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Gröbner Bases for Submodules of Z
n

Giandomenico Boffi and Alessandro Logar (∗)

Dedicated to the memory of Fabio Rossi

Summary. - We define Gröbner bases for submodules of Z
n and

characterize minimal and reduced bases combinatorially in terms
of minimal elements of suitable partially ordered subsets of Z

n.
Then we show that Gröbner bases for saturated pure binomial
ideals of K[x1, . . . , xn], char (K) 6= 2, can be immediately de-
rived from Gröbner bases for appropriate corresponding submod-
ules of Z

n. This suggests the possibility of calculating the Gröbner
bases of the ideals without using the Buchberger algorithm.

1. Introduction

This paper reports on some work related to the computation of
Gröbner bases for saturated pure binomial ideals of K[x1, . . . , xn],
K a field of characteristic different from 2, with respect to any term
order. The idea is to first define Gröbner bases for submodules of Z

n

and then prove that the Gröbner bases for the ideals can be imme-
diately obtained from those of the submodules. Moreover, the min-
imal and reduced Gröbner bases for submodules are characterized
combinatorially in terms of minimal elements of suitable partially
ordered subsets of Z

n. Hence the use of the Buchberger algorithm
in K[x1, . . . , xn] can be replaced by any algorithm able to find the
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minimal elements of the above mentioned partially ordered subsets
of Z

n. We believe that this replacement may yield a significant re-
duction in the complexity of computations, but we are still in an
initial phase of the investigation. In the last section, an illustration
is given in a special case, the case of rank 2 submodules of Z

n (with
respect to a lexicographic term order).

The relevance of pure binomial ideals can be hardly overesti-
mated. Ideals of this kind occur in integer programming and are the
defining ideals of toric varieties [7], [10]. More generally, all binomial
ideals enjoy nice properties: their Gröbner bases are still given by
sets of binomials; the ideals occurring in their primary decomposi-
tons are still binomial ideals [8]. Binomial ideals were also involved
in the authors’ work with Fabio Rossi [3], [4], [5], to whom this article
is dedicated.

It was observed long ago that the Buchberger algorithm for toric
ideals is a purely combinatorial process involving lattice vectors [12].
Hence our shift from ideals of K[x1, . . . , xn] to submodules of Z

n is
not altogether new, though we develop this point of view to a larger
extent. But the shift to lattices has been seen by others as a way to
perform the Buchberger algorithm in a more efficient way, while our
idea is to avoid using that algorithm. For the problems related to
computing toric ideals, see also [2].

The outline of this paper is as follows. Sections 2 and 3 define
Gröbner bases for any non-zero submodule M of Z

n with respect to
any term order<τ . In particular, a minimal (resp., reduced) Gröbner
basis is characterized as a subset of M consisting of n-tuples which
are minimal with respect to a suitable partial order ⊏ (resp., ≺)
of M ∩ τ(Zn), where τ(Zn) := {a ∈ Z

n : a+ >τ a−}, a+ and
a− being the only elements of N

n with disjoint support such that
a = a+ − a−. Section 4 shows how the computation of the (usual)
Gröbner bases for saturated pure binomial ideals (with respect to
any term order) is equivalent to the computation of the Gröbner
bases for corresponding submodules of Z

n. Section 5 shows how one
can find minimal and reduced Gröbner bases for rank 2 submodules,
with respect to lex, by means of the orders ⊏ and ≺.

The computer algebra system CoCoA [6] has been used for some
examples related to this work.
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We thank the referee for checking all details very accurately.
After this paper had been accepted for publication, it was pointed

out to us that results very similar to the ones appearing in Sections 2
and 3 can be found in [11], an article previously unknown to us. In-
deed there is some overlap with [11], particularly in the definition
and characterization of the order ≺. Our approach, however, is dif-
ferent, for we aim at computing Gröbner bases for submodules of Z

n

in a way completely independent of polynomial ideals, and amenable
to new algorithmic strategies.

It was also pointed out to us that interesting recent work on the
computation of toric ideals has been done by Hemmecke and his
collaborators; see for instance [9].

2. Gröbner bases in Z
n

Given α := (α1, . . . , αn), β := (β1, . . . , βn) ∈ N
n, we say that α

divides β (notation: α | β), if αi ≤ βi for all i.
If a := (a1, . . . , an) ∈ Z

n, a can be uniquely written as a =
a+ − a− where a+, a− are in N

n and have disjoint support.
Let <τ be a term order in N

n (that is <τ is a total order on N
n

compatible with the additive structure of N
n and such that 0 ≤τ a

for all a ∈ N
n) and extend it to Z

n. Let τ(Zn) := {a ∈ Z
n | a+ >τ

a−}. Note that 0 6∈ τ(Zn) and if a 6= 0, then either a ∈ τ(Zn) or
−a ∈ τ(Zn).

Let a, b ∈ Z
n and F := {f1, . . . , fr} ⊆ τ(Zn). We say that a

reduces to b modulo F in one step if there exists i ∈ {1, . . . , r} such
that either f+

i divides a+ and b = a − fi or f+
i divides a− and

b = a + fi. We say that a reduces to b modulo F if there exist
b1, b2, . . . , bk ∈ Z

n such that a reduces to b1 in one step modulo F ,
b1 reduces to b2 in one step modulo F , . . . , bk−1 reduces to bk in one
step modulo F and bk = b. We say that a is reduced modulo F if
f+

i does not divide a+ and a− for all i ∈ {1, . . . , r}.

Lemma 2.1. Let a ∈ Z
n and suppose that a = u− v where u, v ∈ N

n

(we do not assume that u and v have disjoint support). Then there
exists p ∈ N

n such that a+ = u− p and a− = v − p.

Proof. It suffices to choose pi = min(ui, vi), where pi, ui and vi de-
note the i-th components of p, u and v respectively.
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Lemma 2.2. Define the following order on the set N
n×N

n: (α, β) <1

(α′, β′) if and only if α <τ α
′ or α = α′ and β <τ β

′. Then N
n ×N

n

is a well ordered set.

Proof. It is clear that <1 is a total order. It is easy to see that it is
a well ordering since <τ is a well ordering.

Proposition 2.3. Let F be as above and let a ∈ Z
n. Then it is

possible to construct, in a finite number of steps, an element b ∈ Z
n

such that a reduces to b modulo F and b is reduced modulo F .

Proof. To every element a ∈ Z
n we associate the element C(a) :=

(a+, a−) ∈ N
n × N

n.
If a is reduced modulo F there is nothing to prove. Otherwise

there exists fi such that f+
i | a+ or f+

i | a−. In the first case we
have that a reduces, in one step, to a′ := a − fi. Since f+

i | a+,
we have that there exists d ∈ N

n such that a+ = f+
i + d. Hence

a′ = a+−a−−f+
i +f−i = f−i +d−a−. From Lemma 2.1, we have that

there exists a p ∈ N
n such that a′+ = f−i + d− p and a′− = a− − p.

Since <τ is a term order, we have: a+ = f+
i + d >τ f−i + d ≥τ

f−i + d − p and a− ≥τ a− − p. This proves that C(a′) <1 C(a).
Similarly, suppose f+

i | a−. In this case a reduces, in one step,
to a′ := a + fi. Let d ∈ N

n be such that a− = f+
i + d. Hence

a′ = a+−a−+f+
i −f−i = a+−(f−i +d) and again there exists a p ∈ N

n

such that a′ = a+−p−(f−i +d−p) and C(a′) = (a+−p, f−i +d−p), so
C(a′) <1 C(a). In both cases, the reduction modulo F has produced
an element in N

n × N
n smaller than C(a). Lemma 2.2 shows that

after a finite number of steps the process produces an element b ∈ Z
n

reduced modulo F .

Let 0 6= M ⊆ Z
n be a Z-submodule (necessarily free, of rank at

most n), and let g1, . . . , gk ∈M ∩ τ(Zn).

Definition 2.4. We say that g1, . . . , gk ∈ M ∩ τ(Zn) is a Gröbner
basis for M with respect to the given term order <τ if and only if
for all a ∈ M ∩ τ(Zn) there exists an index i ∈ {1, . . . , k} such that
g+
i | a+.

Proposition 2.5. Let 0 6= M ⊆ Z
n and let G := {g1, . . . , gk} ⊆

M ∩ τ(Zn). Then the following statements are equivalent:
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1. G is a Gröbner basis for M ;

2. a ∈M if and only if a reduces to 0 modulo G.

Proof. SupposeG is a Gröbner basis. Let a ∈ Z
n. By Proposition 2.3

there exists a b such that a reduces to b modulo G and b is reduced.
Hence a − b ∈ M . If a ∈ M then b ∈ M and this shows that b = 0.
If b = 0 then clearly a ∈M .

Suppose now that 2 holds and let a ∈ M ∩ τ(Zn), so a+ >τ a
−.

If there exists some gi ∈ G such that g+
i | a+, then we are done.

Suppose for a contradiction that this is not the case; hence there
exists a suitable gi such that g+

i | a−. Adopting the notation of the
proof of Proposition 2.3, we have that a reduces to a1 where a+

1 =
a+−p and a−1 = g−i +d−p (where p, d are suitable elements in N

n).
Note that a+

1 >τ a
−

1 (as follows from a+ >τ a
− = g+

i + d ≥τ g
−

i + d).
In particular, a+

1 = a+ − p >τ 0. Since a1 can be reduced modulo
G, then either a+ − p or g−i + d− p is a multiple of a suitable g+

j . In

the first case, since a+ − p 6= 0, also a+ would be a multiple of gj ,
against our assumption. Hence we see that in each step of the process
of reduction of a to 0 modulo G we produce elements a1, a2, . . . such
that a+

i >τ 0 for all i = 1, 2, . . . and this is a contradiction.

If S ⊆ N
n, denote by 〈S〉 the submonoid of N

n generated by S,
namely, 〈S〉 :=

⋃

α∈S(α + N
n), where α + N

n = {α + β : β ∈ N
n}.

Clearly, 〈S〉 = {β ∈ N
n : ∃α ∈ S s.t. α | β}. By Dickson’s Lemma

(cf. e.g. [1], Corollary 4.48), 〈S〉 is finitely generated, that is, one
can find finitely many elements α(1), . . . , α(s) of S such that 〈S〉 =
⋃s

i=1(α(i) + N
n).

If X is any subset of Z
n, denote by Ltτ (X) the submonoid of N

n

generated by the set S := {a+ : a ∈ X ∩ τ(Zn)}.

Proposition 2.6. Let 0 6= M ⊆ Z
n and let G := {g1, . . . , gk} ⊆

M ∩ τ(Zn). Then the following statements are equivalent:

1. G is a Gröbner basis for M ;

2. Ltτ (M) = Ltτ (G).
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Proof. Let G be a Gröbner basis and let a ∈M ∩ τ(Zn); then clearly
a+ ∈ Ltτ (G). Conversely, if 2 holds, a ∈ M ∩ τ(Zn) implies a+ ∈
Ltτ (M) = Ltτ (G); hence there exists gi ∈ G such that g+

i |a+ and
G is a Gröbner basis.

Proposition 2.7. If g1, . . . , gk is a Gröbner basis for 0 6= M ⊆ Z
n,

then g1, . . . , gk is a system of generators of M .

Proof. An immediate consequence of Proposition 2.5.

Proposition 2.8. If 0 6= M ⊆ Z
n, then M has a Gröbner basis.

Proof. By Dickson’s Lemma, Ltτ (M) is finitely generated by a set
of elements {g+

1 , . . . , g
+
k } for suitable g1, . . . , gk ∈M ∩ τ(Zn). Hence

g1, . . . , gk is a Gröbner basis for M by Proposition 2.6.

3. Minimal and reduced Gröbner bases in Z
n

Definition 3.1. Let G := {g1, . . . , gk} be a Gröbner basis for 0 6=
M ⊆ Z

n. We say that G is a minimal Gröbner basis for M if and
only if the following condition holds:
for all i, j ∈ {1, . . . , k}, if g+

i | g+
j then i = j.

Given a Gröbner basis G for 0 6= M ⊆ Z
n, in order to extract

from it a minimal Gröbner basis, it is enough to erase from G those
elements g such that g+ is a multiple of some other h+ with h ∈ G.

Proposition 3.2. Suppose g1, . . . , gk and h1, . . . , hp are two minimal
Gröbner bases for 0 6= M ⊆ Z

n. Then k = p and the two sets
{g+

1 , . . . , g
+
k } and {h+

1 , . . . , h
+
k } are equal.

Proof. Take an index i ∈ {1, . . . , k}. Since gi ∈ M ∩ τ(Zn), there
exists an hji

such that h+
ji

| g+
i ; but hji

∈ M ∩ τ(Zn), then there

exists a gj such that g+
j | h+

ji
, therefore g+

j | g+
i . This implies that

g+
i = g+

j = h+
ji
, and the statement follows immediately.

Definition 3.3. Let G := {g1, . . . , gk} be a Gröbner basis for 0 6=
M ⊆ Z

n. We say that G is a reduced Gröbner basis for M if and
only if

• G is a minimal Gröbner basis;
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• for all i, j ∈ {1, . . . , k}, g+
i does not divide g−j .

Given a minimal Gröbner basis G for 0 6= M ⊆ Z
n, it

is possible to construct from it a reduced Gröbner basis. In-
deed, if G = {g1, . . . , gk}, let h1 be obtained by reduction of
g1 modulo {g2, . . . , gk}, h2 be obtained by reduction of g2 mod-
ulo {h1, g3, . . . , gk}, . . . hk be obtained by reduction of gk modulo
{h1, . . . , hk−1}. Then it is easy to see that {h1, . . . , hk} satisfies Def-
inition 3.3.

Proposition 3.4. The reduced Gröbner basis for 0 6= M ⊆ Z
n is

unique.

Proof. Suppose that G and H are two reduced Gröbner bases. From
Proposition 3.2 we know that G and H have the same number k of
elements and we can assume that they are ordered in such a way
that g+

i = h+
i for i = 1, . . . , k (where G := {g1, . . . , gk} and H :=

{h1, . . . , hk}). Consider gi − hi = h−i − g−i . If this element of M is
not 0, then it reduces to 0 modulo G and also modulo H, but this
contradicts the second condition of a reduced Gröbner basis.

We define now the following relation on the set τ(Zn): given
a1, a2 ∈ τ(Zn), we say that a1 ⊏ a2 if a+

1 6= a+
2 and a+

1 | a+
2 . It is

easy to verify that ⊏ is a partial order on the set τ(Zn).

Theorem 3.5. If {g1, . . . , gk} is a minimal Gröbner basis for 0 6=
M ⊆ Z

n, then

1. g1, . . . , gk are minimal elements of M ∩ τ(Zn) w.r.t. ⊏ and, if
i 6= j, then g+

i 6= g+
j ;

2. {g1, . . . , gk} is maximal w.r.t. the above property.

Conversely, if we have a set {g1, . . . , gk} ⊆M ∩ τ(Zn) satisfying the
two conditions above, then it is a minimal Gröbner basis for M .

Proof. Let us consider an element gi of the given minimal Gröbner
basis. If gi is not minimal for ⊏, then there exists h ∈ M ∩ τ(Zn)
such that h ⊏ gi. Then h+ 6= g+

i and h+ | g+
i . Since there exists a gj

such that g+
j | h+, then g+

j | g+
i which gives i = j, hence g+

i = h+,



50 G. BOFFI AND A. LOGAR

a contradiction. If {g1, . . . , gk} is not maximal, then there exists an
h ∈ M ∩ τ(Zn) minimal w.r.t. ⊏ such that g+

i 6= h+ for all i. Using
again the hypothesis, we get that there exists a gj such that g+

j | h+,
hence gj ⊏ h, a contradiction.

Suppose now that for the set {g1, . . . , gk} the two conditions of
the theorem are satisfied; we want to conclude that the set is a
minimal Gröbner basis. It is easy to see that any strictly decreasing
chain of elements of M ∩ τ(Zn) w.r.t. ⊏ must be finite, hence if
a ∈M ∩ τ(Zn) there exists b ∈M ∩ τ(Zn) such that b ⊏ a and b is a
minimal element of M ∩ τ(Zn). Since {g1, . . . , gk} is maximal, there
exists gi such that g+

i = b+ hence g+
i | a+. This shows that the gi’s

form a Gröbner basis. If g+
i | g+

j , since g+
i 6= g+

j , then we would have

g+
i ⊏ g+

j , a contradiction. Hence the Gröbner basis is minimal.

Finally we define another relation on τ(Zn) as follows: given
a1, a2 ∈ τ(Zn), we say that a1 ≺ a2 if a+

1 6= a+
2 and a+

1 | a+
2 or if

a+
1 = a+

2 and a−1 <τ a
−

2 . It is easy to verify that ≺ is a partial order
on τ(Zn) which refines ⊏.

Theorem 3.6. We have: {g1, . . . , gk} is the reduced Gröbner basis
for 0 6= M ⊆ Z

n if, and only if, {g1, . . . , gk} is the set of all minimal
elements of M ∩ τ(Zn) w.r.t. ≺.

Proof. First we show that any gi is minimal. Since ≺ refines ⊏, from
Theorem 3.5 we have that gi is minimal for ⊏. Suppose that gi is not
minimal for ≺; hence there exists h ∈ M ∩ τ(Zn) such that h ≺ gi,
so h+ = g+

i and h− <τ g−i . Let a := h − gi = g−i − h−. From
Lemma 2.1 we have that there exists p ∈ N

n such that a+ = g−i − p.
Since a ∈ M ∩ τ(Zn), there exists gj such that g+

j | g−i − p, hence

g+
j | g−i , against the hypothesis. To see that all the minimal elements

are among the gi’s, let h ∈ M ∩ τ(Zn) be minimal for ≺. Then h
is minimal also for ⊏, hence, from Theorem 3.5, there exists gi such
that g+

i = h+. If h− <τ g
−

i , then h ≺ gi, a contradiction with the
minimality of gi; if g−i <τ h

−, then gi ≺ h, a contradiction with the
minimality of h; hence h = gi.
Conversely, suppose that {g1, . . . , gk} is the set of all the minimal
elements of M ∩ τ(Zn), and let a ∈ M ∩ τ(Zn). Since <τ is a
well ordering, it is easy to see that any strictly decreasing chain
of elements of M ∩ τ(Zn) w.r.t. ≺ is finite, hence there exists b ∈
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(3, 0)

(−1, 3)(2, 3)

(1, 6)

Figure 1: The module M and its first Gröbner basis

M ∩ τ(Zn) minimal such that b ≺ a. Hence there exists gi such that
gi = b, so g+

i | a.

Example 3.7. Let us consider the module M ⊆ Z
2 generated by (2, 3)

and (1, 6). Let <τ be the “xel” term order on N
2 (i.e. (α, β) <τ (γ, δ)

if β < δ or β = δ and α < γ). The module M is represented by the
black dots occurring in the left part of Figure 1. The highlighted
region represents the set M ∩ τ(Z2). In this example it is easy to
see, from the right part of Figure 1, that (3, 0) and (−1, 3) are the
only minimal elements w.r.t. the partial order ≺; hence these two
elements are the reduced Gröbner basis for M (the hightlighted re-
gions represent the elements a ∈ M ∩ τ(Z2) such that (−1, 3) ≺ a
or (3, 0) ≺ a). Note that we have many different minimal Gröbner
bases: {(3, 0), (−4, 3)} or {(3, 0), (−7, 3)} are two possible examples.

Fix now on N
2 the term order <τ given by the following matrix:

(

3 1
1 0

)

, i.e., (α, β) <τ (γ, δ) if 3α + β < 3γ + δ or, if 3α + β =

3γ + δ, then α < γ.
The left part of Figure 2 shows the set M ∩ τ(Z2), while the right

part shows the minimal elements of M∩τ(Z2) w.r.t. the partial order
≺. Hence in this case the reduced Gröbner basis for the module M
is given by (1,−3) and (0, 9).

4. Pure binomial ideals

In this section we shall often apply the usual Gröbner bases tech-
niques of polynomial rings. Hence, if not explicitly stated, the no-
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(0, 9)

(1, −3)

Figure 2: Another Gröbner basis for M

tions of Gröbner basis, reduction, leading term (Lt) etc. will not refer
to the definitions of the previous sections.

Let K be any field of characteristic 6= 2. By a pure binomial (or
binomial, for short) in K[x1, . . . , xn] we mean a polynomial which
is the difference of two terms (= monic monomials). Given b =
(b1, . . . , bn) ∈ Z

n, we associate to it the binomial fb such that

fb := x
max(b1,0)
1 · · · xmax(bn,0)

n − x
−min(b1,0)
1 · · · x−min(bn,0)

n .

If we write b = b+ − b−, we use the short notation fb = xb+ − xb−

(where, if α = (α1, . . . , αn) ∈ N
n, xα denotes xα1

1 · · · xαn
n ).

Let
φ : Z

n −→ K[x1, . . . , xn]

be the injective map given by φ(b) = fb. (Injectivity follows from
char (K) 6= 2).

A binomial f ∈ K[x1, . . . , xn] is called saturated (with respect
to the indeterminates) if for all i = 1, . . . , n, xi is not a factor of f .
If f is any binomial, let Sat(f) be the binomial obtained from f by
saturation, i.e., Sat(f) is a saturated binomial such that f/Sat(f) is
a monomial.

Let Bsat be the set of all saturated binomials.

Lemma 4.1. We have:

1. for all b ∈ Z
n, φ(b) is a saturated binomial;

2. φ gives a bijection between Z
n and Bsat.
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Proof. An immediate computation.

In this section we shall consider pure binomial ideals, i.e., (non-
zero) ideals generated by pure binomials. In the sequel we shall call
them binomial ideals, for short. If I is a binomial ideal generated by
f1, . . . , fr, let m1 := φ−1(Sat(f1)), . . ., mr := φ−1(Sat(fr)); we de-
note by M(f1, . . . , fr) ⊆ Z

n the Z-module generated by m1, . . . ,mr.

By Sat(I) we denote the saturation of the ideal I with respect to
the indeterminates, i.e.,

Sat(I) = {f ∈ K[x1, . . . , xn] : ∃m, a monomial, s.t. mf ∈ I} .

Finally, given two binomials f = xa − xb and g = xc − xd, we
define σ(f, g) as the binomial xcf − xag.

Lemma 4.2. Let b1, b2 be in Z
n. Then:

1. φ(b1 − b2) = Sat(σ(φ(b1), φ(b2)));

2. φ(b1 + b2) = Sat(σ(φ(b1), φ(−b2))).

Let I be a binomial ideal as above. Then:

3. if φ(b1), φ(b2) ∈ Sat(I), then φ(b1 − b2), φ(b1 + b2) ∈ Sat(I);

4. if φ(b1) ∈ Sat(I) and λ ∈ Z, then φ(λb1) ∈ Sat(I).

Proof. Let b1 = b+1 − b−1 and b2 = b+2 − b−2 ; then φ(b1) = xb+1 − xb−1

and φ(b2) = xb+2 −xb−2 . We have: b1−b2 = u−v where u = (b+1 +b−2 )
and v = (b−1 + b+2 ) and, from Lemma 2.1, there exists a p ∈ N

n such
that (b1 − b2)

+ = u− p and (b1 − b2)
− = v − p. Hence φ(b1 − b2) =

xu−p−xv−p, so xpφ(b1−b2) = xu−xv. Since σ(φ(b1), φ(b2)) = xu−xv,
we get that φ(b1 − b2) = Sat(xpφ(b1 − b2)) = Sat(σ(φ(b1), φ(b2))).

The second claim follows immediately from the first.

To see the third claim, it is enough to observe that, by definition
of σ, σ(φ(b1), φ(b2)) ∈ Sat(I) and hence the statement follows from 1
and 2.

The last claim is a consequence of 3, since λb1 = b1 + · · · + b1 (if
λ > 0) or λb1 = −b1 − · · · − b1 (if λ < 0).
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Proposition 4.3. Let I be a binomial ideal generated by binomials
f1, . . . , fr. If b ∈M(f1, . . . , fr), then φ(b) ∈ Sat(I).

Proof. By definition, M(f1, . . . , fr) is generated by the monomials
mi := φ−1(fi) and the corresponding φ(mi)(= Sat(fi)) are in Sat(I)
(i = 1, . . . , r). If b ∈ M then b is a linear combination, with
coefficients in Z, of m1, . . . ,mr; hence the statement follows from
Lemma 4.2, parts 3 and 4.

We recall the following:

Proposition 4.4. If I is a binomial ideal, then Sat(I) 6= (1) and is
a binomial ideal.

Proof. First of all, let us prove that I := (f1, . . . , fr) (where the
fi’s are pure binomials) does not contain monomials. Fix a term
order and let G be the reduced Gröbner basis for I. If I contained
monomials, then also G should contain monomials. If we follow
the Buchberger algorithm used for computing G, we see that the
S-polynomial of two pure binomials is again a pure binomial and
the reduction of a pure binomial by a pure binomial, if not 0, is
a pure binomial. This shows that all the elements produced in the
computation of G are pure binomials. Hence Sat(I) 6= (1). The ideal
Sat(I) can be computed by the formula:

Sat(I) = K[x1, . . . , xn] ∩ (I + (t · x1 · · · xn − 1)) ,

and from this it follows that Sat(I) is a pure binomial ideal.

Proposition 4.5. If I = (f1, . . . , fr) is a binomial ideal and f ∈
Sat(I) is a saturated binomial, then there exists an element b ∈
M(f1, . . . , fr) such that φ(b) = f .

Proof. Fix a term order <τ in K[x1, . . . , xn] and let {g1, . . . , gk} be
the corresponding reduced Gröbner basis for I.

Claim: There exist p1, . . . , pk ∈M(f1, . . . , fr) such that φ(pi) =
Sat(gi) for i = 1, . . . , k.

To prove this claim, we observe that in order to compute
the Gröbner basis for I (with the Buchberger algorithm) we have
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to compute S-polynomials and reductions (starting from the bi-
nomials f1, . . . , fr). Moreover, a one step reduction of a poly-
nomial a w.r.t. a polynomial b can be seen as the computation
of the S-polynomial S(a, b). Since Sat(f1), . . . ,Sat(fr) are in
φ(M(f1, . . . , fr)), it is enough to prove that if h1, h2 ∈ I are
two binomials whose saturation is in φ(M(f1, . . . , fr)), then also
Sat(S(h1, h2)) is in φ(M(f1, . . . , fr)). Let then h1, h2 ∈ I and let
b1, b2 ∈ M(f1, . . . , fr) be such that φ(b1) = Sat(h1) and φ(b2) =
Sat(h2). Let b1 = b+1 − b−1 and b2 = b+2 − b−2 and suppose further

that xb+1 >τ xb−1 and xb+2 >τ xb−2 (if this is not the case, change
b1 and h1 with −b1 and −h1 or b2 and h2 with −b2 and −h2).
Then Sat(S(h1, h2)) = Sat(σ(φ(b1), φ(b2))). Lemma 4.2 gives that
Sat(S(h1, h2)) = φ(b1 − b2) is in φ(M(f1, . . . , fr)) and the claim fol-
lows.

Let now f ∈ Sat(I) be a saturated binomial; then there ex-
ists a ∈ N

n s.t. xaf ∈ I, hence xaf reduces to 0 w.r.t. {gi}.
Let u1, . . . , us, us+1 = 0 be the binomials produced in the pro-
cess of reduction, hence u1 = xaf − xt1gi1 , u2 = u1 − xt2gi2 , . . .
us+1 = us − xts+1gis+1 where t1, . . . , ts+1 are suitable elements of
N

n, i1, . . . , is+1 are suitable indexes in {1, . . . , k} and Ltτ (uj) =
Ltτ (x

tj+1gij+1). From 0 = us+1 = us − xts+1gis+1 we deduce that
Sat(us) is in φ(M(f1, . . . , fr)). To see that f ∈ φ(M(f1, . . . , fr)), it
is therefore enough to prove the following:

Let u, v, g be binomials such that Ltτ (v) = Ltτ (g), u = v − g and
Sat(u),Sat(g) ∈ φ(M(f1, . . . , fr)). Then Sat(v) ∈ φ(M(f1, . . . , fr)).

Let b, p ∈ M(f1, . . . , fr) be such that φ(b) = Sat(u) and φ(p) =
Sat(g). Then u = xb++c − xb−+c, g = xp++d − xp−+d (for suitable
c, d ∈ N

n) and b+ + c = p− + d (since Ltτ (v) = Ltτ (g)). Hence
v = xp++d − xb−+c. Consider p+ b: p+ b = (p+ + b+)− (p− + b−) =
(p+ + b+ + c)− (p− + b− + c) = (p+ + d)− (b− + c). This shows that
Sat(v) = φ(p+ b).

As a consequence of Proposition 4.4, we can always assume that
we have a Gröbner basis for Sat(I) formed by binomials; moreover
it is not restrictive to suppose that these binomials are saturated.
Hence from now on, a Gröbner basis for Sat(I) will always
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be meant to consist of saturated binomials. From Proposi-
tion 4.3 and Proposition 4.5 we have:

Proposition 4.6. Given a binomial ideal I := (f1, . . . , fr), the map
φ gives a bijection between the module M(f1, . . . , fr) and the set of
all saturated binomials of Sat(I). In particular, φ(M(f1, . . . , fr))
contains all the Gröbner bases of Sat(I).

Suppose that I = (f1, . . . , fr) = (h1, . . . , hs). The above proposi-
tion says that φ puts bothM(f1, . . . , fr) andM(h1, . . . , hs) in one-to-
one correspondence with the set of all saturated binomials of Sat(I).
The injectivity of φ gives M(f1, . . . , fr) = M(h1, . . . , hs) (since every
saturated binomial f ∈ Sat(I) is equal to both φ(b) ∈M(f1, . . . , fr)
and φ(b′) ∈ M(h1, . . . , hs), whence b = b′). Therefore there is just
one submodule of Z

n associated with I. We denote it by MI .

Lemma 4.7. Let <τ be a term order, I a binomial ideal. Then
Ltτ (I) = Ltτ (B(I)), where B(I) is the set of binomials of I.

Proof. If G is the Gröbner basis for I w.r.t. <τ , then G ⊆ B(I).
Hence Ltτ (I) ⊇ Ltτ (B(I)) ⊇ Ltτ (G) = Ltτ (I).

We now link the notion of Gröbner bases for Z-submodules of
Z

n, given in the previous sections, to the usual notion of Gröbner
bases for binomial ideals in the ring K[x1, . . . , xn] .

Theorem 4.8. Let I be a binomial ideal. Then the map φ induces
a bijection between the set of Gröbner bases of MI (as in Defini-
tion 2.4) and the set of Gröbner bases of the ideal Sat(I). More pre-
cisely, if <τ is a term order and G is a Gröbner basis for MI w.r.t.
it, then φ(G) is a Gröbner basis for Sat(I) w.r.t. <τ , and conversely.
Furthermore, in this bijection, minimal and reduced Gröbner bases
for MI (as in Definitions 3.1 and 3.3) correspond to minimal and
reduced Gröbner bases for the ideal Sat(I).

Proof. Let <τ be a term order and let G be a Gröbner basis for
MI as in Definition 2.4. We want to prove that φ(G) is a Gröbner
basis for Sat(I) w.r.t. <τ . From Lemma 4.7, it is enough to see
that if f ∈ Sat(I) is a binomial, then Ltτ (f) ∈ Ltτ (φ(G)). Let
h ∈ Sat(I) be the saturation of f . Then there exists b ∈ MI s.t.
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φ(b) = h and it is not restrictive to assume that b ∈ M ∩ τ(Zn).
Hence there exists g ∈ G such that g+ | b+. Since φ(g) = xg+

− xg−

and h = φ(b) = xb+ − xb− , we have that Lt(φ(g)) divides Lt(h) and
clearly Lt(h) divides Lt(f). Conversely, if H is a Gröbner basis for
Sat(I), then the same kind of computations shows that φ−1(H) is
a Gröbner basis of MI . Finally, it is easy to see that, in the given
correspondence, minimal (reduced) Gröbner bases of MI correspond
to minimal (reduced) Gröbner bases of Sat(I).

We end this section by proving that there is a one-to-one corre-
spondence between submodules of Z

n and saturated pure binomial
ideals of K[x1, . . . , xn].

Proposition 4.9. For every binomial ideal I, Sat(I) equals (φ(MI)),
the ideal generated by φ(MI).

Proof. By Proposition 4.3, (φ(MI)) ⊆ Sat(I). By Proposition 4.6,
(φ(MI)) ⊇ Sat(I).

Proposition 4.10. For every 0 6= M ⊆ Z
n, let I be the ideal

(φ(M)). Then MI = M .

Proof. Since K[x1, . . . , xn] is Noetherian, I can be generated by a fi-
nite number of elements of φ(M), say φ(b1), . . . , φ(br). By definition,
MI is generated by b1, . . . , br. If b ∈M \MI , then φ(b) is a saturated
binomial of I and Proposition 4.3 implies that there exists b′ ∈ MI

such that φ(b′) = φ(b). But φ injective forces b = b′, a contradiction.
Hence M = MI as claimed.

Corollary 4.11. For every 0 6= M ⊆ Z
n, (φ(M)) is a saturated

ideal.

Proof. Let I := (φ(M)). Proposition 4.10 says that M = MI . But
Proposition 4.9 says that (φ(MI)) = Sat(I). Hence (φ(M)) = Sat(I).

Corollary 4.12. For every binomial ideal I, MI = MSat(I).

Proof. Let J := Sat(I). Proposition 4.9 says that J = (φ(MI)). But
then Proposition 4.10 says that MJ = MI .
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Theorem 4.13. There exists a one-to-one correspondence between
the set, M, of all non-zero submodules M of Z

n and the set, J , of
all saturated pure binomial ideals J of K[x1, . . . , xn].

Proof. Define χ : M −→ J by means of M 7→ (φ(M)), and
ω : J −→ M by means of J 7→ MJ . Then φω = Id because
Propositon 4.9 implies (φ(MJ )) = Sat(J), and Sat(J) = J by as-
sumption. ωχ = Id because if J := (φ(M)), then Proposition 4.10
implies MJ = M .

5. Rank 2 submodules of Z
n

As stressed in the Introduction, we believe that, in order to compute
Gröbner bases of saturated pure binomial ideals, it is possible to
avoid using the Buchberger algorithm by resorting to the calculation
of minimal elements in suitable partially ordered subsets of Z

n (recall
the end of Section 3). In this section we implement our point of view
in the case of rank 2 submodule of Z

n, w.r.t. lex.
Fix in K[x1, . . . , xn] the pure lexicographic term order <τ such

that xn <τ · · · <τ x1 (consequently the analogous term order is
defined in Z

n). Let I ⊆ K[x1, . . . , xn] be a pure binomial ideal
such that the module MI ⊆ Z

n is of rank 2 and is generated by
a := (a1, . . . , an) and b := (b1, . . . , bn), say. We can assume that

the matrix

(

a1 . . . an

b1 . . . bn

)

is in Hermite normal form. Hence it is

upper triangular and, in each row, the first non-zero entry from the
left is positive; in particular, a and b are in MI ∩ τ(Z

n).
Identify MI with Z

2 by means of the map ψ : Z
2 −→MI defined

by ψ(u, v) := ua+ vb. Then the set MI ∩ τ(Z
n) corresponds to the

set A := {(u, v) ∈ Z
2 : u > 0 or u = 0 and v > 0}. The partial

orders ⊏ and ≺ defined on τ(Zn) can be transferred on A by setting
(u, v) ⊏ (u′, v′) iff ψ(u, v) ⊏ ψ(u′, v′) and (u, v) ≺ (u′, v′) iff ψ(u, v) ≺
ψ(u′, v′). It is clear that ⊏ and ≺ are partial orders on A and that
(u, v) is a minimal element in (A,⊏) (resp., in (A,≺)) if and only if
ψ(u, v) is minimal in (MI ∩ τ(Z

n),⊏) (resp., in (MI ∩ τ(Z
n),≺)).

Definition 5.1. If (u0, v0) ∈ Z
2, we set

C(u0, v0) := {(u, v) ∈ A : (u0, v0) ⊏ (u, v)}.
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In more detail, C(u0, v0) is the set of elements (u, v) ∈ A such
that u0a+ v0b ⊏ ua+ vb and this last condition (recalling the defini-
tion of ⊏) means that if u0ai +v0bi > 0, then u0ai +v0bi ≤ uai +vbi.
Hence C(u0, v0) is a cone in Z

2 with vertex in (u0, v0).
The following proposition is easy to see:

Proposition 5.2. Let (u, v), (u′, v′) ∈ A. Then (u′, v′) ∈ C(u, v) if
and only if C(u′, v′) ⊆ C(u, v), and (u, v) ∈ A is minimal w.r.t. ⊏ if
and only if C(u, v) is minimal in the set of cones with vertices in A,
ordered by inclusion.

As an immediate consequence of Theorem 3.5 we have:

Proposition 5.3. Let (u1, v1), . . . , (uk, vk) ∈ A. Then

ψ(u1, v1), . . . , ψ(uk, vk) is a minimal Gröbner basis for MI

if and only if:

1. C(u1, v1), . . . , C(uk, vk) are minimal elements in the set

{C(u, v) : (u, v) ∈ A}

ordered by inclusion;

2. {(u1, v1), . . . , (uk, vk)} is maximal w.r.t. the above property.

A consequence of the definition of Gröbner basis given in Defini-
tion 2.4 is the following:

Proposition 5.4. Let (u1, v1), . . . , (uk, vk) ∈ A. Then:
ψ(u1, v1), . . . , ψ(uk, vk) are a Gröbner basis for MI if and only if
C(u1, v1) ∪ · · · ∪ C(uk, vk) = A.

The above propositions suggest an algorithm for computing a
minimal Gröbner basis for MI , and hence for Sat(I):
Let Bi ⊆ A (i ∈ N) be any family of finite sets giving a partition of A.
It is clear that there exists an index n ∈ N such that ∪n

i=0Bi contains
(the subset of A corresponding to) the minimal Gröbner basis forMI .
We can therefore start with the set B0, construct the cones C(u, v)
with (u, v) ∈ B0 and select those which are minimal. Inductively, if
we assume we have constructed the minimal cones with vertices in
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∪r
i=0Bi, then we can construct new cones with vertices in Br+1 and

select the minimal ones in the set ∪r+1
i=0Bi. The process stops when

the union of all the constructed cones gives the set A.
More precisely, the algorithm can be described as follows:

Input: a, b ∈MI , generators of MI in Hermite normal form.
Output: a minimal Gröbner basis for MI w.r.t. <τ .
i := 0;
C := ∅;
while (∪C∈CC 6= A) do

for (u, v) ∈ Bi do
compute the cone C(u, v);
erase the cones of C contained in C(u, v);
if C(u, v) is not contained in any cone of C, add it to C;

end for
i := i+ 1;

end while;
return {ψ(u, v)} where (u, v) are the vertices of the cones of C.

It is clear that the algorithm terminates, because A is covered by
a finite number of cones.

Remark 5.5. In order to get the reduced Gröbner basis for the mod-
ule MI , it is enough to slightly modify the above algorithm: each
time we add a new cone C to the collection C of cones produced in
the algorithm, we have to choose C minimal w.r.t. ≺.

It is clear that the choice of the partition {Bi} of A can be crucial
in order to speed up the algorithm.

Example 5.6. Let I := (x2
1x3 − x3

2x
4
4, x

3
1x

6
2 − x3

3x
2
4) ⊆

K[x1, . . . , x4]. We want to compute the minimal (reduced) lex
Gröbner basis for Sat(I). The module MI is generated by:
(2,−3, 1,−4), (3, 6,−3,−2); the Hermite normal form is: a :=
(1, 9,−4, 2), b := (0, 21,−9, 8).

Choose B0 := {(0, 1)}. Hence we compute the first cone and get

C1 := C(0, 1) = {(u, v) ∈ A : v ≥ −3/7u+ 1}.

Choose B1 := {(1, 0), (1,−1)}. The corresponding cones are

C2 := C(1, 0) = {(u, v) ∈ A : u ≥ 1, v ≥ −3/7u+ 3/7},
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(1, −1)

(1, 0)

(0, 1)

(2, −1)

(3, −1)

(7, −3)

(5, −2) 

Figure 3: The Gröbner basis for Sat(I)

C3 := C(1,−1) = {(u, v) ∈ A : u ≥ 1, v ≤ −4/9u − 5/9}.

Choose B2 := {(2,−1), (3,−1)}. The corresponding cones are

C4 := C(2,−1) = {(u, v) ∈ A : u ≥ 2, v ≤ −4/9u − 1/9},

C5 := C(3,−1) = {(u, v) ∈ A : u ≥ 3, v ≥ −3/7u + 2/7}.

Choose B3 := {(5,−2)}. The corresponding cone is

C6 := C(5,−2) = {(u, v) ∈ A : u ≥ 5, v ≥ −3/7u + 1/3}.

Choose B4 := {(7,−3)}. The corresponding cone is

C7 := C(7,−3) = {(u, v) ∈ A : u ≥ 7}.

Since ∪7
i=1Ci = A, we have that the minimal (actually reduced)

Gröbner basis for MI is:

(0, 21,−9, 8), (1, 9,−4, 2), (1,−12, 5,−6), (2,−3, 1,−4),
(3, 6,−3,−2), (5, 3,−2,−6), (7, 0,−1,−10),

which corresponds to the reduced Gröbner basis for Sat(I) (w.r.t. the
lexicographic term order in which x1 > · · · > x4) given by:

x21
2 x

8
4 − x9

3, x1x
9
2x

2
4 − x4

3, x1x
5
3 − x12

2 x
6
4, x

2
1x3 − x3

2x
4
4,

x3
1x

6
2 − x3

3x
2
4, x

5
1x

3
2 − x2

3x
6
4, x

7
1 − x3x

10
4 .

Figure 3 shows the graphical aspect of the Gröbner basis.
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