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Global Generation

Philippe Ellia and Alessandra Trambaiolli (∗)

Per Fabio che ci manca tanto

1. Introduction

We work over an algebraically closed field of characteristic zero and a
curve C ⊂ P

3 is a closed subscheme of (pure) dimension one, locally
Cohen-Macaulay and generically a local complete intersection. For
such a curve we introduce the following invariants:

ǫ(C) = max{k |ωC(−k) has a section generating

almost everywhere}

m(C) = min{k | IC(k) is generated by global sections}.

We prove:

Theorem 1.1. With notations as above:

1. m ≥ ǫ+4
2 with equality if and only if C is a complete intersec-

tion (a, a)

2. m = [ ǫ+4
2 ] + 1 if and only if C is one of the following:

• a section of a null-correlation bundle

• C is a.C.M. and one of the following:

(a) a complete intersection (b, b − 1), (b, b − 2)

(b) C is linked to a plane curve of degree m − 1 by a
complete intersection (m,m)
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(c) C is bilinked to Y by complete intersections
(2,m), (m,m) where Y is either: a complete intersec-
tion (2, 2), a ”twisted cubic”, a plane curve of degree
≤ 2.

Taking hyperplane sections we get:

Corollary 1.2. Let X ⊂ P
n, n ≥ 4, be a smooth codimension

two subvariety which is not a.C.M. If IX(m) is generated by global

sections, then m > [e(X)+n+1
2 ] + 1.

2. Global generation for curves in P
3

Definition 2.1. In this note a curve C ⊂ P
3 is a one-dimensional

closed subscheme, which is locally Cohen-Macaulay and generically a
local complete intersection. These are the curves associated to rank
two reflexive sheaves (see [3]).

We associate to such a curve the following numerical invariants:

ǫ(C) : = max{k |ωC(−k) has a non − zero section

which generates almost everywhere}

and:

m(C) := min{k | IC(k) is generated by global sections}.

If no confusion can arise we will simply write ǫ,m. Of course we
will also consider the degree (d) and the arithmetic genus (pa) of a
curve.

We observe that if C is integral, then ǫ = e :=
max{k |h1(OC(k)) 6= 0}, (e is the index of speciality of C); but
in general we only have: ǫ ≤ e.

A general section of ωC(−ǫ) yields an exact sequence:

0 → O → F → IC(ǫ + 4) → 0 (+)

where F is a rank two reflexif sheaf with Chern classes: c1 = ǫ + 4,
c2 = d, c3 = 2pa − 2 − dǫ. By abuse of language we will say that F

is the rank reflexif sheaf associated to C.
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Lemma 2.2. Let C ⊂ P
3 be a curve. Then m ≥ ǫ+4

2 .
Furthermore m = ǫ+4

2 if and only if C is a complete intersection
of type (a, a).

Proof. It is clear that for a complete intersection of type (a, b), a ≤ b,
we have: ǫ+4

2 = a+b
2 and m = b. So m ≥ ǫ+4

2 with equality if and
only if a = b. So we may assume, from now on, that C is not a
complete intersection. Consider the exact sequence (+) twisted by
m − ǫ − 4:

0 → O(m − ǫ − 4) → F (m − ǫ − 4) → IC(m) → 0

Since C is not a complete intersection and since IC(m) is globally
generated, we have: h0(F (m− ǫ− 4)) ≥ h0(IC(m)) ≥ 3. Moreover a
general section of F (m − ǫ − 4) vanishes in codimension two. So we
have:

0 → O → F (m − ǫ − 4) → IY (2m − ǫ − 4) → 0

where Y is a (non empty) curve. Since h0(IY (2m − ǫ − 4)) > 0, we
get: 2m − ǫ − 4 > 0.

Remark 2.3. In case C is a smooth, subcanonical curve (i.e.
ωC(−e) ≃ OC), the result can be proved by completely different ar-
guments.

From the exact sequence:

0 → I2
C(m) → IC(m) → N∗

C(m) → 0

It follows that N∗

C(m) is generated by global sections. Since NC has
rank two and det(NC) = ωC(4) = OC(e + 4), we get: N∗

C(m) =
NC(−e − 4 + m). A general section yields:

0 → OC → NC(−e − 4 + m) → OC(−e − 4 + 2m) → 0 (∗)

and OC(−e− 4 + 2m) is globally generated, hence deg(OC (−e− 4 +
2m) ≥ 0 and this implies: m ≥ e+4

2 . If m = e+4
2 , then (∗) becomes:

0 → OC → NC(−e − 4 + m) → OC → 0 (∗∗)

it follows that h0(NC(−e − 4 + m)) ≤ 2, since we have a surjection:
H0(NC(−e−4+m))⊗OC → NC(−e−4+m), we conclude that: NC ≃
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2.OC (m). Now C ⊂ Fm where Fm is a smooth surface of degree
m (because IC(m) is globally generated) and the exact sequence of
normal bundles:

0 → NC,Fm
→ NC → NFm

→ 0 (+)

reads like:

0 → OC(m) → 2.OC(m) → OC(m) → 0

Hence (+) splits and by [2], C is a complete intersection.

Now we try to investigate further. As already noticed the case
of complete intersection curves is clear, hence from now on we will
assume C is not a complete intersection.

Lemma 2.4. Let C ⊂ P
3 be a non-complete intersection curve. If ǫ

is odd, then m = [ ǫ+4
2 ] + 1 if and only if C is linked to a plane curve

of degree m − 1 by a complete intersection (m,m).

Proof. We set ǫ = 2t + 1 so m = t + 3 and the associated exact
sequence is:

0 → O → F → IC(2t + 5) → 0

Since IC(t + 3) is generated by global sections, we have h0(F (−t −
2)) ≥ 3 and a general section of F (−t − 2) vanishes in codimension
two:

0 → O → F (−t − 2) → IY (1) → 0

It follows that h0(IY (1)) ≥ 2, hence Y is a line. Now, by construction
(being sections of the same reflexive sheaf), C is bilinked to Y ; more
precisely this is achieved by complete intersections (1, t+3), (t+3, t+
3). The first linkage links Y to a plane curve, P , of degree t + 2.
Then P is linked to C by a complete intersection (t + 3, t + 3).

Finally it is easy to check that such a C satisfies m = [ ǫ+4
2 ]+1.

The case ǫ even is a little bit more tricky. Let us begin with:

Lemma 2.5. Let C ⊂ P
3 be a non-complete intersection curve. If ǫ is

even and if m = ǫ+4
2 +1, then C is bilinked by complete intersections

(2,m), (m,m) to one of the following curves:
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1. a curve, Y , of degree ≤ 4, contained in a complete intersection
(2, 2)

2. a plane curve

3. the (scheme theoretical) union of a plane curve, P , with a line
L.

Proof. We set ǫ = 2t, so m = t + 3 and proceed like in the proof of
Lemma 2.4, this time we get:

0 → O → F → IC(2t + 4) → 0

and
0 → O → F (−t − 1) → IY (2) → 0

and we conclude that h0(IY (2)) ≥ 2. If there are two quadrics
containing Y without a common component, we are in case (1).
Assume now that all the quadrics in H0(IY (2)) share a common
plane H0, so H0(IY (2)) ≃ {H0 ∪ Ht}, where the Ht build an ∞r

linear system of planes. If r > 1, the base locus of this system has
dimension ≤ 0 and Y is a plane curve: this is case (2). If r = 1, the
base locus is a line L and we are in case (3).

Now we have to see if these cases are indeed effective. There are
many possibilities, for instance in case (3) we have: (a) L ∩ P = ∅,
(b) L∩P = one point, (c) L ⊂ H0 but L is multiple. To make things
more manageable we will first assume that C is not arithmetically
Cohen-Macaulay (a.C.M.). Also observe that in this case we don’t
know the degree of Y , we just have d(Y ) ≤ m.

Lemma 2.6. Let C ⊂ P
3 be a non a.C.M. curve. If ǫ is even, then

m = ǫ+4
2 +1 if and only if C is a section of a null-correlation bundle.

Proof. We examine the various cases of Lemma 2.5.

1. Since C is not a.C.M., Y has necessarily degree two and is
a double line of genus −p, p ≥ 1 or the union of two skew
lines. (Indeed a curve of degree three contained in a complete
intersection (2, 2) is linked to a line, hence is a.C.M.). Now the
extension: 0 → O → F (−t − 1) → IY (2) → 0 (see proof of
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Lemma 2.5) corresponds to a section of ωY (2), hence c3(F ) =
2pa(Y )− 2 + 2d(Y ). If Y is a double line of genus −p, we get:
c3(F ) = −2p + 2. Since c3(F ) ≥ 0, p ≤ 1. If p = 0, Y is
a.C.M. and this is excluded. So p = 1, c3(F ) = 0 and F is a
null-correlation bundle. This is a fortiori true if Y is the union
of two skew lines.

2. This case doesn’t occur (Y is a.C.M.).

3. Here Y = P ∪ L and we have three cases: a) Y ∩ L = ∅ b)
Y ∩ L = {p} c) L ⊂ H0 =< P > but L is multiple.

In case b), Y is a.C.M. Indeed we have an exact sequence:

0 → IY → IP → OL(−1) → 0

which induces fm : H0(IP (m)) → H0(OL(m − 1)). We have
fm(H0Fm−1) = Fm−1|L, so fm is surjective for m ≥ 1 and
H1

∗
(IY ) = 0.

For the other two cases we begin with a general remark.
By Lemma 2.5 C is bilinked to Y by complete intersections
(2,m), (m,m). More precisely: Y ∪ Z is a complete intersec-
tion, U , of type (2,m) and Z ∪ C a complete intersection, V ,
of type (m,m). The exact sequences of liaison yield:

0 → IV (m) → IC(m) → ωZ(4 − m) → 0

0 → IU (2) → IY (2) → ωZ(4 − m) → 0

It follows that ωZ(4−m) is globally generated and h0(ωZ(4−
m)) = h0(IY (2)) − h0(IU (2)). If this number is = 1, then
ωZ(4 − m) ≃ OZ . It follows that pa(Z) = 1 + (m − 2)z (z =
d(Z)). On the other hand, by liaison, pa(Z) = pa(Y ) + (z −
m)(m − 2), hence: pa(Y ) = 1 + m(m − 2) (+).

Case a): If Y is the disjoint union of a plane curve of de-
gree p and a line, then a direct computation yields: pa(Y ) =
(p−1)(p−2)

2 − 1. Combining with (+), we get: 2(m − 1)2 =
p(p − 3). Since m > p, this cannot hold. We conclude that
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h0(IY (2)) > 2. This implies that P is a line, i.e. Y is the dis-
joint union of two lines and C is a section of a null-correlation
bundle.

Case c): This time L ⊂ H0 is a component of P but L carries a
multiple structure which sticks out of the plane. We have the
residual exact sequence with respect to H0 ([1], proof of Thm.
8):

0 → IL(−1) → IY → IY ∩H0,H0 → 0

here Y ∩ H0 is the union of P with a zero-dimensional sub-
scheme, A, with support on L. If R is the residual scheme of
A with respect to P , then we have:

0 → OR(−p) → OY ∩H0 → OP → 0

and pa(Y ) = (p−1)(p−2)
2 − r, where r = length(R) ([1], proof

of Thm. 8). Arguing as above, we get: 2(m − 1)2 + 2(r −
1) = p(p − 3). But this cannot hold, so h0(IY (2)) > 2. This
implies that Y is a double line indeed Y has support on L

and is contained in the first infinitesimal neighborhood of L,
moreover Y is generically a local complete intersection. As in
(1), we conclude that C is a section of a null-correlation bundle.
Finally it is easy to check that sections of a null-correlation
bundle satisfy m = ǫ+4

2 + 1.

To conclude we have:

Lemma 2.7. Let C ⊂ P
3 an a.C.M. curve. If ǫ is even, then m =

ǫ+4
2 + 1 if and only if C is one of the following:

• a complete intersection of type (b, b − 2) or:

• C is bilinked by complete intersections (m,m), (2,m) to Y

where Y is one of the following:

(a) a complete intersection (2, 2);

(b) a ”twisted cubic” (i.e. Y has minimal free resolution:
0 → 2O(−3) → 3O(−2) → IY → 0);
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(c) a plane curve of degree ≤ 2.

Proof. By Lemma 2.5 we have to check the cases where Y is con-
tained in a complete intersection (2, 2), where Y is a plane curve or
the union of a plane curve with a line meeting it at one point. Let’s
start with this last case. If Y = P ∪ L where L ∩ P = {x}, then Y

is linked to a plane curve of degree p − 1 by a complete intersection
(2, p). Indeed let Q = H0 ∪ H where H0 =< P > and where H

contains L, then take K a cone of base P , vertex a point of L, then
Q∩K makes the job. From the resolution of a plane curve of degree
p − 1, we get, by mapping cone:

0 → O(−1 − p) ⊕O(−3) → 2.O(−2) ⊕O(−p) → IY → 0

Now we perform the liaisons (2,m), (m,m) and by mapping cone we
get:

0 → O(−2m + 2) ⊕O(−m − 1) ⊕O(−m + 1 − p)

→ 3.O(−m) ⊕O(−m + 2 − p) → IC → 0 (1)

Clearly if p ≤ 2 then IC(m) is generated by global sections and
e(C) = 2m− 6. If p > 2 and if IC(m) is globally generated, then we
have:

0 → E → 3.O(m) → IC → 0

where E is a rank two vector bundle. Since C is a.C.M., H2
∗
(E) = 0,

by Serre duality and the isomorphism E∗ ≃ E(−c1), also H1
∗
(E) = 0,

by Horrocks theorem, E splits, a contradiction (look at the minimal
free resolution). So p ≤ 2 and Y is either a (degenerated) conic or
twisted cubic.

A similar phenomenon occurs when Y is a degree p plane curve.
Performing the first liaison (2,m) we link P to a curve Z and, as
already noticed, if IC(m) is globally generated, then ωZ(4 − m) is
also. Let’s see that this is not the case if p > 2. Let’s consider
the general case: the quadric is the union of two distinct planes,
H,H ′, and Z is the union of a plane curve, X, of degree m with
a plane curve, T , of degree m − p, X and T not containing H ∩
H ′. The genericity assumption is not a problem because the Hilbert
scheme parametrizing the curves Z is irreducible and being globally
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generated is an open condition. Now since Z is a.C.M. X ∩ T =
T∩ < X > and: ωZ |T ≃ ωT (1). It follows that ωZ(4 − m)|T ≃
ωT (5 − m) ≃ OT (−p + 2) which is globally generated only if p ≤ 2.
Finally observe that if m = p, then C is a complete intersection
(m,m − 1) (ǫ odd).

In the remaining cases (complete intersection (2, 2), twisted cu-
bic) one checks directly that the required conditions are satisfied.

This concludes the proof of Theorem 1.1.

References

[1] Ph. Ellia, On the cohomology of projective space curves, Boll. U.M.I.
7, no. 9-A (1995), 593–607.

[2] Ellingsrud, G.-Peskine, Ch.-Gruson, L.-Strømme, S.A, On the
normal bundle of curves on smooth projective surfaces, Invent. Math.
80 (1985), 181–184.

[3] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980),
121–176.

Received November 5, 2007.


