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Klein-Gordon Type Equations with a

Singular Time-dependent Potential

D. Del Santo, T. Kinoshita and M. Reissig (∗)

Dedicated to the memory of Fabio Rossi

Summary. - In this note we study Klein-Gordon type Cauchy prob-
lems with a time-dependent singular potential. We ask for the
influence of the sign and the singularity order of the potential on
the regularity of solutions with respect to time.

1. Introduction

The present paper is devoted to the study of the Cauchy problem
for the following Klein-Gordon type equation with unbounded time-
dependent potential

utt −△u +
a(T − t)

(T − t)β
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1)

(t, x) ∈ [0, T )×R
n. Here β > 0 and a is a continuous function defined

on [0, T ]. We will set a(0) = a0 and it will be useful to introduce a
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reference function µ = µ(t) characterizing the behavior of a(T − t)
near T in the following way:

|a(s) − a0| ≤ µ(s) for all s ∈ [0, T ]. (2)

It is well-known that (1) is Hs-well-posed on each time interval [0, T0]
with T0 < T , that is, to given data u0 ∈ Hs and u1 ∈ Hs−1 there
exists a unique solution u ∈ C([0, T0],H

s) ∩ C1([0, T0],H
s−1) de-

pending continuously on the data. Thus u(t, ·) ∈ Hs for all t ∈ [0, T )
and the following questions are of interest:

what about the properties of the solution u with respect to t on the
whole interval [0, T ]? What are the correct function spaces B0 and B1

such that the solution u belongs to B0([0, T ],Hs)∩B1([0, T ],Hs−1)?

With a transformation in time we shift the singularity into t = 0,
that is, we consider the following backward Cauchy problem

utt −△u +
a(t)

tβ
u = 0, u(T, x) = u0(x), ut(T, x) = u1(x), (3)

(t, x) ∈ (0, T ] × R
n and we will study the regularity of the solution

with respect to t up to t = 0. We will distinguish essentially between
three different situations. The potential in the equation from (3) will
be called singular if β = 2 and a0 6= 0; the potential will be called
sub-singular if β = 2 and a0 = 0; finally the potential will be denoted
as super-singular if β > 2 and a0 6= 0.

Before giving a description of the content of the paper, it is inter-
esting to recall some problems connected with the one studied here
and in which singular time-dependent masses in the linear Klein-
Gordon problem are of importance.

The first one concerns the semi-linear wave equation utt −△u −
u5 = 0, which has, as remarked in [13], the solution u(t, x) = u(t) =
(3/4)1/4(T − t)−1/2. This fact has the considerable consequence that
the Cauchy problem

utt −△u − 3

4(T − t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (4)

has in general no solution u ∈ L2((0, T ),Hs), i.e. no energy solution
to given data u0 ∈ Hs and u1 ∈ Hs−1 with s ≥ 1, as localization
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in space and finite speed of propagation show. We will see that the
example (4) is not by chance. Moreover, let us consider the equation
utt − △u + u5 = 0. If we are interested in real time-dependent
solutions u ∈ L4(0, T ), the non-linear potential u5 can be written
in the form |u|4u, this means, the “coefficient” |u|4 is integrable.
A Gronwall type argument enables us to show that u ∈ L∞(0, T ).
Therefore, in the study of semi-linear equations it is sufficient to
prove u ∈ L4(0, T ) instead of u ∈ L∞(0, T ) (see [13]). But, when
u ∈ L2(0, T ), then such a reduction to L∞(0, T ) does not work.
The coefficient is in general not integrable. Thus, singular masses in
linear problems are of importance.

The second one concerns the global existence of large data so-
lutions to some semi-linear weakly hyperbolic Cauchy problems as
presented in [10]. If the principal part of the operator studied in
[10] coincides with the Grushin operator ∂tt − tλ△, then a standard
transformation leads to the study of

(

∂tt −△ +
a0

t2

)

u = 0 with a0 =
λ2 + 4λ

4(λ + 2)2
∈ (0, 1/4). (5)

There exist at least two different strategies to treat the corresponding
semi-linear model. The first one is to manipulate the operator by the
fundamental solution to the classical wave operator. The second one
is to manipulate the semi-linear operator by the fundamental solution
of the operator (5). This assumes a precise knowledge of this Klein-
Gordon operator with singular potential (cf. with open problems
from [10]). The second strategy is used in [18] and [19] to prove
the global existence of small data solutions for semi-linear Tricomi
type equations. The construction of the fundamental solution of the
operator ∂2

t − tm△ bases on theory of special functions, namely, on
the use of hypergeometric functions (see [4]).

The content of the present paper is the following: in Section 2
we study singular operators with a(t) ≡ a0 6= 0. This scale invariant
model case is studied by the theory of special functions. The results
are optimal and hint to effects we have to expect for more general
models which will be treated in the Sections 3 to 5. Such a strategy
is already used for example
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• in the theory of weakly hyperbolic equations (see [14] and [2]),

model cases: utt − t2luxx + atl−1ux = 0,

utt −
1

t4
exp(−2

t
)uxx + a

1

t4
exp(−1

t
)ux = 0;

• in the theory of Lp − Lq decay estimates for wave equations
with time-dependent propagation speed (see [11] and [6]),

model cases: utt − t2l △ u = 0,

utt − exp(2t) △ u = 0;

• in the theory of wave equations with weak dissipation (see [16]),

model case: utt −△ +
µ

1 + t
ut = 0.

Section 3 explains the influence of special classes of super-singular
potentials. Here the sign of the potential plays an important role. In
Section 4 we discuss general sub-singular potentials. Finally, Section
5 is devoted to the general case of a singular potential. In both
Sections 4 and 5 we introduce an auxiliary function µ = µ(t) as a
reference function which measures the asymptotic behavior of a =
a(t) at t = 0 (see (2)).

2. Scale invariant model case

Let us devote to the backward Cauchy problem

utt −△u +
a0

t2
u = 0, u(T, x) = u0(x), ut(T, x) = u1(x), (6)

with a constant a0 6= 0. Setting x := yt, τ = ln t−1, w(τ, y) :=
exp(1

2τ)u(τ, y), straight-forward calculations lead to the Klein-Gordon
model

wττ −△yw +
(

a0 −
1

4

)

w = 0 with Cauchy data. (7)

The model (7) explains our approach. If a0 > 1/4 we have a positive
mass which brings a stabilizing effect (hyperbolic WKB-analysis in
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the phase space). The case a0 = 1/4 leads to the wave case, this
should be considered as an exceptional case. If a0 < 1/4 we have
a negative mass which should bring some instability into the model
(as well as hyperbolic and elliptic WKB-analysis in the phase space).
But we have to exclude a0 = 0, thus it is reasonable to distinguish
between a0 ∈ (0, 1/4) and a0 < 0. This explains the following four
cases. The scaling property of the operator from (6) hints to applica-
tion of the theory of special functions. This will be done in the next
subsections.

2.1. The case a0 > 1/4

Let us start with ûtt + |ξ|2û + a0
t2

û = 0. Setting û = τρv, 2ρ =
1 + i

√
4a0 − 1, τ = t|ξ|, yields τvττ + 2ρvτ + τv = 0. A second

transformation z = 2iτ, w(z) = eiτv(τ) leads to

zwzz + (2ρ − z)wz − ρw = 0, 2ρ = 1 + i
√

4a0 − 1.

The equation zwzz +(γ−z)wz −αw = 0 is called Kummer’s equation
or confluent hypergeometric equation. Following [4] we know that
Φ(α, γ; z) and z1−γΦ(1 + α− γ, 2− γ; z) form a fundamental system
of solutions if γ is not an integer as in our case. Transforming back
gives

u1(t, ξ) = (t|ξ|)ρe−it|ξ|Φ(ρ, 2ρ; 2it|ξ|),
u2(t, ξ) = (t|ξ|)ρe−it|ξ|(2it|ξ|)1−2ρΦ(1 − ρ, 2 − 2ρ; 2it|ξ|).

Both solutions are continuous at ξ = 0, thus frequencies localized
near ξ = 0 imply smooth properties of the solution in the physi-
cal space. Consequently in the following we are allowed to restrict
ourselves to large frequencies. The initial conditions are û(T, ξ) =
û0(ξ), ût(T, ξ) = û1(ξ). We have û(t, ξ) = V1(t, ξ)û0(ξ)+V2(t, ξ)û1(ξ),
where we have set

V1(t, ξ) :=
u1(t, ξ)u2,t(T, ξ) − u2(t, ξ)u1,t(T, ξ)

u1(T, ξ)u2,t(T, ξ) − u1,t(T, ξ)u2(T, ξ)
;

V2(t, ξ) :=
u2(t, ξ)u1(T, ξ) − u1(t, ξ)u2(T, ξ)

u1(T, ξ)u2,t(T, ξ) − u1,t(T, ξ)u2(T, ξ)
.
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We have to determine the asymptotic behavior with respect to ξ of
V1, V2 and its first derivatives in t. Therefore we use the following
properties of Φ(α, γ; z):

• Φ is entire in z, Φ(α, γ; 0) = 1;

• |Φ(α, γ; z)| ≤ Cαγ |z|max(Re(α−γ),−Re α) for large |z| under the
restriction 0 < arg z < π;

• dzΦ(α, γ; z) = α
γ Φ(α + 1, γ + 1; z).

To determine the asymptotic behavior we divide the extended phase
space into two zones: the pseudo-differential zone i. e. the set {(t, ξ) :
t|ξ| ≤ N, |ξ| ≥ M} and the hyperbolic zone i. e. the set {(t, ξ) : t|ξ| ≥
N, |ξ| ≥ M}. In the pseudo-differential zone we have

|u1(t, ξ)| ≤ C(t|ξ|)1/2, |u2(t, ξ)| ≤ C(t|ξ|)1/2,

|u1,t(t, ξ)| ≤ Ct−1(t|ξ|)1/2, |u2,t(t, ξ)| ≤ Ct−1(t|ξ|)1/2;

while in the hyperbolic zone we have

|u1(t, ξ)| ∼ C, |u2(t, ξ)| ∼ C, |u1,t(t, ξ)| ∼ C|ξ|, |u2,t(t, ξ)| ∼ C|ξ|.

To estimate the denominator u1(T, ξ)u2,t(T, ξ)−u1,t(T, ξ)u2(T, ξ) let
us put p(t, ξ) = (t|ξ|)ρe−it|ξ| and write

u1(t, ξ) = p(t, ξ)w1(2it|ξ|), u2(t, ξ) = p(t, ξ)w2(2it|ξ|),

where w1(z) = Φ(ρ, 2ρ; z) and w2(z) = z1−ρΦ(1−ρ, 2−2ρ; z) satisfy
(see [4, page 253, formula (8)])

w1,z(z)w2(z) − w1(z)w2,z(z) = (2ρ − 1)z−2ρez.

Hence,

2i|ξ|p2(w1w2,z − w1,zw2)

= 2ei(−2 log 2
√

a0−1/4+π/2)
√

a0 − 1/4eπ
√

a0−1/4|ξ|.

Thus,

|u1(T, ξ)u2,t(T, ξ) − u1,t(T, ξ)u2(T, ξ)| = 2
√

a0 − 1/4eπ
√

a0−1/4|ξ|.
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Summarizing we obtain in the pseudo-differential zone {(t, ξ) : t|ξ| ≤
N, |ξ| ≥ M}:

|V1(t, ξ)| ≤ C(t|ξ|)1/2, |V2(t, ξ)| ≤ C(t|ξ|)1/2|ξ|−1,

|V1,t(t, ξ)| ≤ Ct−1/2|ξ|1/2, |V2,t(t, ξ)| ≤ Ct−1/2|ξ|−1/2;

and in the hyperbolic zone {(t, ξ) : t|ξ| ≥ N, |ξ| ≥ M}:

|V1(t, ξ)| ≤ C, |V2(t, ξ)| ≤ C|ξ|−1, |V1,t(t, ξ)| ≤ C|ξ|, |V2,t(t, ξ)| ≤ C.

Using these estimates in

û(t, ξ) = V1(t, ξ)û0(ξ) + V2(t, ξ)û1(ξ),

ût(t, ξ) = V1,t(t, ξ)û0(ξ) + V2,t(t, ξ)û1(ξ),

respectively, and taking into account the fact that t ∈ (0, T ], we
obtain the following result:

Theorem 2.1. Let us assume a0 > 1/4. Then the Cauchy problem

utt −△u +
a0

(T − t)2
u = 0 , u(0, x) = u0(x), ut(0, x) = u1(x)

with data u0, u1 belonging to Hs, Hs−1 respectively has a uniquely
determined solution u ∈ C([0, T ],Hs) ∩ C1([0, T ),Hs−1) with (T −
t)

1
2 ut ∈ L∞((0, T ),Hs−1).

2.2. The case a0 = 1/4

In this case we obtain Kummer’s equation zwzz +(1−z)wz− 1
2w = 0.

This is the so-called logarithmic case and as a fundamental system
of solutions we get Ψ(1

2 , 1; z) and ezΨ(1
2 , 1;−z). For the transformed

equation we obtain the fundamental system of solutions

u1(t, ξ) = (t|ξ|)1/2e−it|ξ|Ψ
(1

2
, 1; 2it|ξ|

)

,

u2(t, ξ) = (t|ξ|)1/2eit|ξ|Ψ
(1

2
, 1;−2it|ξ|

)

.

From [17, page 103] we have

Ψ
(1

2
, 1; 2it|ξ|

)

= H−
(1

2
, 1; 2it|ξ|

)

e−iε 1
2
π,

Ψ
(1

2
, 1;−2it|ξ|

)

= H+

(1

2
, 1; 2it|ξ|

)

eiε 1
2
π,
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here ε is either 1 or −1.
Straight-forward calculations imply

u1,t(t, ξ)u2(t, ξ) − u2,t(t, ξ)u1(t, ξ)

= −i|ξ|2t
(

2Ψ
(1

2
, 1; 2it|ξ|

)

Ψ
(1

2
, 1;−2it|ξ|

)

+Ψ
(3

2
, 2;−2it|ξ|

)

Ψ
(1

2
, 1; 2it|ξ|

)

+Ψ
(3

2
, 2; 2it|ξ|

)

Ψ
(1

2
, 1;−2it|ξ|

))

by using the rule

dzΨ(α, γ; z) = −αΨ(α + 1, γ + 1; z).

Taking into account of the formula given in [4, page 278] we have

Ψ(α, γ; z) =

N
∑

k=0

(−1)kCα,γ,kz
−α−k + O(|z|−α−N−1),

N = 0, 1, 2, · · · , z → ∞, −3

2
π < argz <

3

2
π,

for real α, γ. Consequently the Wronskian at t = T, |ξ| large, can
be estimated as follows:

|u1,t(T, ξ)u2(T, ξ) − u2,t(T, ξ)u1(T, ξ)|

≥ |ξ|2T
∣

∣

∣
H−

(1

2
, 1; 2iT |ξ|

)

H+

(1

2
, 1; 2iT |ξ|

)
∣

∣

∣
.

From [17, formula (2.1.23)] we have

H+(α, γ; z) ∼ zα−γ(1 +
∞

∑

k=1

Cα,γ,kz
−k),

H−(α, γ; z) ∼ (e−πiz)−α(1 +
∞
∑

k=1

Cα,γ,kz
−k),

|H+(α, γ; z)| ≤ |z|α−γ , |H−(α, γ; z)| ≤ |z|−α

for 0 < arg z < π and large |z|. Then we obtain

|u1,t(T, ξ)u2(T, ξ) − u2,t(T, ξ)u1(T, ξ)|
≥ C|ξ|2T

(

|ξ|− 1
2 |ξ|− 1

2

)

≥ C|ξ|
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for large frequencies. Using

|Ψ(α, γ; z)| ∼ | log z| for small |z| we arrive at the following
estimates:

in the pseudo-differential zone {(t, ξ) : t|ξ| ≤ N, |ξ| ≥ M}:

|V1(t, ξ)| ≤ C(t|ξ|) 1
2 | log(t|ξ|)|, |V2(t, ξ)| ≤ C(t|ξ|) 1

2 | log(t|ξ|)||ξ|−1,

|V1,t(t, ξ)| ≤ Ct−1/2|ξ| 12 | log(t|ξ|)|,
|V2,t(t, ξ)| ≤ Ct−1/2|ξ| 12 | log(t|ξ|)||ξ|−1;

and in the hyperbolic zone {(t, ξ) : t|ξ| ≥ N, |ξ| ≥ M}:

|V1(t, ξ)| ≤ C, |V2(t, ξ)| ≤ C|ξ|−1, |V1,t(t, ξ)| ≤ C|ξ|, |V2,t(t, ξ)| ≤ C.

We collect the results in the following:

Theorem 2.2. Let us assume a0 = 1/4. Then the statement of
Theorem 2.1 holds with u ∈ C([0, T ],Hs)∩C1([0, T ),Hs−1) and (T−
t)

1
2

(

log 1
T−t

)−1
ut ∈ L∞((0, T ),Hs−1).

2.3. The case a0 ∈ (0, 1/4)

Now 2ρ = γ = 1+
√

1 − 4a0. To determine the asymptotic behav-
ior we define the same zones as in the case a0 > 1/4. We conclude
in the pseudo-differential zone:

|u1(t, ξ)| ≤ C(t|ξ|)ρ, |u2(t, ξ)| ≤ C(t|ξ|)1−ρ,

|u1,t(t, ξ)| ≤ C t−1(t|ξ|)ρ, |u2,t(t, ξ)| ≤ C t−1(t|ξ|)1−ρ,

and in the hyperbolic zone we get the same estimates as in the case
a0 > 1/4. Summarizing gives

in the pseudo-differential zone {(t, ξ) : t|ξ| ≤ N, |ξ| ≥ M}:

|V1(t, ξ)| ≤ C(t|ξ|)1−ρ, |V2(t, ξ)| ≤ C(t|ξ|)1−ρ|ξ|−1,

|V1,t(t, ξ)| ≤ Ct−ρ|ξ|1−ρ, |V2,t(t, ξ)| ≤ Ct−ρ|ξ|−ρ;

and in the hyperbolic zone {(t, ξ) : t|ξ| ≥ N, |ξ| ≥ M}:

|V1(t, ξ)| ≤ C, |V2(t, ξ)| ≤ C|ξ|−1, |V1,t(t, ξ)| ≤ C|ξ|, |V2,t(t, ξ)| ≤ C.

We have:
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Theorem 2.3. Let us assume a0 ∈ (0, 1/4). Then the statement
of Theorem 2.1 holds with u ∈ C([0, T ],Hs) ∩ C1([0, T ),Hs−1) and

(T − t)
1+

√
1−4a0
2 ut ∈ L∞((0, T ),Hs−1).

2.4. The case a0 < 0

Looking at the results in the case of a0 ∈ (0, 1/4) one may expect
a singular behavior of the solution itself in t = T . To study the
present situation we will use some results of the theory of Euler-
Poisson-Darboux equation (see [15] and [16]). Introducing v̂(t, ξ) =

( t
T )−

d
2 û(t, ξ) with d = 1 −√

1 − 4a0 we obtain

v̂tt + |ξ|2v̂ +
d

t
v̂t = 0, d ∈ (−∞, 1),

and consequently we deduce the Euler-Poisson-Darboux equation

vtt −△v +
d

t
vt = 0 for d ∈ (−∞, 1).

Setting ρ = d−1
2 = −

√
1−4a0

2 we have the following known represen-
tations:

• For non-integer ρ:

v̂(t, ξ)(t|ξ|)ρ = C1(ξ)Jρ(t|ξ|) + C2(ξ)J−ρ(t|ξ|),

• for integer ρ:

v̂(t, ξ)(t|ξ|)ρ = C1(ξ)Jρ(t|ξ|) + C2(ξ)Yρ(t|ξ|),

where Jρ, J−ρ denote the Bessel functions and Yρ the Weber func-
tion. Using the asymptotic behavior of Jρ, J−ρ and Yρ and the value
of Jρ at τ = t|ξ| = 0 and for τ = t|ξ| → +∞, brings

v ∈
k

⋂

j=0

Cj([0, T ],Hs−j) for k ≤
√

1 − 4a0 .

Taking into account the fact that lim
τ→0

τρJ−ρ(τ) = const. 6= 0 we

obtain:
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Theorem 2.4. Let us assume a0 < 0. Then the statement of Theo-
rem 2.1 holds with u ∈ C([0, T ),Hs) ∩ C1([0, T ),Hs−1) such that

(T − t)
−1+

√
1−4a0
2 u ∈ L∞((0, T ),Hs)

and

(T − t)
1+

√
1−4a0
2 ut ∈ L∞((0, T ),Hs−1).

Example 2.1. The function u(t) = (T − t)(1−
√

1−4a0)/2 satisfies the
equation

utt −△u +
a0

(T − t)2
u = 0.

This shows the optimality of the statement from Theorem 2.4.

Remark 2.1. All the results of this section describe in an optimal
way the influence of a singular potential with a(t) ≡ a0 6= 0.

Remark 2.2. We can use the results of this section to obtain energy
estimates or Lp − Lq decay estimates for solutions to

utt −△u +
a0

(1 + t)2
u = 0

(see [5]).

3. Super-singular potentials

3.1. Positive super-singular potentials

As a model case we consider the Cauchy problem

utt −△u +
a0

(T − t)β
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (8)

with a0 > 0, β > 2.

Theorem 3.1. Let us consider the Cauchy problem (8). If the data
u0, u1 are supposed to belong to Hs,Hs−1 respectively, then there ex-
ists a uniquely determined solution u∈C([0, T ),Hs)∩C1([0, T ),Hs−1)

with u ∈ L∞((0, T ),Hs) and (T − t)
β
4 ut ∈ L∞((0, T ),Hs−1).
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Proof. As usual we transform the above Cauchy problem into the
following one

tβûtt + tβ|ξ|2û + a0û = 0, û(T, ξ) = û0(ξ), ût(T, ξ) = û1(ξ).

Now we introduce a new variable τ = 2
β−2t−

β−2
2 and the new function

v = v(τ, ξ) = û(t, ξ). Then the above Cauchy problem is transferred
to

vττ +
|ξ|2

Cβτ
2β

β−2

v + a0v +
β

(β − 2)τ
vτ = 0,

v(τ0, ξ) = v0(ξ), vτ (τ0, ξ) = v1(ξ)

with τ0 := 2
β−2T−β−2

2 , v0(ξ) := û0(ξ), v1(ξ) := −T
β
2 û1(ξ) and with

a positive constant Cβ. Finally, we introduce the new function

w(τ, ξ) = τ
β

2(β−2) v(τ, ξ). Then we get

wττ +
|ξ|2

Cβτ
2β

β−2

w + a0w +
β2 − 4β

4(β − 2)2τ2
w = 0,

w(τ0, ξ) = w0(ξ), wτ (τ0, ξ) = w1(ξ)

with w0(ξ) := τ
β

2(β−2)

0 v0(ξ) and

w1(ξ) := τ
β

2(β−2)

0 v1(ξ) +
β

2(β − 2)
τ

4−β
2(β−2)

0 v0(ξ).

First we assume that (t, ξ), |ξ| ≥ M, belongs to the pseudo-different-

ial zone Zpd(N) = {(t, ξ) : t
β
2 |ξ| ≤ N} (Zpd(N) = {(τ, ξ) : τ− β

β−2 |ξ| ≤
N}). Here N denotes a universal large constant connected with the
definition of zones. We introduce the functions tξ, τξ respectively,

as the solutions of t
β
2
ξ |ξ| = N , τ

− β
β−2

ξ |ξ| = N . To study the above
equation we introduce the energy

E2(w)(τ, ξ) := |wτ |2 +
( |ξ|2

Cβτ
2β

β−2

+ a0 +
β2 − 4β

4(β − 2)2τ2

)

|w|2.

Here we take account that it is sufficient to consider a small time
interval [0, T ]. Instead of the Cauchy problem (1) we may prescribe
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Cauchy data on t = t0 with t0 near to T because the potential
is regular on [0, t0], that is, we have on this interval the typical
regularity of the solution and its first derivatives in the evolution
spaces. If we study the Cauchy problem on [t0, T ), then shifting the
singularity into t = 0 means, that the new interval (0, T1] is small.
So T can be assumed to be small from the beginning. Thus to a
given a0 and β > 2 we can choose T small, thus τ0 large, such that
E2(w)(τ, ξ) ≥ 0 on the set {(τ, ξ) ∈ [τ0,∞) × {|ξ| ≥ M}}. After
differentiation with respect to τ we obtain

dτE
2(w)(τ, ξ) = − 2β

β − 2

|ξ|2

Cβτ
2β

β−2
+1

|w|2 − β2 − 4β

2(β − 2)2τ3
|w|2.

If β ≥ 4, then dτE2(w)(τ, ξ) ≤ 0. If β ∈ (2, 4), then dτE
2(w)(τ, ξ) ≤

4β−β2

2(β−2)2τ3 E2(w)(τ, ξ). Due to the term τ−3 we may conclude in both

cases 0 ≤ E2(w)(τ, ξ) ≤ CE2(w)(τξ , ξ), where the constant C is
independent of τ ∈ [τξ,∞). This inequality gives us the following
estimate for the solution in Zpd(N):

|wτ (τ, ξ)|2 +
|ξ|2

τ
2β

β−2

|w(τ, ξ)|2 +
1

τ2
|w(τ, ξ)|2 + |w(τ, ξ)|2

≤ C
(

1 +
1

τ2
ξ

+
|ξ|2

τ
2β

β−2

ξ

)

|w(τξ , ξ)|2 + |wτ (τξ, ξ)|2.

The first backward transformation gives

τ
β

β−2 |vτ (τ, ξ)|2 +
|ξ|2

τ
β

β−2

|v(τ, ξ)|2 + τ
β

β−2 |v(τ, ξ)|2 + τ
4−β
β−2 |v(τ, ξ)|2

≤ τ
β

β−2

ξ |vτ (τξ, ξ)|2 +
( |ξ|2

τ
β

β−2

ξ

+ τ
β

β−2

ξ + τ
4−β
β−2

ξ

)

|v(τξ, ξ)|2.

The second backward transformation gives

t
β
2 (|ût(t, ξ)|2 + |ξ|2|û(t, ξ)|2) + t−

β
2 |û(t, ξ)|2 + t−

4−β
2 |û(t, ξ)|2

≤ t
β
2
ξ (|ût(tξ, ξ)|2 + |ξ|2|û(tξ, ξ)|2) +

(

t
−β

2
ξ + t

− 4−β
2

ξ

)

|û(tξ, ξ)|2.
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Now let us assume

|ût(tξ, ξ)|2 + 〈ξ〉2|û(tξ, ξ)|2 ≤ C(〈ξ〉2|û0(ξ)|2 + |û1(ξ)|2). (9)

Then from the second backward transformation we obtain for all
t ∈ (0, tξ ]

|û(t, ξ)|2 ≤ (ttξ)
β
2 (|ût(tξ, ξ)|2 + |ξ|2|û(tξ, ξ)|2)

+
( t

tξ

)
β
2 |û(tξ, ξ)|2 +

t
β
2

t
4−β

2
ξ

|û(tξ, ξ)|2

≤ 〈ξ〉−2C(〈ξ〉2|û0(ξ)|2 + |û1(ξ)|2).

(10)

Here we used the definition of tξ, (9) and β > 2. Moreover, we
conclude for all t ∈ (0, tξ]

t
β
2 |ût(t, ξ)|2 ≤ C(〈ξ〉2|û0(ξ)|2 + |û1(ξ)|2). (11)

Now let us devote to the hyperbolic zone Zhyp(N) = {(t, ξ) : t
β
2 |ξ| ≥

N}. Our goal is to show

|ût(t, ξ)|2 + 〈ξ〉2|û(t, ξ)|2 ≤ C(〈ξ〉2|û0(ξ)|2 + |û1(ξ)|2) (12)

for all t ∈ [tξ, T ]. Setting t = tξ we obtain (9), and (12) together
with (10) and (11) leads to the statements of our theorem.

To derive (12) we define E2(û)(t, ξ) = |ût(t, ξ)|2+
(

|ξ|2+ a0

tβ

)

|û(t, ξ)|2.
Thus we have

dtE
2(û)(t, ξ) =

−βa0

tβ+1
|û(t, ξ)|2 ≥ − C

tβ+1|ξ|2 E2(û)(t, ξ).

Hence,

E2(û)(T, ξ) ≥ E2(û)(t, ξ) exp
(

−
∫ T

t

C

τβ+1|ξ|2 dτ
)

.

Thus it follows that

E2(û)(t, ξ) ≤ E2(û)(T, ξ) exp
( C

tβ|ξ|2
)

≤ E2(û)(T, ξ) exp CN .
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But this leads to

(|ξ|2 +
a0

tβ
)1/2|û(t, ξ)| + |Dtû(t, ξ)| ≤ C(〈ξ〉|û0(ξ)| + |û1(ξ)|).

The last inequality gives immediately (12). The theorem is proved.

Remark 3.1. Theorem 3.1 is a reasonable continuation of Theorem
2.1 for β = 2 to β > 2.

3.2. Negative super-singular potentials

As a model case we consider the Cauchy problem

utt −△u − a0

(T − t)β
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

with a0 > 0 and β > 2,
(13)

where we suppose

u0, u1 ∈ C∞
0 (Rn) with

∫

Rn

u0(x)dx > 0 and

∫

Rn

u1(x)dx ≥ 0. (14)

Recalling the result of Theorem 2.4 one may suspect that the pres-
ence of the negative super-singular potential should have a deterio-
rating influence on the properties of the solution (with respect to t).
The following theorem shows that it is really so.

Theorem 3.2. Let us consider the Cauchy problem (13) under the
assumption (14). Then there does not exist any positive constant α
such that (T − t)αu ∈ L∞((0, T ),Hs).

Proof. The proof is based on the so-called functional method: see for
instance [3, Ch.2].

Obviously, u ∈ C∞([0, T ) × R
n) and if supp u0, supp u1 ⊆ {x ∈

R
n : |x| ≤ R}, then supp u(t, ·) ⊆ {x ∈ R

n : |x| ≤ R + t}. We set

U(t) =

∫

Rn

u(t, x)dx.

Then
U ′′(t) − a0

(T − t)β
U(t) = 0 in [0, T ) (15)
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with U(0) =
∫

Rn u0(x)dx > 0 and U ′(0) =
∫

Rn u1(x)dx ≥ 0. We
claim now that U ′′(t) > 0 for all t ∈ [0, T ) and, consequently,

U(t) ≥ U(0) + tU ′(0) ≥ U(0) (16)

for all t ∈ [0, T ). In fact from (15) we have U ′′(0) = a0T
−βU(0) > 0

and if we suppose that there exists t̄ ∈ (0, T ) such that U ′′(t̄) = 0
and U ′′(t) > 0 for all t ∈ [0, t̄), since we have, on one side, from
the convexity of U on [0, t̄], U(t̄) ≥ U(0) + tU(0) > 0 and, on the
other side, again from (15), U(t̄) = 0, we obtain a contradiction.
Consequently, U ′′(t) > 0 for all t ∈ [0, T ) and the convexity of U
gives (16). From (15) and (16) we deduce that

U ′′(t) =
a0

(T − t)β
U(t) ≥ a0

(T − t)β
U(0) (17)

for all t ∈ [0, T ). Integrating (17) and taking into account that
U ′(0) ≥ 0 we have

U ′(t) ≥ −a0U(0)

β − 1

(

T 1−β − (T − t)1−β
)

for all t ∈ [0, T ). Again by integration, taking now into account that
U(0) > 0, we obtain

U(t) ≥ −C1 + C ′
1(T − t)−γ (18)

for all t ∈ [0, T ), where

C1 =
a0U(0)

β − 2
T 2−β > 0, C ′

1 =
a0U(0)

(β − 1)(β − 2)
> 0

and γ = β − 2 > 0. We claim now that for all integers n ≥ 1 there
exist positive constants Cn and C ′

n such that

U(t) ≥ (−Cn(T − t)γ + C ′
n)(T − t)−nγ (19)

for all t ∈ [0, T ), where γ = β − 2 > 0.

We prove this claim by a recursive argument. The inequality (18)
gives (19) in the case n = 1. Let (19) hold for a fixed n. From (15)
we obtain

U ′′(t) =
a0

(T − t)β
U(t) ≥ −a0Cn(T − t)−(n−1)γ−β +a0C

′
n(T − t)−nγ−β
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for all t ∈ [0, T ). Integrating the above inequality and taking into
consideration that

U ′(0) ≥ 0,
a0Cn

(n − 1)γ + β − 1
T−(n−1)γ−β+1 > 0,

we conclude

U ′(t) ≥ − a0Cn

(n − 1)γ + β − 1
(T − t)−(n−1)γ−β+1

+
a0C

′
n

nγ + β − 1

(

(T − t)nγ−β+1 − T nγ−β+1
)

,

that is,

U ′(t) ≥ −a0Cn

(n − 1)γ + β − 1
(1 + fn(t))(T − t)−(n−1)γ−β+1

+
a0C

′
n

nγ + β − 1
(T − t)−nγ−β+1

(20)

for all t ∈ [0, T ), where

fn(t) =
C ′

n

(

(n − 1)γ + β − 1
)

Cn(nγ + β − 1)
(T − t)(n−1)γ+β−1 T−nγ−β+1.

We remark that fn is a positive bounded function on [0, T ]. So (20)
implies that

U ′(t) ≥ −a0C̃n(T − t)−(n−1)γ−β+1 + a0C̃
′
n(T − t)−nγ−β+1 (21)

for all t ∈ [0, T ), where

C̃n =
Cn

(n − 1)γ + β − 1

(

1 +
C ′

n

(

(n − 1)γ + β − 1
)

Cn

(

nγ + β − 1
) T−γ

)

and

C̃ ′
n =

C ′
n

nγ + β − 1
.

Integrating (21) and taking into account that U(0) > 0 we obtain

U(t) ≥ −a0C̃nnγ(1+gn(t))(T −t)−nγ +
a0C̃

′
n

(n + 1)γ
(T −t)−(n+1)γ (22)
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for all t ∈ [0, T ), where

gn(t) =
nC̃ ′

n

(n + 1)C̃n

(T − t)nγ T−(n+1)γ .

From (22) we immediately obtain that there exist positive constants
Cn+1 and C ′

n+1 such that

U(t) ≥
(

− Cn+1(T − t)γ + C ′
n+1

)

(T − t)−(n+1)γ

for all t ∈ [0, T ) and the claim (19) is proved.

From the claim (19) we deduce that for all integers n ≥ 1 there
exist tn ∈ (0, T ) and a positive constant Dn such that, for all t ∈
(tn, T ),

U(t) ≥ Dn(T − t)−n.

Since by Schwarz’s inequality we have that U(t) ≤ CR,T ‖u(t, ·)‖L2(Rn)

we obtain that for all integers n ≥ 1 there exist tn ∈ (0, T ) and a
positive constant D̃n such that

‖u(t, ·)‖L2(Rn) ≥ D̃n(T − t)−n

for all t ∈ (tn, T ). This completes the proof.

Remark 3.2. Theorem 3.2 is a reasonable continuation of Theorem
2.4 for β = 2 to β > 2.

4. Sub-singular potentials

In this section we shall devote to the case when the coefficient a(T−t)
(T−t)2

is not a quadratic singular potential, that is, the continuous function
a(t) on [0, T ] satisfies

|a(t)| ≤ µ(t) for all t ∈ [0, T ], (23)

where the reference function

µ is continuously differentiable, µ ≥ 0 on [0, T ] and µ(0) = 0, (24)
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that is, with a0 = 0 in (2). The case of sub-singular potentials can
be regarded as a family of singular potentials near the classical wave
case without any potential.

In this section we take into consideration reference functions sat-
isfying conditions from one of the following two cases A or B:

Case A:

∫ T

0

∫ s

0

µ(T − r)

(T − r)2
drds ≡ α(T ) < ∞

(e.g. µ(t) = tβ, β ∈ (0, 1], or µ(t) = (log t−1)−1 · · · (log[n] t−1)−γ , γ >
1 for t ∈ (0, T ]),

Case B: µ′(t) ≤ δ
µ(t)

t
with 0 < δ < 1

(e.g. µ(t) = tβ, β ∈ (0, 1), or µ(t) = (log t−1)−1 · · · (log[n] t−1)−1 for
t ∈ (0, T ]).

Remark 4.1. Most of the reference functions µ satisfy both cases
A and B. But, the function µ(t) = (log t−1)−1 · · · (log[n] t−1)−1 for
t ∈ (0, T ] is excluded in case A and the functions µ(t) = t or µ(t) =
t log t−1 for t ∈ (0, T ] are excluded in case B.

Theorem 4.1. Assume that (23) and (24) hold. Moreover, we as-
sume that the reference function µ satisfies the conditions from Case
A or Case B. Let us consider the family of Cauchy problems

utt −△u +
a(T − t)

(T − t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Then there exists a uniquely determined solution u ∈ C([0, T ),Hs)∩
C1([0, T ),Hs−1) with

(

exp
[

K

∫ t

0

µ(T − s)

T − s
ds

])−1
u ∈ L∞((0, T ),Hs), (25)

((

1 +

∫ t

0

µ(T − s)

(T − s)2
ds

)

exp
[

K

∫ t

0

µ(T − s)

T − s
ds

])−1
ut

∈ L∞((0, T ),Hs−1),

(26)

if the data u0, u1 are supposed to belong to Hs, Hs−1, respectively.
Here K is a positive constant. In particular, if

∫ T
0

µ(T−s)
T−s ds < ∞,
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then

u ∈ L∞((0, T ),Hs),

(

1 +

∫ t

0

µ(T − s)

(T − s)2
ds

)−1
ut ∈ L∞((0, T ),Hs−1).

(27)

Proof. Let us consider the Klein-Gordon equation

utt −△u − (A′(t) + A(t)2)u = 0, (28)

where A(t) with A(0) = 0 will be defined later. A Gronwall type ar-
gument requires the integrability of |A′(t)+A(t)2| with the standard
energy

E(t) := ‖(ût, 〈ξ〉û)(t, ·)‖L2 .

For the cancellation of the term −(A′(t) + A(t)2)u, we shall define
the following modified energy for the solutions to (28):

E(t) :=
∥

∥

∥

(

ût − A(t)û, 〈ξ〉û
)
∥

∥

∥

L2
=

∥

∥

∥

( 〈ξ〉
〈ξ〉A

ût,
A(t)

〈ξ〉A
ût − 〈ξ〉Aû

)
∥

∥

∥

L2
,(29)

where 〈ξ〉A =
√

|ξ|2 + A(t)2 + 1. From the definition we find that

‖〈ξ〉û(t, ·)‖L2 ≤ E(t), ‖ût(t, ·)‖L2 ≤ (1 + |A(t)|)E(t)

and E(0) = E(0).
(30)

By (28) and (29) we deduce that

d

dt
E(t)2 = 2Re

∫

Rξ

(

ûtt − A′û − Aût

)

(ût − Aû) dξ

+2Re

∫

Rξ

〈ξ〉2ûtû dξ

= 2Re

∫

Rξ

(

− 〈ξ〉2û + û
)

(ût − Aû) dξ

+2Re

∫

Rξ

〈ξ〉2ûtû dξ − 2A‖ût − Aû‖2
L2

= 2A‖〈ξ〉û‖2
L2 + 2Re

∫

Rξ

(ût − Aû)ûdξ − 2A‖ût − Aû‖2
L2

≤ 2(|A| + 1)E(t)2.
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Hence, we have
d

dt
E(t) ≤ (|A(t)| + 1)E(t),

and by (30) Gronwall’s inequality yields

E(t) ≤ E(0) exp

∫ t

0

(

|A(s)| + 1
)

ds. (31)

If A(t) is given by the following Ricatti equation:

A′(t) =
−a(T − t)

(T − t)2
− A(t)2, (32)

then (31) is also the energy inequality for solutions to utt − △u +
a(T−t)
(T−t)2 = 0.

Now we define recursively the sequence {Ak(t)}k≥0 for t ∈ [0, T )
by

A0(t) = 0, Ak+1(t) =

∫ t

0

−a(T − s)

(T − s)2
ds −

∫ t

0
Ak(s)

2ds. (33)

Noting that

∫ t

0

µ(T − s)

(T − s)2
ds =

µ(T − t)

T − t
− µ(T )

T
+

∫ t

0

µ′(T − s)

T − s
ds

≤ µ(T − t)

T − t
+ δ

∫ t

0

µ(T − s)

(T − s)2
ds,

we obtain in the case B
∫ t

0

µ(T − s)

(T − s)2
ds ≤ 1

1 − δ

µ(T − t)

T − t
, (34)

and in both cases A and B

µ(T − t)

T − t
≤

∫ t

0

µ(T − s)

(T − s)2
ds +

µ(T )

T
. (35)

We assume that

|Ak(t)| ≤







2M
∫ t
0

µ(T−s)
(T−s)2

ds (M > 1) in the case A,

2M µ(T−t)
T−t

(

M = 1
1−δ > 1

)

in the case B.
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Without loss of generality we may suppose that T is sufficiently
small, that is,

T ≤
{

α−1( 1
4M2 ) in the case A,

µ−1( 1
4M2 ) in the case B.

Thus, by (23) and (34) we deduce that for t ∈ [0, T ) it holds in the
case A

|Ak+1(t)|

≤
∫ t

0

µ(T − s)

(T − s)2
ds + 4M2

∫ t

0

∫ s

0

µ(T − r)

(T − r)2
dr

∫ s

0

µ(T − r)

(T − r)2
drds

=

∫ t

0

µ(T − s)

(T − s)2
ds + 4M2

(

∫ t

0

∫ s

0

µ(T − r)

(T − r)2
drds

∫ t

0

µ(T − s)

(T − s)2
ds

−
∫ t

0

∫ s

0

∫ r

0

µ(T − τ)

(T − τ)2
dτdr

µ(T − s)

(T − s)2
ds

)

≤
∫ t

0

µ(T − s)

(T − s)2
ds + 4M2

∫ T

0

∫ s

0

µ(T − r)

(T − r)2
drds

∫ t

0

µ(T − s)

(T − s)2
ds

≤ (1 + 4M2α(T ))

∫ t

0

µ(T − s)

(T − s)2
ds ≤ 2M

∫ t

0

µ(T − s)

(T − s)2
ds.

Moreover, we conclude in the case B

|Ak+1(t)| ≤
∫ t

0

µ(T − s)

(T − s)2
ds + 4M2

∫ t

0

µ(T − s)2

(T − s)2
ds

≤ (1 + 4M2µ(T ))

∫ t

0

µ(T − s)

(T − s)2
ds

≤ 2

∫ t

0

µ(T − s)

(T − s)2
ds ≤ 2M

µ(T − t)

T − t
.

Consequently, the solution A(t) to (32) satisfies for t ∈ [0, T )

|A(t)| ≤
{

2M
∫ t
0

µ(T−s)
(T−s)2

ds in the case A,

2M µ(T−t)
T−t in the case B.

(36)

Therefore, by (30), (31) and (36) we have

E(t) ≤







E(0) exp
[

2Mα(T ) + T
]

in the case A,

E(0) exp
[

2M
∫ t
0

µ(T−s)
T−s ds + T

]

in the case B.
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Hence, by (30) and (36) it follows that

‖u(t, ·)‖H1 ≤







E(0) exp
[

2Mα(T ) + T
]

in the case A

E(0) exp
[

2M
∫ t
0

µ(T−s)
T−s ds + T

]

in the case B

≤ CT exp
[

K

∫ t

0

µ(T − s)

T − s
ds

]

,

and by (35)

‖ut(t, ·)‖L2

≤







E(0)(1 + 2M
∫ t
0

µ(T−s)
(T−s)2

ds) exp
[

2Mα(T ) + T
]

in c. A,

E(0)(1 + 2M µ(T−t)
T−t ) exp

[

2M
∫ t
0

µ(T−s)
T−s ds + T

]

in c. B,

≤







CT (1 +
∫ t
0

µ(T−s)
(T−s)2

ds) in the case A,

CT (1 + µ(T−t)
T−t ) exp

[

K
∫ t
0

µ(T−s)
T−s ds

]

in the case B,

≤ CT

(

1 +

∫ t

0

µ(T − s)

(T − s)2
ds

)

exp
[

K

∫ t

0

µ(T − s)

T − s
ds

]

.

This implies (25) and (26). In this way all statements are proved.

Example 4.1. If a(t) = atβ, β ∈ (0, 1) (resp. a(t) = at), then

u ∈ L∞((0, T ),Hs) and (T − t)1−βut ∈ L∞((0, T ),Hs−1),
(

resp. u ∈ L∞((0, T ),Hs) and
ut

log(T − t)
∈ L∞((0, T ),Hs−1)

)

.

Example 4.2. If a(t) = a(log t−1)−1 · · · (log[n] t−1)−γ , γ > 1 for t ∈
(0, T ], then by using (27) we get

u ∈ L∞((0, T ),Hs),

(T − t)(log(T − t)) · · · (log[n](T − t))γut ∈ L∞((0, T ),Hs−1).

Example 4.3. If a(t) = a(log t−1)−1 · · · (log[n] t−1)−1 for t ∈ (0, T ],
then by using (25) and (26) we get

(

log[n](T − t)
)−aK

u ∈ L∞((0, T ),Hs),

(T − t) log(T − t)
(

log[n](T − t)
)−aK

ut ∈ L∞((0, T ),Hs−1).
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Example 4.4. Let us consider the model Cauchy problem

utt −△u +
a

(T − t)4/3
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

with a ∈ R. Using domain of dependence property it is sufficient to
understand properties of solutions to

utt +
a

(T − t)4/3
u = 0, u(0) = u0, ut(0) = u1.

Its solution is given by

u(t) =
((T − t)1/3u0

T 1/3
+

{(T − t)1/3 − T 1/3}u1

3a

)

· cosh
(

3
√
−a

(

T 1/3 − (T − t)1/3
)

)

+
( u0

3
√
−aT 1/3

+
(T − t)1/3T 1/3u1√−a

+
u1

9a
√−a

)

· sinh
(

3
√
−a

(

T 1/3 − (T − t)1/3
)

)

.

Its derivative is given by

u′(t) =
T 1/3u1

(T − t)1/3
cosh

(

3
√
−a

(

T 1/3 − (T − t)1/3
)

)

+
1

(T − t)1/3

(

√
−au0

T 1/3
− u1

3
√−a

)

· sinh
(

3
√
−a

(

T 1/3 − (T − t)1/3
)

)

.

In particular, for u0 = − 1
3a , u1 = 1

T 1/3 , we obtain

u′(t) =
1

(T − t)1/3
cosh

(

3
√
−a

(

T 1/3 − (T − t)1/3
)

)

≥ 1

(T − t)1/3
.

In the case a > 0 we write the above representations in the form

u(t) =
( (T − t)1/3u0

T 1/3
+

(

(T − t)1/3 − T 1/3
)

u1

3a

)

· cos
(

3
√

a
(

T 1/3 − (T − t)1/3
)

)

+
( u0

3
√

aT 1/3
+

(T − t)1/3T 1/3u1√
a

+
u1

9a
√

a

)

· sin
(

3
√

a
(

T 1/3 − (T − t)1/3
)

)

,
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and

u′(t) =
T 1/3u1

(T − t)1/3
cos

(

3
√

a
(

T 1/3 − (T − t)1/3
)

)

+
1

(T − t)1/3

(−√
au0

T 1/3
− u1

3
√

a

)

sin
(

3
√

a
(

T 1/3 − (T − t)1/3
)

)

.

In consequence this example shows that the statement of Theorem
4.1 is sharp.

5. General time-dependent singular potentials

Let us devote to the Cauchy problem

utt −△u +
a(t)

t2
u = 0, u(T, x) = u0(x), ut(T, x) = u1(x), (37)

where the coefficient a(t) satisfies the condition (2). Our strategy is
to write the Cauchy problem in the form

utt −△u +
a0

t2
u =

a0 − a(t)

t2
u,

u(T, x) = u0(x), ut(T, x) = u1(x),

(38)

and to interpret a0−a(t)
t2

u as a right-hand side. From the statements
of Theorems 2.1 to 2.4 we have the optimal regularity of solutions
for a(t) ≡ a0. In this section we study the following question:

In which way does the right-hand side of (38) influence the regu-
larity behavior of solutions and its derivatives up to t = T?

Using the successive approximation scheme

u
(k+1)
tt −△u(k+1) +

a0

t2
u(k+1) =

a0 − a(t)

t2
u(k), (39)

u(k+1)(T, x) = u0(x), u
(k+1)
t (T, x) = u1(x), (40)

we will determine the regularity of solutions {u(k+1)} tending to a
limit element u having the same regularity and being the solution to
(37).
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Now we consider reference functions µ satisfying the following
condition:

if

T
∫

0

µ(s)

s
ds = ∞, then µ′(s) ≤ δ

µ(s)

s
with δ < 1/2 (41)

for all s ∈ (0, T ].

Theorem 5.1. Let us consider the Cauchy problem

utt −△u +
a(T − t)

(T − t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where a(t) satisfies the conditions (2) and (41) with a0 > 1/4.

If the data u0, u1 belong to Hs,Hs−1, respectively, then there ex-
ists a unique solution u ∈ C([0, T ),Hs) ∩ C1([0, T ),Hs−1) such that

(

1 +

t
∫

0

µ(T − s)

T − s
ds

)−1
u ∈ L∞((0, T ),Hs),

and

(

(T − t)−
1
2 +

µ(T − t)

T − t

t
∫

0

µ(T − s)

T − s
ds

)−1
ut ∈ L∞((0, T ),Hs−1).

Remark 5.1. If
∫ T
0

µ(s)
s ds < ∞, then u ∈ L∞((0, T ),Hs).

Proof. It is clear that a small T is sufficient to study. Let us recall
the approximation scheme with u(0) being the solution to

u
(0)
tt −△u(0) +

a0

t2
u(0) = 0, u(0)(T, x) = u0(x), u

(0)
t (T, x) = u1(x).

The statements of Theorems 2.1 to 2.3 explain us the regularity
and the asymptotical behavior of the solution u(0) up to t = 0.
Taking into consideration this regularity then we will show in the
next step that a special regularity and asymptotical behavior of u(k)
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in fk(t, x) := a0−a(t)
t2

u(k) is transferred to the solution u(k+1) by (39),
(40). For this reason we study in the phase space the Cauchy problem

v
(k+1)
tt + |ξ|2v(k+1) +

a0

t2
v(k+1) = gk(t, ξ),

v(k+1)(T, ξ) = û0(ξ), v
(k+1)
t (T, ξ) = û1(ξ),

with gk(t, ξ) :=
a0 − a(t)

t2
v(k)(t, ξ), v(0)(t, ξ) ≡ 0.

The application of the principle of variation of constants gives us
the representation of solution

v(k+1)(t, ξ) = V1(t, ξ)
(

û0(ξ) +

t
∫

T

−V2(s, ξ)gk(s, ξ)

D(s, ξ)
ds

)

+V2(t, ξ)
(

û1(ξ) +

t
∫

T

V1(s, ξ)gk(s, ξ)

D(s, ξ)
ds

)

For the discriminant D(s, ξ) = V1(s, ξ)∂sV2(s, ξ) − V2(s, ξ)∂sV1(s, ξ)
we get ∂sD(s, ξ) = 0 and setting s = T we have D(s, ξ)=1.

In the hyperbolic zone {tξ ≤ t ≤ T} we use the estimates for
V1(t, ξ) and for V2(t, ξ) from Section 2.1 and proceed as follows:
due to Section 2.1 we have the estimate |v(1)(t, ξ)| ≤ C(|û0(ξ)| +
|û1(ξ)|/|ξ|) for |ξ| large. Let us assume

|v(k)(t, ξ)| ≤ H
(

|û0(ξ)| + |û1(ξ)|/|ξ|
)(

1 +

t
∫

T

−µ(s)

s
ds

)

(42)

for k ≥ 2, where the constant H is independent of k. We will show
that the same estimate holds for v(k+1). Taking into account the
estimates for V1 and V2 from Section 2.1, then

|v(k+1)(t, ξ)| ≤ C(|û0(ξ)| + |û1(ξ)|/|ξ|)

+ CH(|û0(ξ)| + |û1(ξ)|/|ξ|)
1

|ξ|
(

t
∫

T

−µ(s)

s2

(

1 +

s
∫

T

−µ(r)

r
dr

)

ds
)

.
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By the definition of the hyperbolic zone it follows for the first
integral

1

|ξ|

t
∫

T

−µ(s)

s2
ds ≤

max
t∈[0,T ]

µ(t)

N
.

For the second integral we obtain

1

|ξ|

t
∫

T

−µ(s)

s2

s
∫

T

−µ(r)

r
drds =

1

|ξ|
µ(t)

t

t
∫

T

−µ(s)

s
ds − 1

|ξ|

t
∫

T

−µ(s)2

s2
ds

− 1

|ξ|

t
∫

T

µ′(s)
s

s
∫

T

−µ(r)

r
drds.

If we use assumption (41) (where it is sufficient that δ < 1), then the
last integral can be included into the left-hand side. Hence, we have
only to take into consideration the first integral. By using again the
definition of the hyperbolic zone we arrive at

|v(k+1)(t, ξ)| ≤ C

1 − δ
(|û0(ξ)| + |û1(ξ)|/|ξ|)

+
CH

1 − δ

max
t∈[0,T ]

µ(t)

N
(|û0(ξ)| + |û1(ξ)|/|ξ|)

(

1 +

t
∫

T

−µ(s)

s
ds

)

≤ H(|û0(ξ)| + |û1(ξ)|/|ξ|)
(

1 +

t
∫

T

−µ(s)

s
ds

)

if we choose N sufficiently large. But this is (42) for v(k+1). If
∫ T
0

µ(s)
s ds < ∞, then (42) follows immediately from

|v(k+1)(t, ξ)| ≤ C(|û0(ξ)| + |û1(ξ)|/|ξ|)(1 +
1

|ξ|

t
∫

T

−µ(s)

s2
ds)

≤ CN (|û0(ξ)| + |û1(ξ)|/|ξ|).

Summary: for all k and t ∈ [tξ, T ] the estimate (42) holds with a
constant H independent of k.
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In the pseudo-differential zone {0 < t ≤ tξ} we use the represen-
tation

v(k+1)(t, ξ) = V1(t, ξ)û0(ξ) + V2(t, ξ)û1(ξ)

+
(

t
∫

tξ

−V2(s, ξ)gk(s, ξ)ds
)

V1(t, ξ) +
(

t
∫

tξ

V1(s, ξ)gk(s, ξ)ds
)

V2(t, ξ)

+
(

tξ
∫

T

−V2(s, ξ)gk(s, ξ)ds
)

V1(t, ξ) +
(

tξ
∫

T

V1(s, ξ)gk(s, ξ)ds
)

V2(t, ξ).

Using the asymptotic behavior of V1 and V2 as determined in Section
2.1 and arguing similarly as we did in the hyperbolic zone, we may
conclude

∣

∣

∣

(

tξ
∫

T

−V2(s, ξ)gk(s, ξ)ds
)

V1(t, ξ) +
(

tξ
∫

T

V1(s, ξ)gk(s, ξ)ds
)

V2(t, ξ)
∣

∣

∣

≤ H
(

|û0(ξ)| + |û1(ξ)|/|ξ|
)(

1 +

tξ
∫

T

−µ(s)

s
ds

)

,

(43)
where H is independent of k. To estimate the remaining integrals
we proceed as follows: let us assume (42) for v(k), k ≥ 2. We obtain

∣

∣

∣

(

t
∫

tξ

−V2(s, ξ)gk(s, ξ)ds
)

V1(t, ξ) +
(

t
∫

tξ

V1(s, ξ)gk(s, ξ)ds
)

V2(t, ξ)
∣

∣

∣

≤ CH(|û0(ξ)| + |û1(ξ)|/|ξ|)
1

|ξ| (t|ξ|)
1/2

·
(

t
∫

tξ

−(s|ξ|)1/2 µ(s)

s2

(

1 +

s
∫

T

−µ(r)

r
dr

)

ds
)

.

It remains to compute

t1/2
(

t
∫

tξ

−µ(s)

s3/2

(

1 +

s
∫

T

−µ(r)

r
dr

)

ds
)

.
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For the first integral we only use s ≥ t. For the second integral we
have

t1/2
(

t
∫

tξ

−µ(s)

s3/2

s
∫

T

−µ(r)

r
drds

)

≤

2µ(t)

t
∫

tξ

−µ(s)

s
ds + 2t1/2

t
∫

tξ

µ(s)2

s3/2
ds − 2t1/2

t
∫

tξ

µ′(s)

s1/2

s
∫

T

−µ(r)

r
drds.

Again we can use (41), now with δ < 1/2, and we include the third
integral into the left-hand side. Hence,

∣

∣

∣

(

t
∫

tξ

−V2(s, ξ)gk(s, ξ)ds
)

V1(t, ξ) +
(

t
∫

tξ

V1(s, ξ)gk(s, ξ)ds
)

V2(t, ξ)
∣

∣

∣

≤ H
(

|û0(ξ)| + |û1(ξ)|/|ξ|
)(

1 +

t
∫

tξ

−µ(s)

s
ds

)

,

(44)
where H is independent of k. From (43) and (44) it follows that (42)

is also satisfied for t ∈ (0, tξ]. Finally, if
∫ T
0

µ(s)
s ds < ∞, then (42)

follows immediately from

|v(k+1)(t, ξ)| ≤ C

T
∫

0

µ(s)

s
ds(t|ξ|)1/2(|û0(ξ)| + |û1(ξ)|/|ξ|).

We can show that a sufficiently large N in the hyperbolic zone or
a small T in the pseudo-differential zone guarantee the Cauchy se-
quence property of v(k)(t, ξ) for each fixed (t, ξ) from the extended
phase space. Thus the limit element v = v(t, ξ) fulfils

|v(t, ξ)| ≤ H
(

|û0(ξ)| + |û1(ξ)|/|ξ|
)(

1 +

t
∫

T

−µ(s)

s
ds

)

≤ C〈ξ〉s
(

1 +

t
∫

T

−µ(s)

s
ds

)
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together with the assumptions for the data. This proves the first
statement of the theorem. To prove the second statement we have

only to differentiate

v(t, ξ) = V1(t, ξ)
(

û0(ξ) +

t
∫

T

−V2(s, ξ)
a0 − a(s)

s2
v(s, ξ)ds

)

+V2(t, ξ)
(

û1(ξ) +

t
∫

T

V1(s, ξ)
a0 − a(s)

s2
v(s, ξ)ds

)

(45)

with respect to t and we have to take account of the asymptotic
behavior of V1, V2, V1,t, V2,t and the first statement of this theorem.
This yields immediately the second statement if we remark that the
asymptotic behavior of vt or ut respectively, will be determined by
the asymptotic behavior of

V1,t(t, ξ)û0(ξ), V2,t(t, ξ)û1(ξ), V1(t, ξ)V2(t, ξ)
µ(t)

t2
v(t, ξ),

t
∫

T

V2(s, ξ)
µ(s)

s2
v(s, ξ)dsV1,t(t, ξ),

t
∫

T

V1(s, ξ)
µ(s)

s2
v(s, ξ)dsV2,t(t, ξ)

from (45). This completes the proof.

Following the same strategy we can prove the following results:

Theorem 5.2. Let us consider the Cauchy problem

utt −△u +
a(T − t)

(T − t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where a(t) satisfies the conditions (2) and (41) with a0 = 1/4. More-
over, we assume for the reference function µ the condition

(log t)2µ(t) → 0 for t → +0. (46)

If the data u0, u1 belong to Hs, Hs−1 respectively, then there exists
a unique solution u ∈ C([0, T ],Hs) ∩ C1([0, T ),Hs−1) such that
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(

(T − t)−
1
2

(

log 1
T−t

)

+ µ(T−t)
T−t

(

log 1
T−t

)2
)−1

ut ∈ L∞((0, T ),Hs−1).

Theorem 5.3. Let us consider the Cauchy problem

utt −△u +
a(T − t)

(T − t)2
u = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where a(t) satisfies the conditions (2) and (41) with a0 ∈ (0, 1/4).
Moreover, we assume for the reference function µ the condition

t−
√

1−4a0µ(t) ≤ C for t ∈ (0, T ]. (47)

If the data u0, u1 belong to Hs, Hs−1, respectively, then there exists
a unique solution u ∈ C([0, T ],Hs) ∩ C1([0, T ),Hs−1) such that

( 1

(T − t)
1+

√
1−4a0
2

+
µ(T − t)

(T − t)1+
√

1−4a0

)−1
ut ∈ L∞((0, T ),Hs−1).

Remark 5.2. The Theorems 5.1 to 5.3 are generalizations of the
Theorems 2.1 to 2.3.

Remark 5.3. Without the conditions (46) or (47) we are only able
to apply Gronwall’s lemma to (45). This gives the regularity

exp
(

−
t

∫

0

µ(T − s)

T − s

(

log
1

T − s

)2
ds

)

u ∈ L∞((0, T ),Hs),

exp
(

−
t

∫

0

µ(T − s)

(T − s)1+
√

1−4a0
ds

)

u ∈ L∞((0, T ),Hs),

respectively, for general reference functions µ. Under the assump-
tions (46) or (47) these statements are weaker than those from The-
orems 5.2 or 5.3.

6. Concluding remarks

1. In this paper we are not interested in Cauchy problems

utt −△u +
a(t)

t2
u = 0, u(T, x) = u0(x), ut(T, x) = u1(x), (48)
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with a0 < 0. The main reason is that the regularity of solutions from
Theorem 2.4 with respect to t is too bad. The next question for the
regularity behavior of solutions with respect to t could be of interest.

Under which assumptions to the reference function µ does the
regularity behavior of solutions to (48) coincide with the regularity
behavior of solutions to

utt −△u +
a0

t2
u = 0, u(T, x) = u0(x), ut(T, x) = u1(x)?

2. If the corresponding reference function µ = µ(t) does not satisfy
(46) or (47), then we may introduce a regularization a∗ of a with
limt→+0 a(t) = limt→+0 a∗(t) = a0. The regularization a∗ belongs to
C∞[0, T ]. Thus the reference function µ∗ satisfies (46) or (47). In
consequence we have to study now

utt −△u +
a∗(T − t)

(T − t)2
u =

a∗(T − t) − a(T − t)

(T − t)2
u.

The goal is to prove that the statements of Theorems 3.3 or 3.5 are
applicable with Hs replaced by γ(Dx)Hs. Hence, we have a loss of
regularity with respect to the spatial variables.

3. In analogy with the studies on the behavior of the solutions to
nonlinear hyperbolic systems as presented in [7], [9] or [1] it should
be of interest to consider the Cauchy problem

utt −△u +
a1(T − t)

(T − t)β1
v = 0, vtt −△v +

a2(T − t)

(T − t)β2
u = 0,

u(0, x) = u0(x), v(0, x) = v0(x),

ut(0, x) = u1(x), vt(0, x) = v1(x).

Here the regularity of solutions up to t = T is of interest.
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Birkhäuser, Basel-Boston-Berlin (2005).

[10] S. Lucente, On a class of semilinear weakly hyperbolic equations,
Annali dell’ Universita di Ferrara 52 (2006) 2, 317–335.

[11] M. Reissig, On Lp − Lq estimates for solutions of a special weakly
hyperbolic equation, Ed. Li Ta-Tsien, Nonlinear Evolution Equations
and Infinite-Dimensional Dynamical Systems, 153–164, World Scien-
tific (1997).

[12] M. Reissig and K. Yagdjian, Klein-Gordon type decay rates for
wave equations with time-dependent coefficients, Banach Center Pub-
lications 52 (2000) 189–212.

[13] C. Sogge, Lectures on nonlinear wave equations. Monographs in
Analysis, II. International Press, Boston, MA, (1995).



KLEIN-GORDON TYPE EQUATIONS etc. 175

[14] K. Taniguchi and Y. Tozaki, A hyperbolic equation with double
characteristics which has solution with branching singularities, Math.
Japonica 25 (1980) 279–300.

[15] A. Weinstein, On the wave equation and the equation of Euler-
Poisson, Proceedings of Symposia in Applied Mathematics 5, 137–
147, McGraw-Hill, New York-Toronto-London (1954).

[16] J. Wirth, Solution representations for a wave equation with weak
dissipation, Math. Meth. Appl. Sc. 27 (2004) 1, 101–124.

[17] K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple
characteristics.Micro-local approach, Akademie-Verlag, Berlin, 1997.

[18] K. Yagdjian, A note on the fundamental solution for the Tricomi-
type equation in the hyperbolic domain, J.Differential Equations 206

(2004), 227–252.
[19] K. Yagdjian, Global existence for the n-dimensional semilinear

Tricomi-type equations, Comm. in PDE 31 (2006) 907–944.

Received November 19, 2007.


