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On Congruences of Linear Spaces

of Order One

Pietro De Poi and Emilia Mezzetti (∗)

Dedicato a Fabio, con nostalgia

Summary. - After presenting the main notions and results about
congruences of k-planes, we dwell upon congruences of lines,
mainly of order one. We survey the classification results in the
projective spaces of dimension 3 and 4, which are almost com-
plete, and the (partial) results and some conjectures in higher
dimension. Finally we present some new results, in particular a
degree bound for varieties with one apparent double point, a new
class of examples with focal locus of high degree, and some gen-
eral results about the classification of first order congruences of
lines in P

4 with reducible focal surface.

1. Introduction

Families of linear spaces in the projective space are a classical subject
of study, both in algebraic and in differential geometry. Among them,
congruences of linear spaces have been particularly studied. Let us
define them. A congruence B of k-spaces in P

n is a (flat) family of
k-spaces of dimension n − k, or, in other words, a subvariety of the
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Grassmannian G(k, n) of dimension n− k. Therefore, the number of
k-spaces of a congruence B passing through a general point of P

n is
finite (possibly zero): it is called the order of B.

The systematic study of congruences was initiated in the second
half of the nineteenth century by Kummer ([25]), who gave the first
classification theorem of congruences of lines of order one and two
in P

3. His work was since developed by many algebraic geometers,
as for instance Schumacher, Bordiga, C. Segre, Fano, Semple, Roth.
In recent times congruences of lines in P

3 were studied by Goldstein
([21]), who tackled the classification problem from the point of view
of the focal locus. More in general Ran, in [32], studied the surfaces of
order one in all Grassmannians, giving a modern and more complete
formulation of the classical result of Kummer. Smooth congruences
of lines in P

3, seen as surfaces in a smooth 4-dimensional quadric, in
analogy with smooth surfaces in P

4, were studied by Arrondo, Sols,
Gross, Turrini, Bertolini, Verra.

Congruences of lines of order one in higher-dimensional spaces
were considered by Castelnuovo, Palatini, and, in a systematic way
in P

4 and P
5, by Marletta ([28]) and his student Sgroi. They tried

to give a classification theorem according to the number and the
dimension of the components of the focal locus. Their results have
been analysed and completed, in modern language, by De Poi, in a
series of papers.

As for congruences of linear spaces, we mention the foundational
articles of C. Segre [33], and, in recent times, the article of Ciliberto-
Sernesi [9], which well explains the differential-geometric techniques
involved in the study of the focal and fundamental loci associated to
a congruence.

The point of view of algebraic geometry is mixed with that of
differential geometry in the long article of Griffiths-Harris [23]. As
for the differential-geometric point of view, we quote the classical
book of Finikov [19], whereas in modern times the topic has been
revived, among others, by Akivis-Goldberg in several papers and
books.

Interest towards the above topics is motivated by the several con-
nections they have with some important open problems. We men-
tion just a few of them: the conjectures of Zak on k-normality and
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general projections ([35]), the classification of the varieties with one
apparent double point ([8]), the connections with systems of PDE of
conservation laws, introduced by Agafonov-Ferapontov ([1], [16]).

The aim of this paper is to take stock of the situation regard-
ing congruences of order one. In §2, we recall the basic notions of
fundamental and focal point and of multidegree, and we state some
general results which are valid in the case of order one. In §3 we
present several examples and classes of examples to illustrate the
ideas motivating the definitions. In §4 we collect some of the results
in dimension 3: the classification theorem for order one by Kum-
mer, the results for congruences of low degree and low order, and
for congruences with a fundamental curve. The techniques used in
dimension 3 do not always extend to higher spaces. In §5 we con-
sider congruences of lines in any space P

n. We introduce the notion
of parasitical scheme and of fundamental d-locus and prove some
general results and bounds on the dimension and the degree of the
irreducible components of the fundamental locus. As an application,
we obtain a degree bound for the degree of the varieties with one
apparent double point. In §6, we consider the case of the congru-
ences of lines of order one with irreducible and reduced focal locus,
and discuss the sharpness of the bounds of previous section in this
particular situation. We give also a new class of examples of congru-
ences of order one with focal locus of “high” degree in P

n, for n ≥ 5.
We conjecture that the focal locus is irreducible. We then concen-
trate in §7 on congruences of lines in P

4, where we survey the known
results, and state some new results and conjectures. In particular,
for a first order congruence B of lines in P

4, we prove first that, if B
is given by the secant lines to a surface F1 that meet another surface
F2 also, then either F1 is a plane or F2 is a cubic scroll. If instead
B is given by the lines meeting three surfaces, then at least one of
these surfaces is a plane.
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for the second one.

2. Generalities about families of k-planes in Pn

We will work with schemes and varieties over the complex field C,
with standard notation and conventions as in [24]. In particular, a
variety is always irreducible.

Let G(k, n) denote the Grassmann variety of k-planes in P
n: we

recall that it is the Hilbert scheme of these spaces.

Definition 2.1. Let us consider a flat family of k-planes in P
n ob-

tained by a desingularization of a subvariety B′ of dimension n − k
of the Grassmannian G(k, n); this family (or better its basis B or
also B′) is called congruence of k-planes in P

n.

Then, there is a diagram:

Λ⊂ B × P
n f

−−−−→ P
n

p





y

B

(1)

where Λ is the incidence correspondence, and p and f are the restric-
tions to Λ of the two natural projections. We will use the notations:
Λb := p−1(b), and f(Λb) =: Λ(b) is a k-plane in P

n.
The map p is obviously surjective with all fibres of dimension k,

so dim Λ = n and it is expected that f is a surjective morphism.
If instead f(Λ) 6= P

n, we say that B is a degenerate congruence,
or a congruence of order zero. In this case, the image is a subva-
riety of P

n “covered by many lines”. We are not interested here in
analysing this situation, so from now on we will always assume that
B is non-degenerate. Therefore f will be a finite morphism and we
will denote its degree by a. It is called the order of the congruence
B, it represents the number of lines of B passing through a general
point in P

n.

Definition 2.2. A point P in P
n is a fundamental point of B if the

fibre of f over P is infinite. The set of the fundamental points of B
is called the fundamental locus. It will be denoted by Φ.
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Definition 2.3. The ramification divisor of f inside Λ is called the
focal scheme of the congruence B. Its schematic image in P

n is the
focal locus of B, it will be denoted by F . Every point of F is called
a focus of B.

It is clear that dimΦ ≤ n − 2 and dimF ≤ n − 1. The following
facts about the fundamental and the focal loci are classical:

Theorem 2.4. Let B be a congruence of k-spaces in P
n. Then:

1. every fundamental point of B is a focus;

2. on every space Λ(b) of the family, the focal locus either is a
hypersurface of degree n − k in Λ(b), or coincides with the
whole k-plane Λ(b);

3. if F̃ is an irreducible component of dimension n− 1 of F , then
every space of the family is tangent to F̃ at its focal but not
fundamental points.

Remark 2.5. In the previous theorem, case (2), we should specify
that the focal points of the hypersurface of degree n − k are focal
points for the k-plane Λ(b), in the sense that such points P are those
for which f | Λb drops rank in (b, P ).

Obviously, we can have also points in Λ(b)∩F , which are foci for
other k-planes: for example, the dual of a plane curve C, which is
not a line, is a congruence, whose focal locus is C, and each tangent
line TP C intersects C in other points outside P , if deg(C) > 2.

Definition 2.6. If the k-plane Λ(b) is contained in the focal locus,
then it is called focal k-plane.

Remark 2.7. If k > 1, after restricting the family B to the non-focal
k-planes, one can define the second order foci, as the focal points of
the family of the focal hypersurfaces of degree n− k, of Theorem 2.4
(2), contained in the k-planes of B. This is a family of non-linear
varieties, so more attention is required in the definition. It is now
clear that we can similarly define higher order foci.

As we stated in Theorem 2.4 (1), given any congruence B, the
fundamental locus is contained in the focal locus, since the fibre of
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f at every point of Φ has dimension greater than the general one.
The following theorem, of which one implication was not classically
known, takes care of the opposite inclusion. It is contained in [13]
in the case of congruences of lines. We give here the proof, which is
similar, for congruences of k-spaces.

Theorem 2.8. Let B be a non-degenerate congruence of k-spaces in
P

n. The focal locus F coincides with the fundamental locus Φ and
has codimension > 1 if and only if B has order one.

Proof. Assume a = 1, then f is generically (1 : 1) so the Zariski Main
Theorem implies that the two loci coincide. Conversely, assume that
the two loci coincide, and consider the restriction of f to Λ\f−1(F ):
it is an unramified covering of P

n \ F . By dimensional reasons,
P

n \ F is simply connected, and Λ \ f−1(F ) is connected. Therefore
F |Λ\f−1(F ) is a homeomorphism, hence a birational map and B is a
first order congruence.

We conclude this section introducing the multidegree of a con-
gruence of k-spaces in P

n. We will use the notation of the Griffiths-
Harris book [22] for the Schubert cycles in G(k, n). Given a complete
flag {P0 ⊂ P

1 ⊂ . . . Pn} and a sequence of integers c0, . . . , ck such
that n − k ≥ c0 ≥ · · · ≥ ck ≥ 0, we define: σc0,...,ck

as the class of
analytic cohomology of

{ℓ ∈ G(k, n) | dim(ℓ ∩ P
n−k+i−ci) ≥ i, i = 0, . . . , n},

where the dimension of the cycle σc0,...,ck
is (k + 1)(n − k) −

∑

i ci.
Let [B] denote the class of analytic cohomology of a congruence

B: since n − k = dim B, we can write:

[B] =
∑

P

i
ci=k(n−k)

ac0,...,ck
σc0,...,ck

. (2)

We say that the congruence B has multidegree, (. . . , ac0,...,ck
, . . . ) if

equation (2) holds.
In the case of the congruences of lines, the expression can be

written as follows:

[B] =

ν
∑

i=0

aiσ(n−1−i)i, (3)
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where we put ν :=
[

n−1
2

]

. So, the congruence of lines B has multi-
degree (a0, . . . , aν) if equation (3) holds.

Remark 2.9. We observe that the first coefficient, corresponding to
(c0, . . . , ck) = (n − k, . . . , n − k, 0) (or a0, in the case of the congru-
ences of lines), is the number of k-planes passing through a general
point P ∈ P

n, and therefore it is the order a of the congruence.
Clearly, we can give in a similar way the geometric meaning of all
the elements of the multidegree; for example, in the case of the con-
gruence of lines, aj is the number of lines intersecting a general
j-plane and contained in a general (n − j)-plane in P

n.

3. Examples

Let us see now some significant classes of congruences B of k-planes
in P

n.

3.1. k = n − 1: curves in P̌
n

Let us denote by P̌
n = G(n − 1, n) the projective dual space of P

n.
Then, the congruences of (n−1)-planes, i.e. with k = n−1, are just
the curves Č in P̌

n. In this case, the multidegree is just the order,
a1,...,1,0, which is in this case the degree of the curve Č ⊂ P̌

n.

3.2. n = 3 and k = 1: secant lines to curves in P3

If we take a smooth skew curve C in P
3, then the set of its secant

lines, Sec(C), is a family of dimension two of lines in P
3, hence a

congruence.

In this case, the congruence has multidegree (a0, a1): the order
a0 is just the number of apparent double points of C, that is, the
number of double points of the general projection of C to a plane.
Thanks to the Clebsch formula, this number is given by

a0 =

(

d − 1

2

)

− g, (4)

where d = deg(C) and g is the genus of C.
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a1 is called, also in general for a congruence B in P
3, the order,

and it is the number of lines of B contained in a general plane. In
the case B = Sec(C), it is immediate to see that

a1 =

(

d

2

)

.

We note that the curve C is contained in the focal locus, since
the two points of secancy are foci. But in general there are also other
components of dimension two: the surface of the trisecant lines to
C, and the surface of the stationary secants, see [3]. A stationary
secant is a secant line 〈P,Q〉, P,Q ∈ C, such that the two tangent
lines TP C and TQC meet. A stationary secant is a focal line, since it
can be shown that the tangent plane T〈P,Q〉B is contained in G(1, 3).

3.3. n = 4 and k = 1: trisecant lines to surfaces in P4

Consider now a non-degenerate surface S in P
4 and let B be the

family of its trisecant lines. It is not hard to prove that either B is
empty (if we suppose that a line contained in S is not trisecant) or
has dimension exactly three.

The smooth surfaces without trisecant lines are classified in [6],
and are the elliptic quintic scrolls and the surfaces contained in
quadric hypersurfaces.

So, if not empty, the family B has dimension three. S is a compo-
nent of the fundamental locus. The three secancy points of a general
trisecant line are its three foci.

But, in general, we can also have a focal locus of dimension three,
if through all points in S pass focal lines: in fact, it is easy to see that
the family of 4-secant lines either is empty or has dimension at least
two. But clearly a 4-secant line is a focal line, so “in general”—i.e.
if the family of the 4-secants is not empty—the closure of the union
of 4-secant lines is a component of the focal locus of dimension three.

The multidegree is (a0, a1), a0 the order and a1 the class. If the
surface S is smooth, a0 is the number of its apparent triple points.
The following formula holds:

a0 =

(

d − 1

3

)

− π(d − 3) + 2χ − 2,
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where d = deg(S), π is its sectional genus, and χ is its Euler-Poincaré
characteristic (see [6]).

The class a1 is the degree of the surface of the lines of B contained
in a hyperplane; it is given by the formula

a1 = h(d − 2) −

(

d

3

)

where h is the number of apparent double points of the general hy-
perplane section of S, which is given, in the smooth case, by For-
mula (4). The preceding formula is due to Cayley, and can be found
in [26]. Explicitly, if S is smooth, we have

a1 = (d − 2)

(

(d − 1)(d − 3)

3
− π

)

.

3.4. Linear congruences

The congruences that come out from linear sections of the Grass-
mannian G(k, n) ⊂ P

N , N =
(

n
k

)

− 1, are classically called linear
congruences.

Since the Schubert cycle that corresponds to a hyperplane section
of the Grassmannian is σ1, from Pieri’s formula it follows that, in
general, a linear congruence of k-planes is rationally equivalent to

σn−k
1 = σn−k,...,n−k,0 + (n − k)σn−k,...,n−k,n−k−1,1 + · · · .

In particular, its order is one. For k = 1, if we set h :=
[

n−1
2

]

, we
get

σn−1
1 =

h
∑

i=0

((

n − 2

i

)

−

(

n − 2

i − 2

))

σn−1−i,i

—with the convention that
(

ℓ
m

)

= 0 if m < 0 (see [12]).
Therefore, a linear congruence of lines has multidegree

(

1, n−1, . . . ,

((

n−2

i

)

−

(

n−2

i−2

))

, . . . ,

((

n−2

ν

)

−

(

n−2

ν−2

)))

.

It can be shown (see [7]) that the focal locus of this congruence
of lines is the degeneracy locus F of a general morphism

φ : O
⊕(n−1)
Pn → ΩPn(2) (5)



186 P. DE POI AND E. MEZZETTI

of (coherent) sheaves on P
n and that F is smooth if dim(F ) ≤ 3. If

F is the focal locus of a general linear congruence in P
n, then

1. if n is even, F is a rational variety;

2. if n is odd, F is a scroll over (an open set of) a hypersurface
of degree (n + 1)/2 contained in a P

n−2.

Besides,

deg(F ) =
n2 − 3n + 4

2
.

In low dimension and for a general linear section, we have that
(see [7] for details) if n = 3, F is the union of two skew lines, if
n = 4, F is a smooth projected Veronese surface and if n = 5, F is
a (rational) threefold of degree seven, which is a scroll over a cubic
surface in P

3. It is also known as Palatini scroll (see [29]).

3.5. Matrices of type (n − 1) × n with linear entries

We construct now an interesting family of first order congruences of
lines (see [12]), with the characteristic to have as focal locus an irre-
ducible variety of “high” degree. The first example is the following:

Example 3.1. Let us consider the rational normal curve C in P
3; it

is well known that its ideal is generated by the minors of order two
of the following matrix:

A :=

(

x0 x1 x2

x1 x2 x3

)

where x0, . . . , x3 are the projective coordinates of P
3. It is easy to

see that a secant line ℓ of C has equations h1 = h2 = 0 with:

h1 : =

2
∑

i=0

λixi h2 : =

2
∑

i=0

λixi+1

where (λ0 : λ1 : λ2) ∈ P
2, i.e. (h1, h2) is a linear combination of the

columns of A.
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Then, the secant line ℓ has, as Plücker coordinates, the minors
of order two of the matrix

B :=

(

λ0 λ1 λ2 0
0 λ0 λ1 λ2

)

therefore the map
φ : P

2 → G(1, 3)

associates to the point (λ0 : λ1 : λ2) the Plücker coordinates of the
line ℓ, i.e.

φ(λ0 : λ1 : λ2) := (λ2
0 : λ0λ1 : λ0λ2 : λ2

1 − λ0λ2 : λ1λ2 : λ2
2).

So, the family of the secant lines of the rational normal curve is a
Veronese surface.

To generalise this example, consider a general morphism φ ∈

Hom(O
⊕(n−1)
Pn ,O

⊕n)
Pn (1)), whose minors vanish in the expected codi-

mension two. In this case, F := V (φ)—the degeneracy locus of φ—is
a locally Cohen-Macaulay subscheme, whose ideal has minimal free
resolution:

0 → O
⊕(n−1)
Pn (−n)

φ(−n)
−−−−→ O⊕n

Pn (1 − n) → OPn → OF → 0.

Then—for example—from the Hilbert polynomial we get

deg(F ) =

(

n

2

)

(6)

π(F ) = 1 +
2n − 7

3

(

n

2

)

(7)

where π(F ) is the sectional genus of F . It is easy to prove also that
F is rational, and, if n ≤ 5, it is smooth. Besides, the adjunction
map ϕ|KF +H| exhibits F as the blow-up of Pn−2 in a scheme Z of

degree
(

n+1
2

)

and sectional genus n
6 (2n− 5)(n+1)− 1. In particular,

if n = 4, F is a rational sextic which is the blow-up of the plane in
10 points, i.e. a Bordiga surface.

It turns out that the (n−1)-secant lines of the variety F defined as
above form a first order congruence of lines B in P

n. The congruence
B is smooth for general φ (see [12]).
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3.6. Congruences of lines with focal locus of low degree

As last example of congruences of lines, we mention here a family
of sextic threefolds in P

5, introduced in [17] which is particularly
interesting from many points of view. For the aim of this article, it
turns out that this threefold is such that the family of its 4-secant
lines is a first order congruence B.

This congruence is associated to a completely exceptional
Monge-Ampère system of PDE’s via the construction of Agafonov-
Ferapontov (see [1]).

B results to be an irreducible component of a (special) quadratic
congruence. To define it, let L be a 3–dimensional linear space in
P

5, and C be a twisted cubic curve in L. As we have seen in Sub-
section 3.5, the secant lines of C give rise to a Veronese surface V
contained in G(1, L). There exist 2–planes π ⊂ Ǧ(1, 5), whose Gauss
image is V (see [27]). We fix in P

14 a linear space Γ of dimension 11
whose projective dual is such a π. We first consider G(1, 5)∩Γ∩HL,
where HL is the unique tangent hyperplane to G(1, 5) along G(1, L).
G(1, L) results to be an irreducible component of the intersection
with multiplicity of intersection 2, hence the other component B′

has multidegree (1, 3, 0). The focal locus of B′ is non-reduced with
support L. It is proved in [17] that there exists a family of di-
mension 12 of quadric hypersurfaces in P

14 containing G(1, L) ∪ B′.
Fixed such a quadric Q, the following equality defines a congruence
B: G(1, 5) ∩ Γ ∩ Q = B′ ∪ G(1, L) ∪ B.

B results to be a congruence of multidegree (1, 3, 3) and a smooth
Fano fourfold of genus 9. Its lines are the 4-secants of the focal locus,
which is a threefold X of degree 6 with sectional genus 1, singular
along C. The lines of B through a general point of X form a planar
pencil. From the multidegree, one sees that X is not contained in
any cubic, whereas its hyperplane section is, hence X is an example
of non–2–normal threefold in P

5. The interest of this example is
therefore related to Zak’s conjectures on k-normality.

The study of the congruences associated to the completely ex-
ceptional Monge-Ampère equations has been performed in any di-
mension n ≥ 5 in [18]. The main difference between the case of P

5

and the higher dimensional cases is that, although the definitions of
L ∼= P

n−2, Γ and HL can be given easily on the analogy with P
5, Γ
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always contains the 2(n − 2)-dimensional subgrassmannian G(1, L);
therefore, G(1, n)∩Γ∩HL is not a congruence if n > 6 for dimensional
reasons. In practise, one has to consider the residual of G(1, L) in
G(1, n) ∩ Γ, and then proceed to the construction. A second impor-
tant difference is that, for general n, instead of quadrics, one has to
use hypersurfaces of degree µ, with µ = [n+3

4 ]. The cohomology class
and the multidegree of B are computed in [18]: [B] = σn−1

1 +σ22σ
n−5
1 ,

so in particular a0 = 1, a1 = n − 2 and a2 =
(

n−2
2

)

. We will come
back on this example in §6.

3.7. Congruences of planes in P4

Congruences of planes in P
4 have been used in [9] to give an alter-

native proof of Torelli theorem. In this case, on a general plane of
the family the focal locus is a conic. The case of the congruences
with degenerate focal conics has since been studied by Pedreira and
Solá-Conde in [30]. To accomplish the classification, the behaviour
of the second order foci has to be carefully analysed.

4. Congruences of lines in P3

Next theorem was originally proved by Kummer (although case (3)
was forgot), then reproved, in modern times, by several authors,
including Ran, Arrondo, De Poi.

Theorem 4.1. Let B be a congruence of lines in P
3 of order one.

Then there are the following possibilities:

1. B is the star of lines of centre a point;

2. B is the family of the secant lines of a rational normal cubic
curve;

3. B is a union of pencils of lines, with centres on a line L; con-
gruences of this type of bidegree (1, d) exist for all d ≥ 1;

4. given a rational curve C of degree m, having a (m − 1)-secant
line L, B is the family of the lines meeting C and L.
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Remark 4.2. As we will see in §5, Theorem 4.1 contains also the
classification of the congruences of lines in P

n, for any n, whose focal
locus F has dimension one.

Remark 4.3. Congruences of case (3) have non-reduced focal locus.
They are constructed as follows: fix a regular map φ : Ľ → L, of
degree d, where Ľ denotes the dual of L, i.e. the pencil of planes
containing L. Then a congruence B of bidegree (1, d) is obtained
taking the union of the pencils of lines of centre φ(π) in the plane π,
as π varies in Ľ.

The classification of the congruences of lines in P
3 of degree big-

ger than 1 becomes immediately very complicated. They have been
studied mainly under smoothness assumptions, interpreting them as
smooth surfaces of P

5 contained in a smooth quadric, due to the
interesting analogies with smooth surfaces in P

4.
Goldstein ([21]) gave the classification of the smooth congruences

which are scrolls, proving in particular that their degree is bounded
by 6. Goldstein also gave a scheme of classification of non-necessarily
smooth congruences, according to the dimension of the components
of the focal locus ([20]). Arrondo-Sols ([5]) classified the smooth
congruences of degree ≤ 9, describing also the corresponding com-
ponents of the Hilbert scheme: they proved that there are 25 families
with a0 ≤ a1. The congruences with a0 ≥ a1 can be then obtained
by duality, exchanging the role of α-planes and β-planes. For degree
at most 8, the classification had already been performed by Fano,
whereas Verra had considered the case of degree 9. Arrondo-Sols
also proved a sort of analogue of the theorem of Ellingsrud-Peskine
for surfaces in P

4, saying that there are only finitely many families
of smooth surfaces in the Grassmannian G(1, 3) that are not of gen-
eral type. The classification was continued by Gross, who classified
smooth congruences of degree 10. Verra and Gross completed also
the classification of the smooth congruences of order 2 and 3, whose
degree results to be bounded by 10.

In a different vein, Arrondo and Gross found the complete de-
scription of the smooth congruences with a curve of fundamental
points. The result is the following ([4]):

Theorem 4.4. Let B be a smooth congruence in P
3 having a curve
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C of fundamental points. Then one of the following holds:

1. C is a line;

2. C is either a twisted cubic or an elliptic quartic and B is the
congruence of the secant lines of C;

3. B is a scroll of degree bigger than 2; there are three examples,
of bidegree respectively (1, 2), (2, 2), (3, 3), with C a conic in
the first two cases and a smooth plane cubic in the third one;

4. C is a smooth plane cubic and B is a conic bundle over C of
bidegree (3, 6).

This theorem has been since extended to the complete classifica-
tion of the smooth congruences having a fundamental curve in any
space P

n by Arrondo-Bertolini-Turrini (see [2]).

We point out that the methods used in the quoted papers are
mainly liaison, degeneracy of maps of vector bundles, embeddings of
surfaces in the Grassmannian G(1, 3) via rank two bundles. These
tools, which are very useful in P

3, are not easily extended in spaces
of higher dimension.

5. General Facts and Degree Bounds

In this section B denotes a non-degenerate congruence of lines. We
have seen in §2 that the irreducible components of the fundamental
locus Φ have all dimension ≤ n − 2, that the fundamental locus is
contained in the focal locus F , and that Φ = F if and only if the
order of B is one.

If X is an irreducible component of dimension n − 1 of the focal
locus, then either a general line of B intersects X in finitely many
focal points, or X is the union of a subfamily of B formed by focal
lines. This second possibility happens for instance with the trisecant
lines of a curve C in P

3, as focal lines of the congruence of the secant
lines (see §3).

Let us consider now an irreducible component X of the funda-
mental locus. We distinguish two possibilities: either a general line
of the family B intersects X (in one point or more), or it does not.
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For instance, let B be the congruence of the trisecant lines of a sur-
face S in P

4 (see §3). If S contains a plane curve C of degree ≥ 3,
then all the lines of the plane generated by C are trisecant to S.
Therefore 〈C〉 is an irreducible component of the focal locus of B,
but of course a general line of B does not meet it.

The components of this type are called parasitical. More pre-
cisely:

Definition 5.1 ([14]). Let B be a non-degenerate congruence of lines
in P

n. Let X be an irreducible component of dimension d of the
fundamental locus of B, with 2 ≤ d ≤ n−2. X is called i-parasitical
if

1. through every point of X there pass infinitely many focal lines
of B contained in X;

2. X is a component of Φ with geometrical multiplicity i;

3. a general line of B does not meet X.

The union of the non-parasitical components of the fundamental
locus Φ is the pure fundamental locus. We denote by Φd the union of
its irreducible components of dimension d: this is called the funda-
mental d-locus. Its natural structure of scheme, inherited from the
focal locus, comes from a Fitting ideal (see [14]), the one of minors
of order d+1 of the differential of the map f (see §2). From this the
following important fact can be deduced:

Proposition 5.2. If ℓ is a general line of B and X is an irreducible
component of Φd, then the focal points of X ∩ ℓ have multiplicity
≥ (n − 2) − d + 1 in the focal locus.

The only example of congruence having a fundamental 0-locus
is the star of all lines passing through a point P : clearly P is the
unique focus and fundamental point for each line of the family, with
multiplicity n − 1 (see [11]). For the congruences whose focal locus
has positive dimension, the following holds:

Theorem 5.3 ([13]). Let B be a congruence of lines in P
n. Assume

that the focal locus F has dimension d > 0. Then n−1
2 ≤ d ≤ n−1. If

moreover d = n−1
2 , Fred is irreducible and a general line of B meets

Fred in one point only, then Fred is a d-plane.
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Note that if dimF ≤ n − 2, then certainly the order of B is 1.
As a Corollary of previous theorem, we get that, if dimF = 1, then
n ≤ 3. The congruences of this type are all classified in [13]. If
n = 3, the list is contained in the one of the congruences of first
order, given in §4.

We turn now to the case of the congruences, necessarily of order
one, such that Φ = F and its dimension is ≤ n − 2. It is possible to
give some bounds on the degree of F .

In order to do so, a very useful tool is the hypersurface VΠ (see
[14]). It is defined as follows: let Π be a general (n − 2)-plane, then
VΠ is the union of the lines of B meeting Π. Clearly VΠ is obtained
from a hyperplane section of B in the Plücker embedding. If B
has multidegree (a0, . . . , aν), then as an easy application of Pieri’s
formula, one computes the degree of the hypersurface VΠ, which
results to be equal to a0 + a1.

Note that, since B is a congruence of order one, if ℓ is a line of B
not contained in VΠ, every point P of VΠ∩ℓ is a focus for B, because
at least two lines of the congruence pass through P .

From this observation, it can be deduced that, if one considers a
second general (n− 2)-plane Π′ and the corresponding hypersurface
VΠ′ , then the intersection VΠ∩VΠ′ is the union of the focal locus of B
and a scroll Σ, defined as the union of the lines of B meeting both Π
and Π′. In some particular cases, it can happen that some irreducible
components of Φ are contained in Σ. Using Schubert calculus, the
degree of Σ can be computed and it results to be equal to a0 + a1 if
n ≤ 3 and to a0 + 2a1 + a2 if n ≥ 4.

Proposition 5.4 ([14]). Let B be a congruence of lines of order one
in P

n, n ≥ 4. Let Fi, i = 1, . . . , h be the irreducible components
of dimension n − 2 of the pure fundamental locus; we denote by mi

the degree of Fi and by ki the algebraic multiplicity of (Fi)red on VΠ.
Finally, we put si := length((Fi)red ∩ Λ(b)), where b ∈ B is general.
Then the following formulas hold:

h
∑

i=1

siki ≤ 1 + a1; (8)

(1 + a1)
2 =

h
∑

i=1

k2
i mi + (1 + 2a1 + a2) + x, (9)
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where x is the contribution of the parasitical components of F of
dimension n − 2. Moreover, equality holds in (8) if the pure funda-
mental locus has pure dimension n − 2.

Remark 5.5. We observe that ki coincides with the number of lines
of B meeting Π and passing through a general point of Fi, or, equiv-
alently, with the number of lines of B contained in a general hyper-
plane H and passing through a general point of H ∩ Fi.

Proof. Indeed, if we take a line Λ(b) of the congruence not contained
in F ∩VΠ, then, intersecting Λ(b) with VΠ, we obtain a 0-dimensional
scheme of length 1 + a1, which is the degree of VΠ. For all index i,
this scheme contains Fi ∩ Λ(b), which has support in (at most) si

points, each of them of length ki, or, in the classical language, there
are si foci of multiplicity ki. So formula (8) is proved. To prove (9),
note that the degree of VΠ ∩ VΠ′ is (1 + a1)

2, and its components
are: the (pure) fundamental locus, with multiplicity

∑h
i=1 k2

i mi, the
parasitical (n − 2)-schemes, and the scroll Σ, which has degree 1 +
2a1 + a2.

As a corollary, we get the following theorem, when F is reduced
and irreducible.

Theorem 5.6. Let B be a congruence of lines of order one, such
that F is irreducible and reduced of dimension n−2. Let deg F = m.
Then n − 1 < m < (n − 1)2.

Proof. If we substitute formula (8), that in this case is an equality,
in formula (9), we obtain

(n − 1)2k2 − mk2 − (1 + 2a1 + a2) = x ≥ 0, (10)

and since (1 + 2a1 + a2) > 0, we deduce m < (n − 1)2.

The other inequality n−1 < m follows simply by degree reasons,
since the congruence is given by the (n − 1)-secant lines of F .

Remark 5.7. Theorem 5.6 is clearly sharp in P
3. The upper limit is

not sharp in P
4, and probably also in P

n, for n > 4, as we will see
in the next section.
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Bounds on the degree can be obtained more in general for the
components of maximal dimension of the fundamental locus, extend-
ing in this way Theorem 5.6. For example, in [8] it is proved that an
irreducible smooth threefold of P

7 with one apparent double point
has degree at most 8, and the classification is given. Translated in
the language of congruences, this means that if B is a first order
congruence of lines in P

7 whose focal locus Fred is smooth and ir-
reducible of dimension three, then deg(F ) ≤ 8. Here we show the
following

Theorem 5.8. Let X ⊂ P
2n+1 be a n-dimensional variety with one

apparent double point. Then, deg(X) < 2n+1.

Idea of the proof. By induction, intersecting n + 1 hypersurfaces
VΠ’s, Formulas (8) and (9) become

2k = 1 + a1 (11)

and

(1 + a1)
n+1 ≥ kn+1 deg(X) + 1 + (n + 1)a1 + · · · . (12)

From (11) and (12) we deduce

2n+1kn+1 − deg(X)kn+1 ≥ 1 + (n + 1)a1 + · · · > 0,

from which the assertion.

We close this section with the following simple property of con-
gruences of order one.

Proposition 5.9. Every congruence of order one B is a rational
variety.

Proof. Fixed a general hyperplane H in P
n, associating to a point

P ∈ H the unique line of B passing through H we get a birational
map from H to B.

Remark 5.10. By the same reason, if X is an irreducible component
of the focal locus which is met only once by a general line of the
congruence, X is rational.
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6. Congruences of order one with irreducible and

reduced focal locus

By Theorem 4.1, the only congruence of order one in P
3 whose focal

locus is irreducible and reduced is the congruence of the secant lines
of a skew cubic curve.

In P
4, congruences of this type are all classified in [14]. Precisely:

Theorem 6.1. Let S be an irreducible surface in P
4 whose trisecant

lines generate an irreducible congruence of order one. Then S is one
of the following:

1. a smooth projected Veronese surface;

2. a projection from a point P of a Del Pezzo surface S′ of P
5,

with P not lying in the plane of an irreducible conic of S′;

3. a projection of a smooth rational normal scroll of P
6, from a

line not intersecting it;

4. a (possibly singular) Bordiga surface.

So the possible degrees of the focal locus are 4, 5, 6, whereas the
upper bound given by Theorem 5.6 is (n − 1)2 − 1 = 8.

In P
n, for n ≥ 5, a complete classification is still missing. Only

the cases in which the focal locus is supposed to be not only irre-
ducible but also smooth are all described.

Theorem 6.2 ([12]). Let X ⊂ P
n be an irreducible and smooth sub-

variety of codimension two. Assume that n ≥ 3 and that the (n−1)-
secant lines of X generate an irreducible congruence of order one.
Then n ≤ 5 and one of the following happens:

1. n = 3 and X is a twisted cubic;

2. n = 4 and X is either a projected Veronese surface or a Bordiga
surface;

3. n = 5 and X is a threefold of degree 7, 9 or 10. In the first
case, B is a linear congruence and X is a Palatini scroll (see
Subsection 3.4); in the second case, X is a non-rational scroll,
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union of the lines parametrised by a K3 surface linear section
of G(1, 5); in the third case X is an aCM threefold defined
by the maximal minors of a 4 × 5 matrix of linear forms (see
Subsection 3.5).

In the literature, only two classes of examples are described of
congruences of order one with irreducible focal locus (for all n ≥ 3).
They are precisely: linear congruences and congruences of (n − 2)-
secant lines of arithmetically Cohen-Macaulay varieties, defined by
the minors of maximal order of a n × (n − 1) matrix of linear forms

(see §3). The degree of the focal locus is respectively n2−3n+4
2 and

(

n
2

)

.

Remark 6.3. As regards the congruences of Subsection 3.6, in P
5

their focal locus is irreducible, but we do not know if the same holds
in general. As we noted, the lines of B through a general focal point P
form a pencil in a 2–plane αP . It results that there are no parasitical
components of dimension n− 2 and the irreducible components of F
are all reduced of dimension n − 2. Moreover, for each component
Fi of F , its multiplicity ki in VΠ, introduced in Proposition 5.4, is
equal to one: actually, through a general point P of Fi, there is only
one line of B intersecting Π, that is the line joining P with αP ∩Π.

We conjecture that F is irreducible. In any case, applying Propo-
sition 5.4, we get that the focal locus has degree (n− 1)2 − (1+2a1 +

a2) = n2−3n+2
2 , i.e. one less than the degree obtained for linear con-

gruences. For more details see [18].

We give now a new class of examples in P
n, for all n ≥ 5, having

Φ = F of dimension n − 2 and degree (n − 1)2 − (n − 2). The first
case, in P

5, is described in an article of M. Sgroi ([34], 1927), and
does not seem to have been rediscovered in recent times.

Example 6.4. Let X ′ ⊂ P
n, n ≥ 5, be a degenerate subvariety of

degree n − 2 and codimension 2, contained in a hyperplane H. We
assume that X ′ is a projection of a rational normal scroll P

1 × P
n−3

of P
n, singular along a (n−3) space Π, with multiplicity n−3. X ′ is

obtained by projecting P
1 ×P

n−3 from a P
n−5 contained in the linear

span of a P
1 × P

n−4 ⊂ P
1 × P

n−3. The ideal sheaf of X ′, IX′ , has
the following minimal free resolution

0 → OPn(−(n − 2)) → OPn(−(n − 1)) ⊕OPn(−1) → IX′ → 0. (13)
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We define X as the subscheme of codimension 2 which is linked to
X ′ in a linkage of type (n−1, n−1), obtained with two hypersurfaces
having both Π as subvariety of multiplicity n − 2.

By mapping cone (see [31]), the ideal of X has the following
minimal free resolution:

0 → OPn(−(2n−3))⊕OPn(−n)
A
−→ 3OPn(−(n−1)) → IX → 0, (14)

where A is a 2 × 3 matrix of homogeneous polynomials of the form:

A =





L1 F1

L2 F2

L3 F3



 , (15)

with deg(Li) = 1 and deg(Fi) = n−2. X has degree (n−1)2−(n−2).

Theorem 6.5. There exists a congruence of lines of order one
formed by (n − 1)-secant lines to X.

Proof. By construction, there is a pencil of hypersurfaces of degree
n − 1 having X ∪ X ′ as base locus. Let P be a general point of P

n

and let T be the hypersurface of the pencil passing through P . Then
T ∩H = X ′∪K, where K ∼= P

n−2 and Π ⊂ K. Let H ′ ∼= P
n−1 be the

linear span of P and K, then H ′ ∩T = K ∪X ′′, where X ′′ has again
degree n− 2 and, by the assumption made on the singularities of T ,
it has Π as subspace of multiplicity n − 3. Therefore also X ′′ is a
projection of the Segre variety P

1×P
n−3. We note that P ∈ X ′′ \K.

Let ℓ ⊂ X ′′ be the unique line of the first ruling (ℓ ∼= P
1 × {Q},

Q ∈ P
n−3) passing through P . Note that ℓ ∩ Π = ∅. Let T ′ be any

other hypersurface of the pencil: ℓ intersects T ′ at n−1 points, and,
since ℓ ⊂ T , it intersects every hypersurface of the pencil at the same
n−1 points, therefore it is (n−1)-secant to X ∪X ′. But ℓ∩X ′ = ∅:
indeed ℓ ∩ X ′ ⊂ H ′ ∩ H = K, and also ℓ ∩ X ′ ⊂ ℓ ∩ T ′, therefore
ℓ∩X ′ ⊂ ℓ∩ (K ∩T ′). But K ∩T ′ = (n− 2)Π, so ℓ can meet X ′ only
on Π, which is impossible, therefore ℓ is (n − 1)-secant to X.

Conjecture 6.6. For n = 5, X results to be irreducible. We con-
jecture that it is irreducible for all n ≥ 5.
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7. Congruences of lines of order one in P4

In this section we collect the known results on the classification of the
congruences of lines of order one in P

4, considering all the various
possibilities for the dimension and the structure of the irreducible
components of the focal locus (with its natural structure of scheme).
We will also give some contributions towards the completion of the
classification.

Let B be a congruence of lines of order one in P
4 and F its focal

locus. We suppose that B is not the star of lines of centre a point.
In the light of the results of §5, we can distinguish first of all the
following three cases:

1. F is reduced;

2. F is not reduced but is generically reduced;

3. F is generically non reduced.

In case 1. F can have one, two or three irreducible components
all of dimension 2, in case 2. there are a component F1 of dimen-
sion two and a component F2 of dimension one, which is necessarily
non reduced, and possibly embedded in F1, in case 3. F is either
an irreducible surface with a multiple structure, or a union of two
irreducible surfaces, one reduced and the other non reduced. The
situation is summarised in Table 1.

As indicated in the table, the congruences with non reduced focal
locus are classified in [11] and [15]. Since the description of the
possible cases is rather involved, we will not report it here.

The only open cases are those with F reduced but reducible.
Some partial results were obtained already by Marletta in [28] and
are contained in [10]. We prove here the main points.

7.1. Congruences of order one with two reduced focal

surfaces

Assume that the focal locus of the congruence B is the union of
two surfaces F1 and F2, and B is formed by the secant lines of F1

meeting also F2. For i = 1, 2, we denote by mi the degree of Fi and
by ki the multiplicity of Fi in the hypersurface VΠ (see §5), where Π
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Focal locus F Components of F Congruence B Remarks

F reduced F irreducible trisecant lines to F
classified (see Th.
6.1)

two irreducible
components F1,
F2

lines secant F1 meet-
ing F2

either F2 is a plane or
F1 is a rational cubic
scroll (see Th. 7.1)

three irreducible
components F1,
F2, F3

lines meeting F1, F2

and F3

one of the compo-
nents is a plane (see
Th. 7.2)

F = F1 ∪ F2,
dim F1 = 2,
dim F2 = 1,
(F2)red = C

C 6⊂ F1
lines meeting F1 and
C

classified ([11])

C ⊂ F1
lines meeting F1 and
C

classified ([11])

F generically
non reduced

Fred irreducible lines meeting Fred
Fred is a plane, clas-
sified ([15])

lines secant Fred
Fred is a cubic scroll,
classified ([15])

F = F1 ∪ F2, F1

non reduced
lines meeting (F1)red
and F2

one component is a
plane and the other
a rational surface of
sectional genus 0,
classified ([15])

Table 1: Congruences of order one in P
4

is a general plane. For simplicity, we also assume that the general
hyperplane section of F1 is smooth, and denote by h its number of
apparent double points. Then:

Theorem 7.1. We keep the notations just introduced.

1. If the surfaces F1 and F2 intersect properly, then F1 is a ra-
tional normal scroll (possibly a cubic cone) and F2 is a plane.
Conversely, given a rational normal scroll F1 and a plane F2

intersecting properly, the congruence of the secant lines of F1

meeting F2 has order one, multidegree (1, 4) and three 1 – par-
asitical planes, i.e. the three planes generated by the conics
contained in F1 passing through two of the points of F1 ∩ F2.

2. If F1∩F2 is a curve, then either F2 is a plane or F1 is a rational
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normal cone, possibly a cubic cone.

Proof. The secant lines of F1 form a subvariety of G(1, 4), whose class
in the Chow ring can be easily computed using standard Schubert
calculus, and is

(

m1
2

)

σ11 + hσ20. Likewise, the class of the lines
meeting F2 is m2σ10. If the two surfaces intersect properly, the class
of B is the intersection of the two classes just computed, which is:

[B] = m2(hσ30 + (

(

m1

2

)

+ h)σ21).

Since B has order one, we obtain m2 = h = 1, so F2 must be a
plane and F1 have degree 3, because the only curves in P

3 with one
apparent double point are the skew cubics. Conversely, assume that
two such surfaces in general position are given. The secant lines of F1,
passing through a fixed point, form a planar pencil, hence precisely
one of those lines intersects also F2. Therefore the congruence has
order one.

If we consider two of the three points of F1 ∩F2, the plane of the
conic of F1 containing them intersects F2 along the line generated
by them, so it is parasitical for B. Formulas (8) and (9) now become
2k1 + k2 = a1 + 1 and 3k2

1 + k2
2 = a2

1 −x, where x is the contribution
of the parasitical planes, which in our case is 3. From Remark 5.5,
it follows that k1 = 2 and k2 = 1, hence a1 = 4.

Assume now that F1 ∩ F2 =: C is a curve and that F2 is not a
plane. The lines joining a point of C with another point of F1 form
a family of dimension 3, hence do not belong to B. If P ∈ P

4 is a
general point, the secant lines of F1 passing through P form a cone
of degree h, hence hm2 of these lines (counting multiplicities) meet
also F2. Only one of these lines belongs to B, which has order one,
hence the other u := hm2 − 1 lines must intersect F2 at a point of
C.

On the other hand, since F2 is not a plane, through a general
point Q ∈ F2 cannot pass infinitely many secant lines of F1 meeting
also C, since these lines would be lines of B, so varying the point Q,
we would obtain all the lines of B, which would have a fundamental
curve.

Therefore, through Q there pass h(m2 − 1) secant lines of F1

meeting again F2, that must coincide with the u secant lines of F1



202 P. DE POI AND E. MEZZETTI

passing through Q and meeting also C. This is due to the fact that,
if one of these h(m2−1) lines would meet F2 outside C, then it would
be a focal line, since it contains (at least) four focal points. So, B
would have a focal hypersurface.

So, we get u = hm2−1 = h(m2−1), therefore h = 1, that implies
m1 = 3.

7.2. Congruences of order one with three reduced focal

surfaces

Assume that the focal locus of the congruence B is the union of three
surfaces F1, F2 and F3, and B is formed by the lines meeting each
of them. For i = 1, 2, 3, we denote by mi the degree of Fi and by ki

the multiplicity of Fi in the hypersurface VΠ (see §5), where Π is a
general plane. Then:

Theorem 7.2. We keep the notations just introduced.

1. At least one of the surfaces F1, F2 and F3 is a plane.

2. If the surfaces F1, F2 and F3 intersect properly, then they are
all planes and B is a linear congruence. B has one parasitical
plane, i.e. the plane generated by the points F1 ∩ F2, F1 ∩ F3

and F2 ∩ F3.

Proof. If the three surfaces intersect two by two in a scheme of di-
mension zero, in the Chow ring of G(1, 4) we have:

[B] = m1m2m3(2σ21 + σ30),

Therefore, in order to obtain a congruence of order one, we must
have mi = 1, i = 1, 2, 3, i.e. the surfaces are all planes. It is well
known and easy to see that, given three planes in general position,
the lines meeting all of them form a linear congruence with one
parasitical plane.

From now on we will denote by Ci+j−2 the scheme (of dimension
less than or equal to one) intersection of Fi and Fj , 1 ≤ i < j ≤ 3.
The degree of Ci+j−2 will be indicated by ci+j−2. We can suppose
that at least C1 is a curve.
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Assume by contradiction that none of the surfaces F1, F2 and F3

is a plane.

We will denote by u the number of lines passing through a general
point P of P

4 which meet the—possibly empty—scheme Z, union of
the components of C2 ∪ C3 of dimension one, and meet also F1 and
F2.

Let χP denote the cone of the lines passing through P , meeting
both F1 and F2 but not passing through the points of C1. χP has
dimension two and degree m1m2−c1: actually we have to cut out the
points of C1, because the lines meeting C1 and F3 form a congruence
which is distinct from B (which is irreducible).

(m1m2 − c1)m3 lines of the cone χP meet also F3. Indeed,
(m1m2 − c1)m3 is the order of the—in general—reducible congru-
ence B′ of all the lines meeting F1, F2, and F3. B ⊂ B′ and B is the
closure of the lines meeting F1, F2, and F3 in three distinct points.
If the order of B′ is one, we deduce m3 = 1. If instead it has greater
order, we deduce that there is another component B′′ given by the
lines joining Z (Z 6= ∅ in this case) and F1; this congruence has order
u, so we get the formula

(m1m2 − c1)m3 = u + 1. (16)

Let us calculate u in another way. Fix a general point Q ∈ F3;
the number of lines of B′′ through Q is either finite, in which case
this number is u, or it is infinite. In this last case, by the generality of
Q, F3 would be a component of the fundamental locus of B′′; either
it is a parasitic plane and then F3 is a plane, or it is a 2-fundamental
locus, which it cannot be, since every line would be focal, containing
more than three foci.

Therefore, the number of lines of B′′ through Q is finite; this
number is also given by the degree of the intersection of the join of
Q with F3, with the cone χQ (keeping the above notation).

Then, we have proved that

u = (m1m2 − c1)(m3 − 1). (17)

From equations (16) and (17) we deduce that m1m2 = c1 + 1. This
means that, under the projection from a general point P ∈ P

4,
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πP : P
4

99K P
3, the projections of F1 and F2 intersect out of πP (C1)

in a line ℓ.

(πP ) |−1
F1∪F2

(ℓ) is the union of two lines ℓ1 ⊂ F1 and ℓ2 ⊂ F2 (non
necessarily distinct), and we get two such lines for every choice of
P ∈ P

4. We deduce that the trisecant line of B passing through P
must be contained in the intersection of the planes 〈P, ℓ1〉 and 〈P, ℓ2〉.
Then, ℓ1 and ℓ2 meet in (at least) one point, which, by definition,
must be contained in C1 = F1 ∩ F2, but this is impossible, since a
general line of the congruence B does not intersect C1.
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