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Summary. - We investigate the existence of positive solutions of a
prescribed curvature equation with a nonlinearity having one or
two singularities. Our approach relies on the method of lower-
and upper-solutions, truncation arguments and energy estimates.

1. Introduction

In this paper, we are interested in the existence of positive solutions
of the curvature problem

−(ϕ(u′))′ = λf(t, u), u(0) = 0, u(1) = 0, (1)
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where

ϕ(v) =
v√

1 + v2
.

Problem (1) is the one-dimensional counterpart of the elliptic Dirich-
let problem

−div

(

∇u/

√

1 + ‖∇u‖2

)

= λf(x, u) in Ω, u = 0 on ∂Ω. (2)

The existence of positive solutions of problems (1) and (2) has been
discussed in the last two decades by several authors (see [1]–[5],[8]–
[22]) in connection with various qualitative assumptions on f .

In our recent paper [2], two types of solutions have been con-
sidered for problem (1) and referred to as classical or non-classical,
respectively.

A classical solution of (1) is a function u : [0, 1] → R, with
u ∈ W 2,1(0, 1), which satisfies the equation in (1) a.e. in [0, 1] and
the boundary conditions u(0) = u(1) = 0. A non-classical solution of
(1) is a function u : [0, 1] → R such that u ∈ W 2,1

loc (0, 1), |u′(0)| = +∞
or |u′(1)| = +∞ and u′ ∈ C0([0, 1], [−∞,+∞]), which satisfies the
equation in (1) a.e. in [0, 1] and the boundary conditions u(0) =
u(1) = 0. Such solutions are said to be positive if u(t) > 0 on ]0, 1[
and u′(0) > 0 > u′(1).

In [2] existence and multiplicity of positive solutions of (1) have
been established under various types of assumptions on the behaviour
of the function f at zero and at infinity. In the present work we dis-
cuss cases where f exhibits singularities at 0 or at some point R > 0;
our model nonlinearities are u−p, (R− u)−q and u−p(R−u)−q, with
p, q > 0.

Unlike the fact that a large amount of work has been done for a
class of quasilinear elliptic equations in the presence of a singularity
at zero, few results have been obtained for the curvature problem (cf.
[5]). Singularities on the right have been considered only recently for
semilinear elliptic problems; to the best of our knowledge they have
never been considered before for the curvature problem.

This paper is organized as follows. Section 2 deals with a non-
linearity that is allowed to be singular at the origin. Within this
setting, we prove the existence of at least one positive solution for
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small values of the parameter λ > 0. In Section 3 we analyze the
nature of the solutions for small values of λ > 0. Namely, we prove
that if f is non-singular or has a weak singularity at the origin (see
assumption (7)) and λ is small enough, any small positive solution
is classical. On the other hand, if the singularity at the origin is
too strong (see assumption (8)), then any positive solution is non-
classical. In Section 4, we work out the case of a singularity on the
right, while Section 5 deals with possibly two singularities. In this
last case, under a quite general assumption, we show that the pres-
ence of the second singularity gives rise to a second positive solution.
Finally, we present a non-existence result for large values of λ in Sec-
tion 6, while in the Appendix we show some numerical illustrations
of our results.

Throughout this paper the following conditions will be consid-
ered. Let f : [0, 1] × I → R, with I an interval, be a given function.

We say that f is a L1-Carathéodory function if, for a.e. t ∈ [0, 1],
f(t, ·) : I → R is continuous; for every u ∈ I, f(·, u) : [0, 1] → R is
measurable; for every compact set K ⊂ I there is h ∈ L1(0, 1) such
that, for a.e. t ∈ [0, 1] and every u ∈ K, |f(t, u)| ≤ h(t).

We say that f is locally L1-Lipschitz with respect to the second
variable if, for every compact set K ⊂ I, there is ℓ ∈ L1(0, 1) such
that, for every u1, u2 ∈ K and a.e. t ∈ [0, 1],

|f(t, u1) − f(t, u2)| ≤ ℓ(t) |u1 − u2|.

2. The singularity at the origin

Theorem 2.1. Let f : [0, 1]× ]0, R[→ [0,+∞[, with R ∈ ]0,∞], be a
L1-Carathéodory and locally L1-Lipschitz function. Assume

(h1) lim inf
u→0

f(t, u) > 0, uniformly a.e. on [0, 1], i.e.

there exist η > 0 and δ > 0 such that, for a.e. t ∈ [0, 1] and for
every u ∈ ]0, δ], we have f(t, u) ≥ η.

Then there exists λ0 > 0 such that for any λ ∈ ]0, λ0], problem (1)
has at least one positive solution.

Proof. Step 1 – The modified problem. Let R̄ ∈ ]0, R[. For each
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n ∈ N, n > 1, define

fn(t, u) =







f(t, R̄/n) if u ≤ R̄/n,
f(t, u) if R̄/n < u ≤ R̄,
f(t, R̄) if R̄ < u,

(3)

ϕn(v) =







ϕ(−n) + ϕ′(−n)(v + n) if v ≤ −n,
ϕ(v) if − n < v ≤ n,
ϕ(n) + ϕ′(n)(v − n) if n < v,

(4)

and consider the modified problem

−(ϕn(u′))′ = λfn(t, u), u(0) = 0, u(1) = 0. (5)

Step 2 – Construction of an upper solution β of (5); for any r ∈ ]0, R̄[,
there exist λ0 > 0, n0 ∈ N and β ∈ W 2,1(0, 1) such that 0 < β(t) ≤ r
in [0, 1] and for any λ ∈ ]0, λ0] and any n ≥ n0, β is an upper solution
of (5). Let us fix 0 < r̂ < r < R̄. From the L1-Carathéodory
conditions, there exists h ∈ L1(0, 1) such that |f(t, u)| ≤ h(t) for
a.e. t ∈ [0, 1] and every u ∈ [r̂, r]. Let then H ∈ W 2,1(0, 1) be the
solution of

−H ′′ = h(t), H(0) = 0, H(1) = 0

and take β = r̂ + κH, where κ > 0 is small enough so that

β = r̂ + κH < r.

We then compute for λ > 0 small enough and n ∈ N large enough

−β′′(t) = κh(t) ≥ λ(1 + β′2(t))3/2f(t, β(t)) = λ
fn(t, β(t))

ϕ′
n(β′(t))

.

Step 3 – Construction of a lower solution α ≤ β of (5); for any
λ ∈ ]0, λ0], there exist n1 ∈ N and α ∈ W 2,1(0, 1) such that 0 <
α(t) ≤ β(t) in ]0, 1[ and, for any n ≥ n1, α is a lower solution of
(5). From assumption (h1), we can find r0 ∈ ]0, r̂] so that for all large
n, a.e. t ∈ [0, 1] and every u ∈ ]0, r0]

fn(t, u) ≥ r0
π2

λ
.
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The function α(t) = r0 sin(πt) ≤ β(t) is such that

−α′′(t) = π2α(t) ≤ π2r0 ≤ λfn(t, α(t)) ≤ λ
fn(t, α(t))

ϕ′
n(α′(t))

.

Step 4 – Existence of a solution un of the modified problem (5). Since
α and β are lower and upper solutions of (5) for all large n, with
α(t) ≤ β(t) on ]0, 1[, and the equation in (5) can be written as

−u′′ = λ
fn(t, u)

ϕ′
n(u′)

,

where the right-hand side is bounded by a L1-function, a standard
result (see [6, Theorem II-4.6]) yields the existence of a solution un

of (5) satisfying

α(t) ≤ un(t) ≤ β(t) in [0, 1]. (6)

Step 5 – Existence of a solution u of (1). Let a ∈ ]0, 1/2[. From
(6) and Step 3 we know that, for all t ∈ [a, 1 − a], we have α(a) ≤
un(t) ≤ r. Hence using the L1-Carathéodory conditions, there exists
h ∈ L1(0, 1) such that for n large enough and a.e. t ∈ [a, 1 − a], we
have

0 ≤ fn(t, un(t)) = f(t, un(t)) ≤ h(t).

Also from the concavity of un, we deduce that, for all t ∈ [a, 1 − a],

r

a
≥ u′

n(a) ≥ u′
n(t) ≥ u′

n(1 − a) ≥ −r

a
.

Hence for n large enough and all t ∈ [a, 1 − a], we get

ϕ′
n(u′

n(t)) = ϕ′(u′
n(t)) ≥ ϕ′

(

r

a

)

.

It follows that

0 ≤ −u′′
n(t) = λ

f(t, un(t))

ϕ′(u′
n(t))

≤ λ
h(t)

ϕ′( r
a)

.

From Arzelà-Ascoli Theorem, we infer that a subsequence (un)n con-
verges in C1([a, 1 − a]) to a function u ∈ C1([a, 1 − a]). By the
C1

loc-estimates previously obtained, u satisfies

−u′′ = λ
f(t, u)

ϕ′(u′)
.
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Using a diagonalization argument, u can be extended onto ]0, 1[, so
that u ∈ W 2,1

loc (0, 1) satisfies the equation in (1) in ]0, 1[. Moreover,
as u is positive and concave, there exist

lim
t→0

u(t) ∈ [0,+∞[ and lim
t→1

u(t) ∈ [0,+∞[.

Step 6 – lim
t→0

u(t) = 0 or lim
t→0

u′(t) = +∞. Notice that un is a solution

of the Cauchy problem

−u′′ = λ
fn(t, u)

ϕ′
n(u′)

, u(1
2 ) = un(1

2 ), u′(1
2 ) = u′

n(1
2),

and u is a solution of the limit problem

−u′′ = λ
f(t, u)

ϕ′(u′)
, u(1

2) = lim
n→∞

un(1
2), u′(1

2) = lim
n→∞

u′
n(1

2 ).

If it were lim
t→0

u(t) > 0 and lim
t→0

u′(t) ∈ R, by continuity with re-

spect to parameters and initial conditions, which follows from the
L1-Carathéodory and locally L1-Lipschitz conditions, we should get

lim
t→0

u(t) = lim
n→∞

un(0) = 0,

which is a contradiction.
Step 7 – lim

t→1
u(t) = 0 or lim

t→1
u′(t) = −∞. The argument is similar to

the previous one.
Conclusion – If lim

t→0
u(t) = lim

t→1
u(t) = 0, then the continuous ex-

tension of u on [0, 1] is a solution of (1), which may be classical
or non-classical. Otherwise, the extension of u obtained by setting
u(0) = u(1) = 0 is a non-classical solution of (1).

Remark 2.2. From Step 2 in the proof of Theorem 2.1, we see that,
for each λ > 0 small enough, a solution uλ of (1) exists such that
‖uλ‖∞ → 0 as λ → 0.

Remark 2.3. Suppose that, in addition to the assumptions of The-
orem 2.1, the following condition holds

lim
u→R

f(t, u) = 0, uniformly a.e. on [0, 1].
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Then, for any λ ∈ ]0,+∞[, problem (1) has at least one positive
solution.

To prove this claim we only need to verify that an upper solution
β of (5) can be constructed for any given λ > 0. We fix λ and, in case
R 6= +∞, we extend f by setting f(t, u) = 0 for a.e. t ∈ [0, 1] and all
u ≥ R. We define the upper solution β by setting β(t) = M+εt(1−t),
where M ∈ ]0, R[ and ε ∈ ]0, 1

2 [ are such that [M,M + ε] ⊂ ]0, R[
and f(t, u) ≤ ε

λ for a.e. t ∈ [0, 1] and all u ∈ [M,M + ε]. We have
then

−β′′(t) = 2ε ≥ (1 + ε2)3/2ε ≥ λ(1 + β′(t)2)3/2f(t, β(t))

a.e. in [0, 1].

3. Classical and non-classical solutions

Theorem 3.1. Assume f : [0, 1]× ]0, R[→ [0,+∞[, with R ∈
]0,+∞[, is a L1-Carathéodory function and v is a positive solu-
tion of (1) for some λ > 0. Assume further there exists a function
g : ]0, R] → [0,+∞[ having a bounded antiderivative such that, for
a.e. t ∈ [0, 1] and all u ∈ ]0, ‖v‖∞],

f(t, u) ≤ g(u). (7)

Then, if λ > 0 is small enough, v is a classical solution.

Proof. Let G be an antiderivative of g and define

E(t) = 1 − 1
√

1 + v′2(t)
+ λG(v(t)).

We have

E′(t) = v′(t)[(ϕ(v′(t)))′ + λG′(v(t))]

≥ v′(t)[(ϕ(v′(t)))′ + λf(t, v(t))] = 0,

for a.e. t ∈ [0, 1] such that v′(t) ≥ 0. From the concavity of v, we
know there exists t0 ∈ ]0, 1[ such that v′(t) ≥ 0 on [0, t0] and v′(t0) =
0. Assume by contradiction v′(0) = +∞. Since limt→0 v(t) = v0 ≥ 0,
we have

λG(R) ≥ λG(v(t0)) = E(t0) ≥ lim
t→0

E(t) = 1 + λG(v0) ≥ 1
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which is impossible for small values of λ.
A similar argument shows that v′(1) ∈ R.

Remark 3.2. Theorem 3.1 applies in particular if

g(u) =
K

up
,

where K > 0 and p ∈ ]0, 1[.

Theorem 3.3. Assume f : [0, 1]× ]0, R[→ [0,+∞[, with R ∈
]0,+∞], is a L1-Carathéodory function and v is a positive solution of
(1) for some λ > 0. Assume further there exist ε > 0 and a function
h : ]0, ε] → [0,+∞[ having an unbounded antiderivative such that,
for a.e. t ∈ [0, 1] and all u ∈ ]0, ε],

f(t, u) ≥ h(u). (8)

Then v is a non-classical solution. More precisely, we have

lim
t→0

v(t) > 0 and lim
t→1

v(t) > 0.

Proof. Assume, by contradiction, that v is a positive solution of (1)
satisfying limt→0 v(t) = 0. Define

E(t) = 1 − 1
√

1 + v′2(t)
+ λH(v(t)),

where H is an antiderivative of h. We have

E′(t) = v′(t)[(ϕ(v′(t)))′ + λh(v(t))]

≤ v′(t)[(ϕ(v′(t)))′ + λf(t, v(t))] = 0,

for a.e. t ∈ [0, 1] such that v′(t) ≥ 0 and v(t) ≤ ε. Let t0 ∈ ]0, 1[
be such that v′(t) > 0 and v(t) ≤ ε on [0, t0]. Hence, we get the
contradiction

E(t0) ≤ lim
t→0

E(t) = 1 + λ lim
t→0

H(v(t)) = −∞.

A similar argument shows that assuming that limt→1 v(t) = 0 leads
to a contradiction as well.

Remark 3.4. Theorem 3.1 applies in particular if

h(u) =
K

u
,

where K > 0.
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4. Singularity on the right

Theorem 4.1. Let f : [0, 1] × [0, R[→ [0,+∞[, with R ∈ ]0,+∞[, be
a L1-Carathéodory and locally L1-Lipschitz function. Assume
(h2) there is p > 1 such that

lim
u→R

f(t, u)(R − u)p = +∞, uniformly a.e. on [0, 1].

Then there exists λ0 > 0 such that for each λ ∈ ]0, λ0] problem (1)
has at least one positive solution.

Proof. Step 1 – The modified problem. For each n ∈ N, n > 1, we
define

fn(t, u) =











f(t, 0) if u ≤ 0,

f(t, u) if 0 < u ≤ n−1
n R,

f(t, n−1
n R) if n−1

n R < u,

and consider the modified problem

−(ϕn(u′))′ = λfn(t, u), u(0) = 0, u(1) = 0, (9)

where ϕn is defined from (4).

Step 2 – Construction of an upper solution β of (9); for any r ∈ ]0, R[,
there exist λ0 > 0, n0 ∈ N and β ∈ W 2,1(0, 1) such that 0 < β(t) ≤ r
in [0, 1] and, for any λ ∈ ]0, λ0] and any n ≥ n0, β is an upper
solution of (9). To prove this claim, we repeat the argument used in
Step 2 of the proof of Theorem 2.1.

Step 3 – Construction of a lower solution α of (9); there exist n1 ∈ N

and α ∈ W 2,1(0, 1) such that for any λ ∈ ]0, λ0] and any n ≥ n1, α is
a lower solution of (9), 0 < α(t) < R in ]0, 1[ and max(α − β) > 0.
Let λ > 0 be fixed. We first choose r̄ such that

r < r̄ < R, (R − r̄)p−1 <
λ

8R2
,

and for a.e. t ∈ [0, 1] and all u ∈ [r̄, R[

f(t, u) ≥ 1

(R − u)p
≥ 1

(R − r̄)p
.
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Next we write

M0 =
λ

2(R − r̄)p
,

k0 =
r̄

M0
=

2r̄

λ
(R − r̄)p <

1

8
,

ρ0 =
1 −

√
1 − 8k0

4
=

2k0

1 +
√

1 − 8k0
.

The function α defined by

α(t)=















r̄ + 2M0ρ0(t − 1
2 + ρ0) if 0 ≤ t < 1

2 − ρ0,

r̄ + M0(t − 1
2 + ρ0)(

1
2 + ρ0 − t) if 1

2 − ρ0 ≤ t < 1
2 + ρ0,

r̄ + 2M0ρ0(
1
2 + ρ0 − t) if 1

2 + ρ0 ≤ t ≤ 1,

is such that

max(α − β) > 0 and maxα = α(1
2 ) = r̄ + M0ρ

2
0 < R.

To prove the last inequality, we compute

M0ρ
2
0 < 4M0k

2
0 = 4

r̄2

M0
≤ 8R2 (R − r̄)p

λ
≤ R − r̄.

Further, we check that α is a lower solution of (9) for n large enough:

(i) α(0) = α(1) = r̄ + 2M0ρ0(−1
2 + ρ0) = 0,

(ii) −α′′(t) = 2M0 = λ
(R−r̄)p ≤ λf(t, α(t)) ≤ λfn(t, α(t))ϕ′

n(α′(t)),

if 1
2 − ρ0 ≤ t < 1

2 + ρ0,

(iii) −α′′(t) = 0 ≤ λf(t, α(t)) ≤ λfn(t, α(t))ϕ′
n(α′(t)), if 0 ≤ t <

1
2 − ρ0 or 1

2 + ρ0 ≤ t ≤ 1.

Step 4 – Existence of a solution un of (9) for n large enough. Notice
that (9) can be written as

−u′′ = λ
fn(t, u)

ϕ′
n(u′)

, u(0) = 0, u(1) = 0,

where the right-hand side of the equation is bounded by a L1– func-
tion. Using the lower and upper solutions obtained in Step 2 and
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Step 3, and applying Theorem 4.1 in [7], we obtain a solution un of
(9) and points t′n and t′′n ∈ [0, 1] such that

either un(t′n)>β(t′n) or un(t′n)=β(t′n) and u′
n(t′n)=β′(t′n)

and

either un(t′′n)<α(t′′n) or un(t′′n)=α(t′′n) and u′
n(t′′n)=α′(t′′n). (10)

Step 5 – The functions un are bounded away from R. We choose now
r̂ such that

r̄ < r̂ < R, (R − r̂)p−1 <
λ

32R2
, (R − r̂)p <

λ

32(2M0ρ0 − r̄)
.

Let us prove that un(t) ≤ r̂ + (R−r̂
2 ). Assume by contradiction there

exists ŝn such that max un = un(ŝn) > r̂ + (R−r̂
2 ). Define then

s′n < ŝn < s′′n such that un(s′n) = un(s′′n) = r̂.

Claim 1: maxun ≤ 2M0ρ0. Since un is concave and (10) holds, we
compute for t ≥ t′′n

un(t) ≤ un(t′′n) t
t′′
n

≤ α(t′′n) t
t′′
n

≤ α′(0)t ≤ α′(0) = 2M0ρ0.

In a similar way, for t ≤ t′′n we get

un(t) ≤ −α′(1)(1 − t) ≤ −α′(1) = 2M0ρ0,

and the claim follows.

Claim 2: ŝn − s′n < 1
4 . Notice that for any t ∈ [s′n, ŝn] one has

−(ϕn(u′
n(t)))′ = λfn(t, un(t)) ≥ λ

(R − r̂)p
.

It follows that

u′
n(t) ≥ ϕn(u′

n(t)) ≥ λ

(R − r̂)p
(ŝn − t)

and

2M0ρ0 − r̂ ≥ un(ŝn) − r̂ ≥ λ

2(R − r̂)p
(ŝn − s′n)2.

The claim follows then since

(ŝn − s′n)2 ≤ 2
λ(2M0ρ0 − r̄)(R − r̂)p < 1

16 .

Claim 3: s′′n − ŝn < 1
4 . This follows from the argument in Claim 2.
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Claim 4: s′n < 1
4 . Define the energy

En(t) = Φn(u′
n(t)) +

λ

(R − r̂)p
un(t),

where

Φn(v) =

∫ ϕn(v)

0
ϕ−1

n (s) ds = vϕn(v) −
∫ v

0
ϕn(s) ds.

Since for t ∈ [s′n, ŝn]

E′
n(t) = u′

n(t)

[

(ϕn(u′
n(t)))′ +

λ

(R − r̂)p

]

≤ u′
n(t)[(ϕn(u′

n(t)))′ + λfn(t, un(t))] = 0,

we can write

En(s′n) = Φn(u′
n(s′n)) +

λ

(R − r̂)p
r̂

≥ En(ŝn) =
λ

(R − r̂)p
un(ŝn).

It follows that

u′2
n(s′n) ≥ u′

n(s′n)ϕn(u′
n(s′n))

≥ Φn(u′
n(t))

≥ λ

(R − r̂)p
(un(ŝn) − r̂)

≥ λ

2(R − r̂)p−1
.

As

r̂ = un(s′n) =

∫ s′
n

0
u′

n(s) ds ≥ s′nu′
n(s′n),

the claim follows

s′n
2 ≤ r̂2

u′
n
2(s′n)

≤ 2r̂2

λ
(R − r̂)p−1 ≤ 2R2

λ
(R − r̂)p−1 <

1

16
.

Claim 5: 1 − s′′n < 1
4 . To prove this claim, we repeat the argument

in Claim 4.
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Conclusion – We come now to a contradiction since the previous
claims imply that 1 = s′n+(ŝn−s′n)+(s′′n−ŝn)+(1−s′′n) < 1

4+ 1
4+ 1

4+ 1
4 .

Step 6 – Existence of a solution of (1). From Step 5, we know that

un(t) ≤ R̂ = r̂ + (R−r̂
2 ) < R.

Hence for n large enough and a.e. t ∈ [0, 1], f(t, un(t)) = fn(t, un(t)).
Let a ∈ ]0, 1/2[. The concavity of un implies that, for all t ∈ [a, 1−a],

R̂
a ≥ u′

n(a) ≥ u′
n(t) ≥ u′

n(1 − a) ≥ − R̂
a ,

so that for n large enough and all t ∈ [a, 1−a] ϕ′(u′
n(t)) = ϕ′

n(u′
n(t)).

It follows that

0 ≤ −u′′
n(t) = λ

f(t, un(t))

ϕ′(u′
n(t))

≤ λ
h(t)

ϕ′( R̂
a )

,

where h ∈ L1(0, 1) is such that, for a.e. t ∈ [0, 1] and every u ∈ [0, R̂],
f(t, u) ≤ h(t). From Arzelà-Ascoli Theorem, a subsequence of (un)n
converges in C1([a, 1 − a]) to a function u ∈ C1([a, 1 − a]) which
satisfies

−u′′ = λ
f(t, u)

ϕ′(u′)
.

Using a diagonalization argument, u can be extended onto ]0, 1[. We
observe further that, as maxun ≥ min β, the same holds true for u
and hence it is non-trivial. As u is concave and positive, we have

lim
t→0

u(t) ∈ [0,+∞[ and lim
t→1

u(t) ∈ [0,+∞[.

Arguing as in Step 6 and Step 7 of the proof of Theorem 2.1, we
obtain

lim
t→0

u(t) = 0 or lim
t→0

u′(t) = +∞

and

lim
t→1

u(t) = 0 or lim
t→1

u′(t) = −∞.

Hence, we conclude as in the proof of Theorem 2.1.
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Remark 4.2. Suppose that, in addition to the assumptions of The-
orem 4.1, the following condition holds

lim
u→0

f(t, u)

u
= 0, uniformly a.e. on [0, 1].

Then, for any λ ∈ ]0,+∞[, problem (1) has at least one positive
solution.

To prove this claim we only need to verify that an upper solution
β of (5) can be constructed for any given λ > 0. We fix λ and define
the upper solution β by setting β(t) = εt(1 − t), where ε ∈ ]0, 1

2 [ is
such that f(t, u) ≤ u

λ for a.e. t ∈ [0, 1] and all u ∈ ]0, ε]. We have
then

−β′′(t) = 2ε ≥ (1 + ε2)3/2ε ≥ λ(1 + β′(t)2)3/2f(t, β(t))

a.e. in [0, 1].

5. Two singularities

Theorem 5.1. Let f : [0, 1]× ]0, R[→ [0,+∞[, with R ∈ ]0,+∞[, be
a L1-Carathéodory and locally L1-Lipschitz function. Assume that
(h1) and (h2) hold. Then there exists λ0 > 0 such that for each
λ ∈ ]0, λ0] problem (1) has at least two positive solutions.

Proof. The modified problem. For each n ∈ N, n > 1, we define

fn(t, u) =











f(t, R/n) if u ≤ R/n,

f(t, u) if R/n < u ≤ n−1
n R,

f(t, n−1
n R) if n−1

n R < u,

and consider the modified problem

−(ϕn(u′))′ = λfn(t, u), u(0) = 0, u(1) = 0. (11)

where ϕn is defined from (4).
From Step 2 and Step 3 in the proof of Theorem 4.1 there exists

λ0 > 0 such that, for all λ ∈ ]0, λ0], there are upper solutions β1, β2

and a lower solution α2 of (11) such that, for all large n, min(β2 −
β1) > 0, min β1 > 0, and max(α2 − β2) > 0.
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From Step 3 in the proof of Theorem 2.1 there exists a lower
solution α1 of (11) such that, for all large n, α1(t) > 0 on ]0, 1[ and
max α1 < minβ1.

Accordingly, for each λ ∈ ]0, λ0] there are sequences (un)n and
(vn)n of solutions of (11) satisfying, for some R′ < R, α1(t) ≤ un(t) ≤
β1(t) on [0, 1] and min β2 ≤ max vn ≤ R′. Arguing as in Step 5 of the
proof of Theorem 2.1 and as in Step 6 of the proof of Theorem 4.1
we obtain positive solutions u and v of (1) as limits of subsequences
of (un)n and (vn)n, respectively. Since α1(t) ≤ u(t) ≤ β1(t) on [0, 1]
and min β2 ≤ max v, we have u 6= v.

6. Non-existence for large values of λ

Theorem 6.1. Let f : [0, 1] × ]0, R[ → [0,+∞[, with R ∈ ]0,+∞],
be a L1-Carathéodory function. Assume that for some a ∈ L1(0, 1),
with a(t) ≥ 0 a.e. in [0, 1] and a(t) > 0 on a set of positive measure,
we have

f(t, u)

u
≥ a(t), for a.e. t ∈ [0, 1] and for every u ∈ ]0, R[.

Let Λ1 be the principal eigenvalue of the problem

−u′′ = Λa(t)u, u(0) = 0, u(1) = 0. (12)

Then for each λ > Λ1 problem (1) has no positive solution.

Proof. Let us prove that the existence of a positive solution v of
problem (1), for some λ > Λ1, yields the existence of a positive
solution u ∈ W 2,1(0, 1) of

−u′′ = λa(t)u, u(0) = 0, u(1) = 0, (13)

which is impossible as λ 6= Λ1.

Step 1 – Construction of an upper solution β of (13). Let β be the
continuous extension on [0, 1] of the restriction to ]0, 1[ of v. Since

−β′′(t) = λ(1 + (β′(t))2)3/2f(t, β(t)) ≥ λa(t)β(t), a.e. in [0, 1],

β(0) ≥ 0 and β(1) ≥ 0, we have that β is an upper solution of (13)
according to Definition II-4.1 in [6].
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Figure 1: Phase plane for f(u) = 1/
√

u and λ = 1/2.

Step 2 – Construction of a lower solution α of (13). Let α be an
eigenfunction of (12) corresponding to Λ1 such that 0 < α(t) ≤ β(t)
on ]0, 1[. Then α is a lower solution of (13), as

−α′′(t) = Λ1a(t)α(t) ≤ λa(t)α(t).

Conclusion – As α(t) ≤ β(t) for all t ∈ [0, 1], Theorem II-4.6 in [6]
guarantees that (13) has a positive solution u ∈ W 2,1(0, 1). This
yields the contradiction.

A. Numerical illustrations

In this appendix, we present some numerics on autonomous model
examples. The computations have been performed by using the
MATLAB built-in function ode45. On the phase-plane portraits, the
bold part of an orbit corresponds to a time interval of length 1.

In Figure 1, we depict a phase-plane example for a weak singu-
larity in zero. One can see that the time to travel to zero from the
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Figure 2: Phase plane for f(u) = 1/u2 and λ = 1/2.

maximum is increasing. On the left of the bold orbit, the time re-
quired to reach zero (in the future or in the past) is less than 1/2
while it is larger than 1/2 for the orbits on the right.

The same phenomenon is depicted for a strong singularity in
Figure 2. Observe that in this case, as proved in Theorem 3.3, no
orbit reaches zero.
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Figure 3: Small classical solution for f(u) = 1/
√

u and λ = 1/2.
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Figure 4: Non-classical solution for f(u) = 1/u2 and λ = 1/2.

We depict in Figure 3 and Figure 4 the corresponding solutions.
In the case of the strong force, the solutions display jumps at the
endpoints of the interval.
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Figure 5: Phase plane for f(u) = 1√
u(5−u)2

and λ = 1/2. Zoom on

the small orbits.
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Figure 6: Phase plane for f(u) = 1√
u(5−u)2

and λ = 1/2. Zoom on

the large orbits.

The case of two singularities is illustrated by Figure 5 and Figure
6. The time to reach zero is increasing from left to right for small
orbits while, for large orbits, the derivative blows up before reaching
zero.
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Figure 7: Small classical solution for f(u) = 1√
u(5−u)2

and λ = 1/2.
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Figure 8: Large non-classical solution for f(u) = 1√
u(5−u)2

and λ =

1/2.

Hence, as proved in Theorem 5.1, we obtain a small classical
solution (see Figure 7) and a large solution which turns here to be
non-classical (see Figure 8).
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Figure 9: Phase plane for f(u) = − 1
u ln u and λ = 1/2.
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Figure 11: Large non-classical solution for f(u) = − 1
u lnu and λ =

1/2.

Finally, Figure 9 concerns a case which is not totally covered by
our results. Indeed, Theorem 2.1 ensures the existence of a small
solution for the model nonlinearity f(u) = −1/(u ln u); this is non-
classical by Theorem 3.3 (see Figure 10). Since the singularity of
f at u = 1 is not strong, Theorem 5.1 does not apply. However,
the numerical computation suggests the existence of a second large
non-classical solution (see Figure 11). This example may motivate a
further analysis.
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