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Global Generation
PHILIPPE ELLIA AND ALESSANDRA TRAMBAIOLLI (*)

Per Fabio che ci manca tanto

1. Introduction

We work over an algebraically closed field of characteristic zero and a
curve C' C P3 is a closed subscheme of (pure) dimension one, locally
Cohen-Macaulay and generically a local complete intersection. For
such a curve we introduce the following invariants:

€(C) = max{k|wc(—Fk) has a section generating
almost everywhere}
m(C) = min{k|Zc(k) is generated by global sections}.
We prove:

THEOREM 1.1. With notations as above:
1. m> # with equality if and only if C' is a complete intersec-
tion (a,a)

2. m= [#] + 1 if and only if C is one of the following:

e a section of a null-correlation bundle
e C is a.C.M. and one of the following:
(a) a complete intersection (b,b— 1), (b,b— 2)
(b) C is linked to a plane curve of degree m — 1 by a
complete intersection (m,m)

(*) Auhtors’ address: Philippe Ellia and Alessandra Trambaiolli, Dipartimento
di Matematica, 35 via Machiavelli, 44100 Ferrara, Italy; E-mail: phe@unife.it
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¢) C is bilinked to Y by complete intersections
Y
(2,m), (m,m) where Y is either: a complete intersec-
tion (2,2), a "twisted cubic”, a plane curve of degree
< 2.

Taking hyperplane sections we get:

COROLLARY 1.2. Let X C P™, n > 4, be a smooth codimension
two subvariety which is not a.C.M. If Tx(m) is generated by global

sections, then m > [e()()%“] + 1.

2. Global generation for curves in P3

DEFINITION 2.1. In this note a curve C C P3 is a one-dimensional
closed subscheme, which is locally Cohen-Macaulay and generically a
local complete intersection. These are the curves associated to rank
two reflexive sheaves (see [3]).

We associate to such a curve the following numerical invariants:

€(C): = max{k|wc(—k) has a non — zero section

which generates almost everywhere}

m(C) := min{k | Z¢(k) is generated by global sections}.

If no confusion can arise we will simply write €, m. Of course we
will also consider the degree (d) and the arithmetic genus (pa) of a
curve.

We observe that if C is integral, then ¢ = e :=
max{k | h'(Oc(k)) # 0}, (e is the index of speciality of C); but
in general we only have: € < e.

A general section of wo(—¢) yields an exact sequence:

0—-0—F—Zc(e+4)—0 (+)

where F' is a rank two reflexif sheaf with Chern classes: ¢; = € + 4,
co =d, c3 = 2p, — 2 — de. By abuse of language we will say that F
is the rank reflexif sheaf associated to C.
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LEMMA 2.2. Let C C P3 be a curve. Then m > #.
Furthermore m = % if and only if C' is a complete intersection

of type (a,a).

Proof. 1t is clear that for a complete intersection of type (a,b), a < b,
we have: # = “T*'b and m = b. Som > % with equality if and
only if ¢« = b. So we may assume, from now on, that C is not a
complete intersection. Consider the exact sequence (4) twisted by
m—e—4:

0—-0m—-—€e—4)— Fm—e—4) - Zc(m) — 0

Since C' is not a complete intersection and since Zo(m) is globally
generated, we have: h?(F(m —e—4)) > h°(Zc(m)) > 3. Moreover a
general section of F'(m — e — 4) vanishes in codimension two. So we
have:

00 —-Fm—-—e—4) —>Iy2m—e—4) -0

where Y is a (non empty) curve. Since h°(Zy (2m — e —4)) > 0, we
get: 2m —e—4 > 0. ]

REMARK 2.3. In case C is a smooth, subcanonical curve (i.e.
wo(—e) ~ O¢), the result can be proved by completely different ar-
gquments.

From the exact sequence:

0 — T3(m) — Ze(m) — NG (m) — 0

It follows that N (m) is generated by global sections. Since Nc has
rank two and det(N¢) = wc(4) = Oc(e + 4), we get: Ni(m) =
No(—e—4+m). A general section yields:

0— Oc — Ne(—e—4+m) — Oc(—e—4+2m) — 0 (x)

and Oc(—e — 4+ 2m) is globally generated, hence deg(Oc(—e — 4 +
2m) > 0 and this implies: m > <. If m = #, then (x) becomes:

0— Oc — Ne(—e—4+m) = Oc — 0 (xx)

it follows that h°(No(—e — 4 +m)) < 2, since we have a surjection:
H(No(—e—44+m))®0¢ — No(—e—4+m), we conclude that: Ng ~
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2.0c(m). Now C C F,, where F,, is a smooth surface of degree
m (because Zo(m) is globally generated) and the exact sequence of
normal bundles:

0 — Nc¢.p,, — Nc — Np,, — 0 (+)
reads like:
0— Oc(m) — 2.0¢(m) — Oc(m) — 0
Hence (+) splits and by [2], C is a complete intersection.

Now we try to investigate further. As already noticed the case
of complete intersection curves is clear, hence from now on we will
assume C' is not a complete intersection.

LEMMA 2.4. Let C C P? be a non-complete intersection curve. If e
is odd, then m = [#] + 1 if and only if C is linked to a plane curve
of degree m — 1 by a complete intersection (m,m).

Proof. We set ¢ = 2t +1 so m = t + 3 and the associated exact
sequence is:
0—-0—F—>ZIc(2t+5)—0

Since Zo(t + 3) is generated by global sections, we have h?(F(—t —
2)) > 3 and a general section of F'(—t — 2) vanishes in codimension
two:

0—-0—F(-t—2)—ZIy(1) =0

It follows that h%(Zy (1)) > 2, hence Y is a line. Now, by construction
(being sections of the same reflexive sheaf), C'is bilinked to Y'; more
precisely this is achieved by complete intersections (1,¢+3), (t+3,t+
3). The first linkage links Y to a plane curve, P, of degree t + 2.
Then P is linked to C' by a complete intersection (¢ 4 3,¢ + 3).
Finally it is easy to check that such a C satisfies m = [<53]+1. O

The case € even is a little bit more tricky. Let us begin with:

LEMMA 2.5. Let C C P? be a non-complete intersection curve. If € is
even and if m = # +1, then C' is bilinked by complete intersections
(2,m), (m,m) to one of the following curves:
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1. a curve, Y, of degree < 4, contained in a complete intersection
(2,2)

2. a plane curve

3. the (scheme theoretical) union of a plane curve, P, with a line

L.

Proof. We set € = 2t, so m =t + 3 and proceed like in the proof of
Lemma 2.4, this time we get:

00 —F—>ZIc(2t+4)—0

and
0—-0—F(-t—1)—>Iy(2) =0

and we conclude that h°(Zy(2)) > 2. If there are two quadrics
containing Y without a common component, we are in case (1).
Assume now that all the quadrics in H%(Zy(2)) share a common
plane Hy, so H°(Zy(2)) ~ {Hy U H;}, where the H; build an oo”
linear system of planes. If » > 1, the base locus of this system has
dimension < 0 and Y is a plane curve: this is case (2). If r = 1, the
base locus is a line L and we are in case (3). O

Now we have to see if these cases are indeed effective. There are
many possibilities, for instance in case (3) we have: (a) LN P = (),
(b) LN P = one point, (¢) L C Hy but L is multiple. To make things
more manageable we will first assume that C' is not arithmetically
Cohen-Macaulay (a.C.M.). Also observe that in this case we don’t
know the degree of Y, we just have d(Y) < m.

LEMMA 2.6. Let C C P3 be a non a.C.M. curve. If € is even, then
m = % +1 if and only if C is a section of a null-correlation bundle.

Proof. We examine the various cases of Lemma 2.5.

1. Since C is not a.C.M., Y has necessarily degree two and is
a double line of genus —p, p > 1 or the union of two skew
lines. (Indeed a curve of degree three contained in a complete
intersection (2, 2) is linked to a line, hence is a.C.M.). Now the
extension: 0 — O — F(—t —1) — Zy(2) — 0 (see proof of
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Lemma 2.5) corresponds to a section of wy (2), hence c3(F) =
2pq(Y) —2+2d(Y). If Y is a double line of genus —p, we get:
c3(F) = —2p+ 2. Since c3(F) >0, p < 1. If p=10, Y is
a.C.M. and this is excluded. Sop =1, c3(F) =0 and F'is a
null-correlation bundle. This is a fortiori true if Y is the union
of two skew lines.

This case doesn’t occur (Y is a.C.M.).

Here Y = P U L and we have three cases: a) Y N L = () b)
YNL={p}c)LCHy=<P > but Lismultiple.

In case b), Y is a.C.M. Indeed we have an exact sequence:
0 —>Iy —>Ip — OL(—l) — 0

which induces f,, : H*(Zp(m)) — H°(Or(m — 1)). We have
fm(HoFm—-1) = Fp—1|L, so fp, is surjective for m > 1 and
Hl(Zy) =0.

For the other two cases we begin with a general remark.
By Lemma 2.5 C' is bilinked to Y by complete intersections
(2,m), (m,m). More precisely: Y U Z is a complete intersec-
tion, U, of type (2,m) and Z U C a complete intersection, V',
of type (m, m). The exact sequences of liaison yield:

0—Zy(m) — Zc(m) - wz(4—m) — 0

0—-Zy(2) > Zy(2) »wz(4—m) — 0

It follows that wyz(4 —m) is globally generated and h%(wz(4 —
m)) = h°(Zy(2)) — h%(Zy(2)). If this number is = 1, then
wz(4—m) ~ Ogz. It follows that p,(Z) =1+ (m —2)z (z =
d(Z)). On the other hand, by liaison, p,(Z) = p.(Y) + (z —
m)(m — 2), hence: p,(Y) =1+ m(m —2) (+).

Case a): If Y is the disjoint union of a plane curve of de-
gree p and a line, then a direct computation yields: p,(Y) =
Wléﬁ — 1. Combining with (+), we get: 2(m — 1) =
p(p — 3). Since m > p, this cannot hold. We conclude that
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h9(Zy(2)) > 2. This implies that P is a line, i.e. Y is the dis-
joint union of two lines and C' is a section of a null-correlation

bundle.

Case ¢): This time L C Hy is a component of P but L carries a
multiple structure which sticks out of the plane. We have the
residual exact sequence with respect to Hy ([1], proof of Thm.
8):

0—7Zr(-1) = Iy — Iynuy,H, — 0

here Y N Hy is the union of P with a zero-dimensional sub-
scheme, A, with support on L. If R is the residual scheme of
A with respect to P, then we have:

0 — Or(—p) — Oynu, = Op — 0

and p,(Y) = W — r, where r = length(R) ([1], proof
of Thm. 8). Arguing as above, we get: 2(m — 1)? + 2(r —
1) = p(p — 3). But this cannot hold, so h°(Zy(2)) > 2. This
implies that Y is a double line indeed Y has support on L
and is contained in the first infinitesimal neighborhood of L,
moreover Y is generically a local complete intersection. As in
(1), we conclude that C is a section of a null-correlation bundle.
Finally it is easy to check that sections of a null-correlation
bundle satisfy m = # + 1.

O
To conclude we have:

LEMMA 2.7. Let C C P3 an a.C.M. curve. If € is even, then m =
# + 1 if and only if C is one of the following:

e a complete intersection of type (b,b —2) or:

o C s bilinked by complete intersections (m,m),(2,m) to Y
where Y is one of the following:
(a) a complete intersection (2,2);

(b) a "twisted cubic” (i.e. Y has minimal free resolution:
0—20(-3) = 30(-2) = Zy — 0);
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(c) a plane curve of degree < 2.

Proof. By Lemma 2.5 we have to check the cases where Y is con-
tained in a complete intersection (2,2), where Y is a plane curve or
the union of a plane curve with a line meeting it at one point. Let’s
start with this last case. If Y = PU L where L N P = {z}, then Y
is linked to a plane curve of degree p — 1 by a complete intersection
(2,p). Indeed let Q = Hy U H where Hy =< P > and where H
contains L, then take K a cone of base P, vertex a point of L, then
@ N K makes the job. From the resolution of a plane curve of degree
p — 1, we get, by mapping cone:

0—-0(-1-p)®0O(-3) - 2.0(-2)®O(-p) > ZIy — 0

Now we perform the liaisons (2, m), (m, m) and by mapping cone we
get:

0 - O-2m+2)a0(-m—-1)®0(-m+1-p)
— 3.0(-m)®O0(-m+2—-p) —>Zc—0 (1)

Clearly if p < 2 then Z¢(m) is generated by global sections and
e(C) =2m —6. If p> 2 and if Zo(m) is globally generated, then we
have:

0—F—30(m)—Zc—0

where F is a rank two vector bundle. Since C is a.C.M., H3(E) = 0,
by Serre duality and the isomorphism E* ~ E(—c;), also H}(E) = 0,
by Horrocks theorem, E splits, a contradiction (look at the minimal
free resolution). So p < 2 and Y is either a (degenerated) conic or
twisted cubic.

A similar phenomenon occurs when Y is a degree p plane curve.
Performing the first liaison (2,m) we link P to a curve Z and, as
already noticed, if Z¢(m) is globally generated, then wyz(4 — m) is
also. Let’s see that this is not the case if p > 2. Let’s consider
the general case: the quadric is the union of two distinct planes,
H,H', and Z is the union of a plane curve, X, of degree m with
a plane curve, T, of degree m — p, X and T not containing H N
H'. The genericity assumption is not a problem because the Hilbert
scheme parametrizing the curves Z is irreducible and being globally



GLOBAL GENERATION 215

generated is an open condition. Now since Z is a.C.M. X NT =
TN < X > and: wz|T ~ wp(l). It follows that wz(4 — m)|T ~
wr(5 —m) ~ Op(—p + 2) which is globally generated only if p < 2.
Finally observe that if m = p, then C is a complete intersection
(m,m — 1) (e odd).

In the remaining cases (complete intersection (2,2), twisted cu-
bic) one checks directly that the required conditions are satisfied. O

This concludes the proof of Theorem 1.1.
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