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Kakutani’s Splitting Procedure
in Higher Dimension
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Dedicated to the memory of Fabio Rossi

SUMMARY. - In this paper we will generalize to higher dimension
the splitting procedure introduced by Kakutani for [0,1]. This
method will provide a sequence of nodes belonging to [0, 1]* which
is uniformly distributed. The advantage of this approach is that
it 1s intrinsecally d-dimensional.

1. Introduction

A partition m of I = [0,1] is a finite covering of I by a family of
intervals [t;—1,¢;], with 1 <4 < k and t;_1 < t;, with pairwise disjoint
interiors. In 1976 Kakutani introduced the very interesting notion
of uniformly distributed sequence of partitions of the interval [0, 1].

DEFINITION 1.1. If w is any partition of [0,1], and « €]0,1][, its
Kakutani’s a-refinement am is obtained by splitting all the intervals
of m having mazimal length in two parts, having lengths (left and
right) proportional to a and =1 — «, respectively.

Kakutani’s sequence of partitions {x, } is obtained by successive
a-refinements of the trivial partition w = {[0,1]}. For example, if
a < B, k1 ={[0,a], o, 1]}, ko = {0, a], [, & + af], [ + a3, 1]}, and
SO on.
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DEFINITION 1.2. Given a sequence of partitions {m,}, with
m = {[ti 1, ], 1 < i < k(n)},

we say that it is uniformly distributed, if for any continuous function
f on [0,1] we have

n%0 k(n

. 1 k(n) . 1
lim —)i;f(ti) :/O f(t)dt.

We denote, as usual, by §; the Dirac measure concentrated in .

REMARK 1.3. It follows from the definition that uniform distribution
of the sequence {m,} is equivalent to the weak convergence of the
sequence of measures

to the Lebesque measure A on [0, 1].

REMARK 1.4. It is obvious that the uniform distribution of the se-
quence of partitions {m,} is equivalent to each of the following two
conditions:

1. For any choice of points 7; € [t 1, ] we have
lim — T :/ t)dt,
i gy A = [0

for any continuous function f on [0,1].

2. For any choice of points T; € [t} 1,1?] the sequence of measures

Y
k(n) "

converges weakly to the Lebesgue measure A on [0, 1].

The following beautiful theorem is the main result of [5]:
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THEOREM 1.5. For any a €]0,1[ the sequence of partitions {ky} is
uniformly distributed.

This result got a considerable attention in the late seventies, when
other authors provided different proofs of Kakutani’s theorem and
also proved its stochastic version [8]. The paper [1] extended the
notion to compact metric spaces, and put in connection to a question
rised by De Bruijn and Post, which has been addressed also in [7].

The aim of this paper is to extend Kakutani’s splitting procedure
to higher dimension.

It is convenient to introduce for later convenience the useful stan-
dard notation for the so called “a-dyadic” intervals. Let I(«) = [0, o]
and I(8) = [a,1]. If I(y1...vm) = [a,b] (with 9 € {«, 3} for
1 <k <m), then

I(’Yl---'}’ma) = [a7a+a(b_a)]

and
Iy 9mB) = [a+ a(b—a),b].

Naturally A(I(71-.-Ym)) =71 ---Ym = B2, where p+ ¢ = m and
p is the number of occurencies of a among the 7.’s, while ¢ is the
number of the occurencies of 5.

2. Splitting the d-dimensional cube

By I¢ = [0,1]? we denote the unit cube of IR?. By a cartesian d-
rectangle (or simply a rectangle) contained in I¢ we always mean a
set, of the type R = H;lzl[aj, b;]. We denote by v; = (a1,...,aq) the
left endpoint of R.

A partition of I will always mean in this paper a finite collection
of rectangles {R;,1 < i < k} as defined above, with disjoint interiors
and which cover I

The following definition is the natural extension of Kakutani’s
one-dimensional splitting procedure.

DEFINITION 2.1. Fiz o €]0,1[. If m = {R;,1 < i < k} is any parti-
tion of [0,1]¢, its Kakutani’s a-refinement o is obtained by splitting
all the rectangles of m having maximal d-dimensional measure Ag in
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two rectangles, dividing in two segments the longest side such that
the lower and upper part have length proportional to o and 8 = 1—a,
respectively. If the rectangle R has several sides with the same length,
we split the side with the smallest coordinate index j.

We define now the generalized Kakutani sequence of partitions
{kd} of I? as the successive a-refinements of the trivial partition
w = {I}.

The definition of uniformly distributed sequence of partitions ex-
tends naturally to higher dimension.

DEFINITION 2.2. Given a sequence of partitions {m,}, with 7, =
{R!",1 <i<kEk(n)}, wesay that it is uniformly distributed if for any

(2
continuous function f on I, we have

lim —— > f(v}!) = Idf(t) dt .

n—o0 k(n) part

As in the previous section, it is possible to allow, in the above ex-
pression, other choices of the points ¢}’ € R} and to express uniform
distribution as the weak convergence of

for any choice of o; € R}, to the d-dimensional Lebesgue measure A4
on [0, 1].

Our aim is to prove that the d-dimensional Kakutani’s sequence
of partions {x%} is uniformly distributed. This will be obtained intro-
ducing a convenient notation and proving two preparatory lemmas.

Let us begin with the following notation. By R(«) and R(5)
we denote the rectangles [0,a] x [0,1]9"! and [8,1] x [0,1]%"!, re-
spectively. If R(y1,...,vm) = [1%,[a: b (with v, € {a,3} for
1 <k <m), then we define

Jj—1 d

R(y, -y yme) = [ lai bi] x laj, a5 + (b — aj)] x ] [ai, bi]
i—1 i=j+1
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and
J—1 d
R(ryla cee >’7mﬁ) = H[a’i’ bz] X [a] + a(b_] - (Zj), b]] X H [a’i, bl] 3
i=1 i=j+1
if

bj—aj>bk—ak
forall 1 <k < j and

bj—aijh—ah
for all j < h <d.

LEMMA 2.3. The diameter of the Kakutani partition /ﬁﬁ tends to zero,
when n tends to infinity.

Proof. As in the one-dimensional case, every rectangle of x is even-
tually subdivided in two parts, therefore given any m € IN there
exists ng such that for n > ng every R? in x¢ results from at least
md splittings. This implies that each side of R} has length at most
L™, where L = max{«, 3} < 1, and therefore its diameter is smaller

than L™+/d. O

We have to introduce now in this context a notion which is widely
used in the theory of uniformly distributed sequences of points (com-
pare for instance Chapter 3 of [6] or Chapter 1 of [2]).

DEFINITION 2.4. We say that a class of functions F is determin-
ing for the uniform convergence of partitions whenever, for a given
sequence of partitions {m,} (m, ={R!1<i<k(n)}), from

k:(n
1
I
nE&k@1 / F®)
for any f € F, it follows that {7Tn} s uniformly distributed.

By x¢ we will denote the characteristic function of C.

LEMMA 2.5. Assume {C,} is a sequence of finite partitions of I
whose elements C', 1 < i < k(n), are rectangles and diam C,, tends
to zero. Suppose moreover that for each Cj" we have

ijcj Aa(CT), (1)

n—»oo k
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where v} is the left endpoint of C}'. Then the family F of the char-
acteristic functions of the C['’s is determining.

Proof. 1t is well known that the family of the characteristic functions
of all the rectangles R = H;lzl[aj, b;] is determining. So let R C 14
be a (non degenerate) rectangle and denote by B the unit ball of
IR?. Fix ¢ €]0,1[ and let us denote by R. = (U,cr(z +eB)) N 1%
Let ng € IN be such that for n > ng, diam C,, < €. For such an
n, let C,(R) be the collection of all the sets in C,, intersecting R, and
let us denote by Cg their union. Then we have R C Cr C R, and
therefore
Ad(R) < Ag(Cr) < AM(R:) < Mg(R) + ce, (2)

where c is an appropriate constant.
The same inclusions imply that, for arbitrarily small &,

limsup — k: Z xr(vi') < lim k Z xXcg (V') = Aa(Cr)
k(n
< hgn 1£f Z Xr(Vl) + ce
k(n
< limsup — k Z xXr(v)') +ce.  (3)

The equality in the first line follows from (1). It follows now from (2)
and (3) that

Jim k Z XRr(v Aa(R),

for any rectangle R C I%, and the conclusion follows. O

We are now in position to prove the main result of this paper.

THEOREM 2.6. The sequence of partitions {k} introduced in Defi-
nition 2.1 is uniformly distributed.

Proof. We apply the previous lemma to the sequence of partitions
{k}. Since by Lemma 2.3 its diameter tends to zero, we only have
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to prove that given any s € IV and any rectangle R = R} belonging

to k¢, we have that
k(n)
lim —— 3" y(of) = Ma(R). (4)

But from the previous discussion we know that R = R(y1...7%m)
for appropriate values v; € {a, #}. On the other hand there is a one
to one correspondence between the rectangles R(7; ...7,) showing
up in the partitions k% and the intervals I(v;...7,,) appearing in
the one-dimensional partitions k,. Since

MBROL-Am) =7 Am = AT (1 - Ym))

the rectangle R(y1...7m) 1is split into R(y1...7me) and
R(71...vmpB) exactly when the interval I(v...7,) undergoes the
same procedure. Now Kakutani’s theorem says that I = I(y1...vn)
is subdivided the right number of times, so that

1 k@)
lim — » x7(t7) = (),
and therefore the analogous identity (4) holds for R = R(7v1 ... Ym).

O

3. Conclusions

The interest of this result is that it is intrinsecally d-dimensional and
this may be useful in applications to integration in higher dimension,
where it is important (and not very easy) to find good sets of nodes.

Given k&, the centers of gravity of the rectangles R? seem to be
a convenient choice of nodes.

In a subsequent paper we will compare our results, and other in-
trinsecally multidimensional methods we are developing, with meth-
ods which are based on the subdivision of the one-dimensional factors
of I as proposed in [3] and [4].
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