy,. .., hs, fJ, 1.

Proceeding in the same way gives the result for the degree §;. [

THEOREM 2.4. Let I be a homogeneous ideal of a graded affine k-
algebra R such that there exists some homogeneous minimal reduc-
tion. If 61 < ... < & and 6 < ... < & are the sequences of the
degrees of the basis of two homogeneous minimal reductions J and

J"of I, then: §; =6; foralli=1,...,1.

Proof. Working in the same way as in the trick of Lemma 2.3 we
can suppose that: J = (fi,..., f;) and J' = (f{,..., f]) with f; =
1, fie1 = fi_y and & < 6} , where deg(f;) = 0;,deg(f]) = o!.
We can consider a bihomogeneous relation of integral dependence
of ff over F(J'): (fO)" +c1(f2)" 1 +...+ ¢, = 0 where ¢; € F(J)
with deg(c;) = (i,4d;); therefore the element ¢; is a (homogeneous)

polynomial in f?,..., f2q, f{° ..., f[° where some of the variables
fis--., f2, is present, on account of the second degree.
Now set p = 23;11 fPF(J) prime ideal of F(J), p' =

Zé;ll fE(J') prime ideal of F'(J'), and a = pF'(I) = p'F(I) ideal of
F(I).

F(I) is an extension ring integral over F'(J) and over F(J') ; from
the lying over theorem we have that aNF(J) = p and anF(J') = p’.

Therefore we have (f?)" = 0 mod a, and so f = 0 mod p;
but this is a contradiction with the k—algebraic independence of
ff""aftgfl’ftg' |

Now, we apply the results [1, Lemma 6.1, Proposition 6.4] on the
special (minimal) reductions, and the M.R. Johnson’s formula [11,
Theorem 5]; we will need additional conditions on the ring R (as
Cohen—Macaulay property) and on the ideal I (as equidimensional,
generic complete intersection, positive height, analytic deviation one)
and so we can give a complete description of the degrees of the min-
imal homogeneous reductions of I.
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THEOREM 2.5. In addition to the hypothesis of the Theorem 2.4, we
assume that R is Cohen—Macaulay and I is equidimensional, generic
complete intersection, with ad(I) = 1 and g = ht(I) > 0. If §; <
... < 0; is the sequence of the degrees of a basis of a homogeneous
minimal reduction J of I, then 6y = di,...,0—1 = dj—1, (where
l=g+1), and moreover, if F(I) is reduced, we have also 6; = d,,.

Proof. With the usual notations, by [11, Theorem 5|, we have
e(RIt])) = (1 +di+ ... +dy---dg)e(R) — e(R/I) and e(R[Jt]) =
(14+8+...4+01--6g)e(R) — e(R/J), where e denotes the multi-
plicity. Moreover e(R[It]) = e(R[Jt]) by [11, Lemma 2]; since [ is
generic c.i. and equidimensional, the ideals I and J have the same
primary components of height ¢ , and so e(R/I) = e(R/J). Hence,
we have also: 1 +dy+...+dy---dg =1+ +...+01---94. The
first result now follows; the second result is in 2.1. O

3. Results on the scheme-th. generations of small
deviation

3.1. Relations between reductions and
scheme-th.generations

We consider, in this section, some connexion between minimal reduc-
tions (homogeneous or not) and scheme-th. generations (of minimal
length or not).

PROPOSITION 3.1. Let I be a homogeneous ideal of k[xo,...,T4_1]
with o(I) < d and J a scheme-th. generation of I with u(J) =
o(I). Then, J is a (homogeneous) reduction of I; moreover we have:
I(I)<po(I) <o(I).

Proof. See [17, Theorem 3]. O

ProprosiTION 3.2. Let I be a homogeneous ideal of R =
klzo,...,xq-1], with pu(Iy) < ht(I) + 1 for every prime ideal p €
Proj(R), and let K be a minimal reduction of I.

(i) If K is homogeneous, then K is a scheme-th.generation of min-
imal length of I and therefore I(I) = po(I) = o(I);
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(ii) if all minimal reductions of I are non-homogeneous, then K
is (only) a punctured generation of minimal length of I and
therefore (1) = po(I) < o(I); in particular, if I(I) < d, then
(1) <o(l).

Proof. As K, is a reduction of I, (where p C m), by [8, Theorem
3.1}, it follows that K, = I, and so K is a punctured generation of
I ( if K homogeneous, also a scheme-th. generation of I), and by
[17, Proposition 2], we have: [(I) = po(I) < o(I). The rest of the
statement is trivial. U

Several are the cases in which it can to apply the prop. 3.2; for
example:

e Ideals I quasi complete intersection(q.c.i.) (i.e. where o(I) =
ht(I) +1).

e Subcanonical ideals of codimension 2 (i.e. ideals I generically
c.i., unmixed, ht(I) = 2 such that the canonical module wp /=
Ext%(R/I, R) of R/I is scheme-th. generated by one element.)

— By the “Syzygy problem” of Evans-Griffith and the
Gorenstein-c.i. property in codimension 2 by Serre, we
have that I is locally a c.i.-

e Ideals I locally non singular (i.e. such that R,/I, are local
regular rings for every p € Proj(R)).

e Ideals I, saturated ideals of monomial projective curves I' of
P3(k).

— By Forster-Swan results (imiting in Proj(R)), we have
o(I) < 4; on the other hand, by [7] or [2], we have [(I) < 3;
by the well-known old result of J. Herzog, we have p(1,) <
3 for every prime ideal p € Proj(R); and so po(I) < 3 and
o(I) < 3 iff there exist a homogeneous minimal reduction

of I.

Studying the structure of the fiber cone F'(I) in [7] and on
the existence of homogenous (or not) minimal reductions
of I one can give an alternative test (see [5] ) for the
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classification of the monomial projective curves I of Ps,
according to o(I) = 2,3, 4.

3.2. Some applications of uniqueness of degrees

Here, it is useful to define the scheme-analytic deviation to be the non
negative integer sc-d(I) := o(I) — I(I); analogously, the punctured-
analytic deviation is the non negative integer pu-d(I) := po(I)—1(I)
(these definitions are chiefly inspired by the concept of the classical
second analytic deviation).

We will focus upon homogeneous ideals having scheme-analytic
deviation either zero or one.

PROPOSITION 3.3. Assume that R is equidimensional and I such
that o = o(I) = I(I) < d = dim(R). Then, for every scheme-th.
generation of I of minimal length J = (f1,..., fs), its sequence of
degrees is uniquely determined by 1.

Proof. Since J is a homogeneous minimal reduction of I (see [17,
Theorem 3]), then we can apply the Thm. 2.4. O

COROLLARY 3.4. Assume that I is a quasi complete intersection ideal
with 0 < ht(I) < d — 1 where d = dim(R). Then, for every scheme-
th. generation of I of minimal length J = (f1,..., fs), its sequence
of the degrees is uniquely determined by I, and also the first o — 1
degrees of J are equals to the first o — 1 degrees of I.

Proof. The first statement follows by the previous Proposition; The-
orem 2.5 implies the second assertion. ]

Now, we assume that R as Cohen—Macaulay with d = dim(R)
and I is unmixed, generically c.i. and such that o = o(I) = ht(I) +
2 < d. We set by J a scheme-th. generation of I of length ¢ , and
by m1 < ... <1, its sequence of degrees. From [(J) < d—1 it follows
that J is a reduction of I, and so (1) = I(J). If sc-d(I) < 1 the
following situations can happen:

1. if sc-d(I) = 0, the sequence of degrees of J is uniquely deter-
mined by I as proved in Proposition 3.3;
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2. if sc-d(I) = 1 and if there exists a homogeneous minimal reduc-
tion K of J where §; < ... < d,_1 is its sequence of degrees,
then &y = 1 = dy,...,05—2 = Ng—2 = dy—2 (see Thm. 2.5),
and d,_1 is equal to 1,_1 or to 7,.

3. if sc-d(I) = 1 and if all the minimal reductions of J are not
homogeneous, then the degrees n; are variables with the par-
ticular choice of J.

The following examples (with computation using Macaulay) illus-
trates the usefullnes of the previous propositions.

EXAMPLE 3.5. In P* we consider the variety with generic point
(s3t, st3, 14, tu?, s*) (where s,t,u are k-algebraic independents); its
prime ideal I in k[z,y,z,v,w] of ht(I) = 2 has p(I) = o(I) = 4
and I(I) = 3. On the other hand, I is minimal generated by
fi = xy — 2w, fo = % — 222, fz = 222 — yPw, f1 = 2% — yw? and
the fiber cone F(I) has a presentation k[a,b,c,d]/(c* + bd) where a
modulo (c* +bd) represent f2 and so on; the subideal (f1, f3, f2 — fa)
1s a homogeneous minimal reduction of I.

EXAMPLE 3.6. As above, with the same notations, let I be the ideal
associated to the generic point (stu?,st3,s?t%, tu3, s*); we can verify
that I is minimally generated by f1 = 25 —yw, fo = 23z —yv’w, f3 =
23y — 220% fy = 25 — 20w and that o(I) = 4 but I(I) = 3. The fiber
cone F(I), (with the usual notations) is kla,b,c,d]/(ad) and all the
minimal reductions of I are not homogeneous.

EXAMPLE 3.7. As above, with the same mnotations, let I be the
ideal associated to the generic point (t°,s*tu? t3u?, s?u?,s%); we
can verify that I is minimally generated by fi = y’z — xv?, fo =
22yd — 25w, f3 = 297 — 2%w?, fy = 3 — 22vtw® and that o(I) = 4
but I(I) = 3. The fiber cone F(I) is k[a,b,c,d]/(c* — bd) and so
K = (f1, f2, f1) is a homogeneous minimal reduction of 1.

ExamMprLE 3.8. Countererample: as above, with the same nota-
tions, let I be the prime ideal determined by the generic point
(13 — t2u, st?, stu,u3, s%); we can verify that I is minimally gener-
ated by 4 elements of degrees [3,4,4,5] and that I(I) = 4 with the
fiber cone F(I) isomorphic to the polynomial ring kla,b,c,d]. This
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example is also a partial counterexample to the conjecture given by
A.Polo and the author in [16, 2.3 — A conjecture].
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