A Note on the CR Cohomology of Levi-Flat Minimal Orbits in Complex Flag Manifolds

Andrea Altomani (*)

SUMMARY. - We prove a relation between the $\bar{\partial}_M$ cohomology of a minimal orbit M of a real form \mathbf{G}_0 of a complex semisimple Lie group \mathbf{G} in a flag manifold \mathbf{G}/\mathbf{Q} and the Dolbeault cohomology of the Matsuki dual open orbit X of the complexification \mathbf{K} of a maximal compact subgroup \mathbf{K}_0 of \mathbf{G}_0 , under the assumption that M is Levi-flat.

1. Introduction

Many authors have studied the $\bar{\partial}_M$ cohomology of CR manifolds (see e. g. [6, 7, 12] and references therein). In particular, since Andreotti and Fredricks [2] proved that every real analytic CR manifold Mcan be embedded in a complex manifold X, it is natural to try to find relations between the $\bar{\partial}_M$ cohomology of M and the Dolbeault cohomology of X.

In this paper we examine this problem for a specific class of homogeneous CR manifolds, namely minimal orbits in complex flag manifolds that are Levi-flat.

Given a (generalized) flag manifold $Y = \mathbf{G}/\mathbf{Q}$, with \mathbf{G} a complex semisimple Lie group and \mathbf{Q} a parabolic subgroup of \mathbf{G} , a real form

^(*) Author's address: Andrea Altomani, Dipartimento di Matematica II Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy, e-mail: altomani@mat.uniroma2.it

Keywords: Cohomology, Cauchy-Riemann complex, Levi-flat, Homogeneous CR manifold, Minimal orbit in a flag manifold.

AMS Subject Classification: Primary: 32L10; Secondary: 14M15, 32V30, 57T15.

 \mathbf{G}_0 of \mathbf{G} acts on Y with finitely many orbits. Among these there is exactly one orbit that is compact, the minimal orbit $M = \mathbf{G}_0 \cdot o$. Let \mathbf{K}_0 be a maximal compact subgroup of \mathbf{G}_0 , and \mathbf{K} its complexification. Then $X = K \cdot o$ is an open dense complex submanifold of \mathbf{G}/\mathbf{Q} and contains M as an embedded submanifold. It is known that Mis a deformation retract of X, so $H^p(M, \mathbb{C}) = H^p(X, \mathbb{C})$ ([4], [8]).

Let E be a **K**-homogeneous complex vector bundle on X and $E|_M$ its restriction to M. Under the additional assumption that M is Levi-flat we prove that the restriction map from the Dolbeault cohomology $H^{p,q}(X, E)$ to the $\bar{\partial}_M$ cohomology $H^{p,q}(M, E|_M)$ is continuous, injective and has a dense range. More precisely we show that

$$H^{p,q}(M, \boldsymbol{E}|_M) = \mathcal{O}_M(M) \otimes_{\mathcal{O}_X(X)} H^{p,q}(X, \boldsymbol{E})$$

where $\mathcal{O}_M(M)$ (resp. $\mathcal{O}_X(X)$) is the space of CR (resp. holomorphic) functions on M (resp. X), and that the restriction map from $\mathcal{O}_X(X)$ to $\mathcal{O}_M(M)$ is injective, continuous and has a dense range.

2. Preliminaries on minimal orbits in complex flag manifolds

Let **G** be a complex connected semisimple Lie group, with Lie algebra \mathfrak{g} , and let **Q** be a parabolic subgroup of **G**, with Lie algebra \mathfrak{q} . Then **Q** is the normalizer of \mathfrak{q} , $\mathbf{Q} = \mathbf{N}_{\mathbf{G}}(\mathfrak{q})$ and is connected. The coset space $Y = \mathbf{G}/\mathbf{Q}$ is a compact complex manifold, called a *flag manifold* (it is a complex smooth projective variety). It is not restrictive to assume that \mathfrak{q} does not contain any simple ideal of \mathfrak{g} .

Let σ be an anti-holomorphic involution of **G**; we will also denote by σ its differential at the identity and we will write $\bar{x} = \sigma(x)$. A *real form* of **G** is an open subgroup **G**₀ of **G**^{σ}. It is a Lie subgroup and its Lie algebra \mathfrak{g}_0 satisfies $\mathfrak{g}_0 = \mathfrak{g}^{\sigma}$ and $\mathfrak{g} = \mathbb{C} \otimes \mathfrak{g}_0$.

Let \mathbf{K}_0 be a maximal compact subgroup of \mathbf{G}_0 , and θ the corresponding Cartan involution: $\mathbf{K}_0 = \mathbf{G}_0^{\theta}$. Still denoting by θ the complexification of θ , there is exactly one open subgroup \mathbf{K} of \mathbf{G}^{θ} such that $\mathbf{K} \cap \mathbf{G}_0 = \mathbf{K}_0$. Let \mathfrak{k} and \mathfrak{k}_0 be the corresponding Lie subalgebras.

The groups \mathbf{G}_0 and \mathbf{K} act on Y via left multiplication. There is exactly one closed \mathbf{G}_0 -orbit M ([1, 19]) and it is contained in

the unique open **K** orbit X ([3, 14]), we denote by $j: M \to X$ the inclusion. The open orbit X is dense in Y and is the dual orbit of M, in the terminology of [14].

The manifolds M and X do not depend on the choice of \mathbf{G} and \mathbf{G}_0 , but only on \mathfrak{g}_0 and \mathfrak{q} ([1, 14]). So there is no loss of generality assuming that \mathbf{G} is simply connected, that \mathbf{G}_0 is connected and that M and X are the orbits through the point $o = e\mathbf{Q}$. We will write $M = M(\mathfrak{g}_0, \mathfrak{q})$.

The isotropy subgroups at o of the actions of \mathbf{G}_0 and \mathbf{K} are $\mathbf{G}_+ = \mathbf{G}_0 \cap \mathbf{Q}$ and $\mathbf{L} = \mathbf{K} \cap \mathbf{Q}$, with Lie algebras $\mathfrak{g}_+ = \mathfrak{g}_0 \cap \mathfrak{q}$ and $\mathfrak{l} = \mathfrak{k} \cap \mathfrak{q}$. Since M is compact, the action on M of maximal compact subgroup \mathbf{K}_0 is transitive: $M = \mathbf{K}_0/\mathbf{K}_+$, where $\mathbf{K}_+ = \mathbf{K}_0 \cap \mathbf{Q} = \mathbf{G}_0 \cap \mathbf{L}$ and $\operatorname{Lie}(\mathbf{K}_+) = \mathfrak{k}_+ = \mathfrak{k}_0 \cap \mathfrak{q} = \mathfrak{g}_0 \cap \mathfrak{l}$.

In the language of [1] the pair $(\mathfrak{g}_0, \mathfrak{q})$ is an effective parabolic minimal CR algebra and M is the associated minimal orbit. On M there is a natural CR structure induced by the inclusion into X.

We recall that M is totally real if the partial complex structure is trivial. We give a more complete characterization of totally real minimal orbits:

THEOREM 2.1. The following are equivalent:

- 1. M is totally real.
- 2. $\bar{\mathfrak{q}} = \mathfrak{q}$.
- 3. $\mathfrak{l} = \mathfrak{k}^{\mathbb{C}}_+$.
- 4. X is a Stein manifold.
- 5. X is a smooth affine algebraic variety defined over \mathbb{R} and M is the set of its real points.

Proof. (5) \Rightarrow (4) because every closed complex submanifold of a complex vector space is Stein.

 $(4) \Rightarrow (3)$ Since X is Stein, its covering $\tilde{X} = \mathbf{K}/\mathbf{L}^0$ is also Stein ([17]). Furthermore **K** is a linear algebraic group that is the complexification of a maximal compact subgroup \mathbf{K}_0 ; the result then follows from Theorem 3 of [15] and Remark 2 thereafter.

(3) \Rightarrow (5) If \mathfrak{l} is the complexification of \mathfrak{k}_+ , then \mathbf{L} is the complexification of \mathbf{K}_+ . Hence $X = \mathbf{K}/\mathbf{L}$ is the complexification of

 $M = \mathbf{K}_0 / \mathbf{K}_+$ in the sense of [9], and (5) follows from Theorem 3 of the same paper.

- $(1) \Leftrightarrow (2)$ is easy, and proved in [1].
- $(5) \Rightarrow (1)$ is obvious.
- (2) \Rightarrow (3) We have that $\bar{\mathfrak{k}} = \mathfrak{k}$, thus $\mathfrak{k} \cap \mathfrak{q} = (\mathfrak{k} \cap \mathfrak{q} \cap \mathfrak{g}_0)^{\mathbb{C}} = \mathfrak{k}_+^{\mathbb{C}}$. \Box

We denote by \mathcal{O}_N the sheaf of smooth CR functions on a CR manifold N. If N is complex or real, then \mathcal{O}_N is the usual sheaf of holomorphic or smooth (complex valued) functions. For every open set $U \subset N$, the space $\mathcal{O}_N(U)$ is a Fréchet space (with the topology of uniform convergence of all derivatives on compact sets).

COROLLARY 2.2. If M is totally real then $j^*(\mathcal{O}_X(X))$ is dense in $\mathcal{O}_M(M) = C^{\infty}(M)$.

Proof. Let $X \subset \mathbb{C}^N$ be an embedding as in (5) of Theorem 2.1, so that $M = X \cap \mathbb{R}^N$. The restrictions of complex polynomials in \mathbb{C}^N are contained in $\mathcal{O}_X(X)$ and dense in $\mathcal{O}_M(M)$ (see e.g. [18]).

3. Levi-flat orbits and the fundamental reduction

In this paper we consider Levi-flat minimal orbits. They are orbits $M = M(\mathfrak{g}_0, \mathfrak{q})$, where $\mathfrak{q}' = \mathfrak{q} + \overline{\mathfrak{q}}$ is a subalgebra (necessarily parabolic) of \mathfrak{g} . Let $\mathbf{Q}' = \mathbf{N}_{\mathbf{G}}(\mathfrak{q}')$, $Y' = \mathbf{G}/\mathbf{Q}'$, $\mathbf{G}'_+ = \mathbf{G} \cap \mathbf{Q}'$, $M' = M(\mathfrak{g}_0, \mathfrak{q}') = \mathbf{G}_0/\mathbf{G}'_+$, $\mathbf{K}'_+ = \mathbf{K}_0 \cap \mathbf{Q}'$, $\mathbf{L}' = \mathbf{K} \cap \mathbf{Q}'$ and $X' = \mathbf{K}/\mathbf{L}'$.

From Theorem 2.1 we have that M' is totally real and X' is Stein. The inclusion $\mathbf{Q} \to \mathbf{Q}'$ induces a fibration

$$\pi \colon Y = \mathbf{G}/\mathbf{Q} \longrightarrow \mathbf{G}/\mathbf{Q}' = Y' \tag{1}$$

with complex fiber $F \simeq \mathbf{Q}'/\mathbf{Q}$. This fibration is classically referred to as the Levi foliation, and is a special case of the fundamental reduction of [1]. In fact Levi-flat minimal orbits are characterized by the property that the fibers of the fundamental reduction are totally complex.

We identify F with $\pi^{-1}(e\mathbf{Q})$.

LEMMA 3.1. $\pi^{-1}(M') = M$, $\pi^{-1}(X') = X$ and F is a compact connected complex flag manifold.

Proof. First we observe that F is connected because \mathbf{Q}' is connected. Let F' be the fiber of the restriction $\pi|_M: M \to M'$. Then F' is totally complex and CR generic in F, hence an open subset of F. Proposition 7.3 and Theorem 7.4 of [1] show that there exists a connected real semisimple Lie group \mathbf{G}_0'' acting on F' with an open orbit, and that the Lie algebra of the isotropy is a t-subalgebra (i. e. contains a maximal triangular subalgebra) of $\mathfrak{g}_0^{\prime\prime}$. Hence a maximal compact subgroup \mathbf{K}_0'' of \mathbf{G}_0'' has an open orbit, which is also closed. Since F' is open in F and F is connected, \mathbf{K}_0'' is transitive on F, and F' = F, proving the first two statements.

Furthermore the isotropy subgroup \mathbf{G}'_{+} for the action of \mathbf{G}''_{0} on F and the homogeneous complex structure are exactly those of a totally complex minimal orbit, hence by $[1, \S 10]$ F is a complex flag manifold.

The total space M is locally isomorphic to an open subset of $M' \times F$, hence to $U \times \mathbb{R}^k$, where U is open in \mathbb{C}^n , for some integers n and k.

For a Levi flat CR manifold N and a nonnegative integer p, let Ω_N^p be the sheaf of p-forms that are CR (see [7] for precise definitions). They are \mathcal{O}_N -modules and $\Omega^0_N \simeq \mathcal{O}_N$.

Let $\mathcal{A}_N^{p,q}$ be the sheaf of (complex valued) smooth (p,q)-forms on N, $\bar{\partial}_N$ the tagential Cauchy-Riemann operator and $\mathcal{Z}_N^{p,q}$, (resp. $\mathcal{B}_N^{p,q}$) the sheaf of closed (resp. exact) (p,q)-forms. As usual we denote by $H^{p,q}(N) = \mathcal{Z}_N^{p,q}(N)/\mathcal{B}_N^{p,q}(N)$ the cohomology groups of the ∂_M complex on smooth forms. The Poincaré lemma is valid for ∂_N (see [11]), thus the complex:

$$0 \to \Omega_N^p \to \mathcal{A}_N^{p,0} \xrightarrow{\bar{\partial}_N} \dots \xrightarrow{\bar{\partial}_N} \mathcal{A}_N^{p,q} \xrightarrow{\bar{\partial}_N} \dots$$

is a fine resolution of Ω_N^p . This implies that $H^{p,q}(N) \simeq H^q(\Omega_N^p)$.

Let \boldsymbol{E}_N be a homogeneous CR vector bundle on N (i. e. a complex vector bundle with transition functions that are CR) with fiber E, and let \mathcal{E}_N be the sheaf of its CR sections.

We denote by \boldsymbol{E}_{N}^{p} the bundle of CR , \boldsymbol{E}_{N} -valued, *p*-forms, with

associated sheaf of CR sections $\mathcal{E}_N^p = \Omega_N^p \otimes_{\mathcal{O}_N} \mathcal{E}_N$. Let $\mathcal{A}_{N, \mathbf{E}_N}^{p, q} = \mathcal{A}_N^{p, q} \otimes_{\mathcal{O}_N} \mathcal{E}_N$, denote by $\bar{\partial}_{\mathbf{E}_N}$ the tangential Cauchy-Riemann operator on \boldsymbol{E}_N and let $\mathcal{Z}_{N,\boldsymbol{E}_N}^{p,q}$ (resp. $\mathcal{B}_{N,\boldsymbol{E}_N}^{p,q}$) be the sheaf of $\bar{\partial}_{E_N}$ -closed (resp. exact) smooth forms with values in E_N .

Then $H^{p,q}(N, \mathbf{E}_N) = \mathcal{Z}_{N, \mathbf{E}_N}^{p,q}(N) / \mathcal{B}_{N, \mathbf{E}_N}^{p,q}(N)$, but we also have:

$$H^{p,q}(N, \mathbf{E}_N) = H^q(\mathcal{E}_N^p) = H^{0,q}(N, \mathbf{E}_N^p) = \mathcal{Z}_{N, \mathbf{E}_N^p}^{0,q}(N) / \mathcal{B}_{N, \mathbf{E}_N^p}^{0,q}(N).$$

For any open set $U \subset N$, the spaces $\mathcal{A}_{N,\boldsymbol{E}_N}^{p,q}(U)$ and $\mathcal{Z}_{N,\boldsymbol{E}_N}^{p,q}(U)$ are Fréchet spaces with the topology of uniform convergence of all derivatives on compact sets. If $\mathcal{B}_{N,\boldsymbol{E}_N}^{p,q}(N)$ is closed in $\mathcal{Z}_{N,\boldsymbol{E}_N}^{p,q}(N)$, then $H^{p,q}(N,\boldsymbol{E}_N)$, with the quotient topology, is also a Fréchet space.

4. Statements and proofs

Let E_F be a \mathbf{L}' -homogeneous holomorphic vector bundle on F. The \mathbf{L}' action induces a natural \mathbf{L}' action on $\mathcal{A}_{F, \mathbf{E}_F}^{p,q}$, hence on $H^{p,q}(F, \mathbf{E}_F)$, because the action of \mathbf{L}' preserves closed and exact forms. Since F is a compact complex manifold, $H^{p,q}(F, \mathbf{E}_F)$ is finite dimensional and we can construct the **K**-homogeneous holomorphic vector bundle on X':

$$\boldsymbol{H}_{X'}^{p,q}(F,\boldsymbol{E}_F) = \mathbf{K} \times_{\mathbf{L}'} H^{p,q}(F,\boldsymbol{E}_F).$$

In a similar way we define a \mathbf{K}_0 -homogeneous complex vector bundle on M':

$$\boldsymbol{H}_{M'}^{p,q}(F,\boldsymbol{E}_F) = \mathbf{K}_0 \times_{\mathbf{K}'_+} H^{p,q}(F,\boldsymbol{E}_F).$$

The following thorem has been proved by Le Potier ([13], see also [5]):

THEOREM 4.1. Let X, X' and F be as above, \mathbf{E}_X a **K**-homogeneous holomorphic vector bundle on X and $\mathbf{E}_X|_F$ its restriction to F. Then there exists a spectral sequence ${}^{p}E_r^{s,t}$, converging to $H^{p,q}(X, \mathbf{E}_X)$, with

$${}^{p}E_{2}^{s,t} = \bigoplus_{i} H^{i,s-i} (X', H_{X'}^{p-i,t+i}(F, E_{X}|_{F})). \square$$

For p = 0 the spectral sequence collapses at r = 2 and, recalling that X' is a Stein manifold, we obtain:

$$H^{0,q}(X, \mathbf{E}_X) = H^{0,0}(X', \mathbf{H}^{0,q}_{X'}(F, \mathbf{E}_X|_F)).$$

Recalling that $H^{p,q}(X, \mathbf{E}_X) = H^{0,q}(X, \mathbf{E}_X^p)$ we finally obtain:

PROPOSITION 4.2. Let X, X' and F be as above, E_X a K-homogeneous holomorphic vector bundle on X and $E_X|_F$ its restriction to F. Then:

$$H^{p,q}(X, \mathbf{E}_X) = H^{0,0}(X', \mathbf{H}^{0,q}_{X'}(F, \mathbf{E}^p_X|_F))$$

as Fréchet spaces.

A statement analogous to the last proposition holds for M:

PROPOSITION 4.3. Let M, M' and F be as above, E_M a \mathbf{K}_0 -homogeneous CR vector bundle on M and $E_M|_F$ its restriction to F. Then:

$$H^{p,q}(M, \mathbf{E}_M) = H^{0,0}(M', \mathbf{H}^{0,q}_{M'}(F, \mathbf{E}^p_M|_F))$$

as Fréchet spaces.

Proof. Fix p, q, let $\mathcal{Z}_{M'} = \pi_*(\mathcal{Z}_{M, \mathbf{E}_M^p}^{0, q}), \ \mathcal{B}_{M'} = \pi_*(\mathcal{B}_{M, \mathbf{E}_M^p}^{0, q})$ and $\mathcal{H}_{M'}$ be the sheaf of sections of $\mathbf{H}_{M'}^{0, q}(F, \mathbf{E}_M^p|_F)$ We already know that $H^{p, q}(M, \mathbf{E}_M) \simeq \mathcal{Z}_{M'}(M')/\mathcal{B}_{M'}(M').$

We now define a map $\phi \colon \mathcal{Z}_{M'} \to \mathcal{H}_{M'}$ as follows.

Let $U \subset M'$, $x \in U$, $x = g\mathbf{K}'_+$, $g \in \mathbf{K}_0$ and $\xi \in \mathcal{Z}_{M'}(U)$. Let $\xi_g = (g^{-1} \cdot \xi)|_F$. This is a closed \mathbf{E}^p_M -valued (0,q)-form on F, that determines a cohomology class $[\xi_g]$ in $H^{0,q}(F, \mathbf{E}^p_M|_F)$. Then the class of $(g, [\xi_g])$ in $\mathbf{H}^{0,q}_{M'}(F, \mathbf{E}^p_M|_F)$ does not depend on the particular choice of g, but only on x, hence it defines a section $s_{\xi} = \phi(\xi)$ of $\mathcal{H}_{M'}$ on U.

The sheaves $\mathcal{Z}_{M'}$, $\mathcal{B}_{M'}$, $\mathcal{H}_{M'}$, ker ϕ are $\mathcal{O}_{M'}$ -modules and ϕ is a morphism of $\mathcal{O}_{M'}$ -modules. Since $\mathcal{O}_{M'}$ is fine, to prove that $\phi(M')$ is continuous, surjective and that its kernel is exactly $\mathcal{B}_{M'}(M')$ it suffices to check that this is true locally, and this reduces to a straightforward verification.

We prove now the main theorem of this paper:

THEOREM 4.4. Let M and X be as above, E_X a K-homogeneous holomorphic vector bundle over X. Then:

$$H^{p,q}(M, \mathbf{E}_X|_M) \simeq \mathcal{O}_M(M) \otimes_{\mathcal{O}_X(X)} H^{p,q}(X, \mathbf{E}_X).$$

Proof. Define M' and X' as above, fix integers $p, q \ge 0$ and let $\mathbf{H}_{X'} = \mathbf{H}_{X'}^{0,q}(F, \mathbf{E}_X^p|_F)$, $\mathbf{H}_{M'} = \mathbf{H}_{M'}^{0,q}(F, \mathbf{E}_X^p|_F) = \mathbf{H}_{X'}|_{M'}$. By Propositions 4.2 and 4.3, we have that $H^{p,q}(M, \mathbf{E}_X|_M) = \Gamma(M', \mathbf{H}_{M'})$ and $H^{p,q}(X, \mathbf{E}_X) = \Gamma(X', \mathbf{H}_{X'})$.

Since dim_{\mathbb{R}} $M' = \dim_{\mathbb{C}}(X')$, a global section of $H_{X'}$ that is zero on M' must be zero on X', i. e. the restriction map $\Gamma(X', H_{X'}) \to \Gamma(M', H_{M'})$ is injective.

On the other hand, X' is Stein, thus $H_{X'}$ is generated at every point by its global sections. Together with the fact that $H_{M'} = H_{X'}|_{M'}$ this implies that

$$\Gamma(M', \boldsymbol{H}_{M'}) = \mathcal{O}_{M'}(M') \otimes_{\mathcal{O}_{X'}(X')} \Gamma(X', \boldsymbol{H}_{X'}),$$

where in the right hand side we implicitly identify global holomorphic sections on X' with their restrictions to M'.

The theorem follows from the observation that $\mathcal{O}_M(M) \simeq \mathcal{O}_{M'}(M')$ and $\mathcal{O}_X(X) \simeq \mathcal{O}_{X'}(X')$ because the fiber F of π is a compact connected complex manifold.

This, together with Corollary 2.2, implies the following.

COROLLARY 4.5. With the same assumptions, the inclusion $j: M \rightarrow X$ induces a map:

$$j^*: H^{p,q}(X, \boldsymbol{E}_X) \longrightarrow H^{p,q}(M, \boldsymbol{E}_X|_M)$$

that is continuous, injective and has a dense range.

5. An example

Let $\mathbf{G} = \mathbf{SL}(4, \mathbb{C})$, and \mathbf{Q} be the parabolic subgroup of upper triangular matrices. We consider the real form $\mathbf{G}_0 = \mathbf{SU}(1,3)$, identified with the group of linear transformations of \mathbb{C}^4 that leave invariant the Hermitian form associated to the matrix

$$B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Then \mathbf{G}/\mathbf{Q} is the set of complete flags $\{\ell^1 \subset \ell^2 \subset \ell^3 \subset \mathbb{C}^4\}$ and $M = \mathbf{G}_0 \cdot e\mathbf{Q}$ is the submanifold $\{\ell^1 \subset \ell^2 \subset \ell^3 \subset \mathbb{C}^4 \mid \ell^3 = (\ell^1)^{\perp}\}.$

Let \mathbf{Q}' be the set of block upper triangular matrices of the form

$$\mathbf{Q}'=\left\{g=\left(egin{array}{ccc}{*}&{*}&{*}&{*}\\0&{*}&{*}&{*}\\0&{*}&{*}&{*}\\0&{0}&{0}&{*}\end{array}
ight|\,g\in\mathbf{G}
ight\},$$

so that M' is the totally real manifold $\{\ell^1 \subset \ell^3 \subset \mathbb{C}^4 \mid \ell^3 = (\ell^1)^{\perp}\}$ and M fibers over M' with typical fiber F isomorphic to \mathbb{CP}^1 . The fibration is given by

$$(\ell^1, \ell^2, \ell^3) \longmapsto (\ell^1, \ell^3). \tag{(*)}$$

Choose **K** to be the stabilizer in **G** of the subspaces V =Span(e₁ - e₄) and W = Span(e₁ + e₄, e₂, e₃) so that **K** is isomorphic to **S**(**GL**(1, \mathbb{C}) × **GL**(3, \mathbb{C})) and **K**₀ to **S**(**U**(1) × **U**(3)). Then X is the set of flags { $\ell^1 \subset \ell^2 \subset \ell^3 \subset \mathbb{C}^4$ } in a generic position with respect to the subspaces V and W, and X' is the set of flags { $\ell^1 \subset \ell^3 \subset \mathbb{C}^4$ } in a generic position with respect to V and W. The map from X to X' given by (*) is a fibration with typical fiber isomorphic to \mathbb{CP}^1 and X' is a Stein manifold.

Finally let $\mathbf{E} = X \times \mathbb{C}$ be the trivial line bundle. According to Propositions 4.2 and 4.3 the cohomology of M and X is given by

$$H^{p,q}(X) = H^{p,q}(X, \mathbf{E}) = H^{0,0}(X', \mathbf{H}^{0,q}_{X'}(F, \mathbf{E}^p|_F)),$$

$$H^{p,q}(M) = H^{p,q}(M, \mathbf{E}|_M) = H^{0,0}(M', \mathbf{H}^{0,q}_{M'}(F, \mathbf{E}^p|_F)).$$

Recalling that $H^{p,q}(F) \simeq \mathbb{C}$ if p = q = 0 or p = q = 1 and 0 otherwise, we obtain:

$$\begin{cases} H^{p,q}(X) \simeq \mathcal{O}_X(X) \simeq \mathcal{O}_{X'}(X') & \text{if } p = q = 0 \text{ or } p = q = 1; \\ H^{p,q}(X) = 0 & \text{otherwise}; \end{cases}$$

and analogously:

$$\begin{cases} H^{p,q}(M) \simeq \mathcal{O}_M(M) \simeq \mathcal{O}_{M'}(M') & \text{if } p = q = 0 \text{ or } p = q = 1; \\ H^{p,q}(M) = 0 & \text{otherwise;} \end{cases}$$

and it is clear that

$$H^{p,q}(M) = \mathcal{O}_M(M) \otimes_{\mathcal{O}_X(X)} H^{p,q}(X).$$

References

- A. ALTOMANI, C. MEDORI, AND M. NACINOVICH, The CR structure of minimal orbits in complex flag manifolds, to appear on J. of Lie Theory, http://front.math.ucdavis.edu/math.CV/0507272 arXiv:math.CV/0507272.
- [2] A. ANDREOTTI AND G. A. FREDRICKS, Embeddability of real analytic Cauchy-Riemann manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
 6 (1979), no. 2, 285–304.
- [3] R. BREMIGAN AND J. LORCH, Orbit duality for flag manifolds, Manuscripta Math. 109 (2002), no. 2, 233–261.
- [4] L. CASIAN AND R. J. STANTON, Schubert cells and representation theory, Invent. Math. 137 (1999), no. 3, 461–539.
- [5] H. R. FISCHER AND F. L. WILLIAMS, Borel-LePotier diagrams. Calculus of their cohomology bundles, Tohoku Math. J. (2) 36 (1984), no. 2, 233–251.
- [6] C. D. HILL AND M. NACINOVICH, A weak pseudoconcavity condition for abstract almost CR manifolds, Invent. Math. 142 (2000), no. 2, 251–283.
- [7] C. D. HILL AND M. NACINOVICH, On the failure of the Poincaré lemma for the $\overline{\partial}_M$ complex, Math. Ann. **324** (2002), no. 2, 213–224.
- [8] A. T. HUCKLEBERRY AND J. A. WOLF, Schubert varieties and cycle spaces, Duke Math. J. 120 (2003), no. 2, 229–249.
- [9] N. IWAHORI AND M. SUGIURA, A duality theorem for homogeneous manifolds of compact Lie groups, Osaka J. Math. 3 (1966), 139–153.
- [10] M. JURCHESCU, Coherent sheaves on mixed manifolds, Rev. Roumaine Math. Pures Appl. 33 (1988), no. 1-2, 57–81.
- [11] M. JURCHESCU, The Cauchy-Riemann complex on a mixed manifold, Rev. Roumaine Math. Pures Appl. **39** (1994), no. 10, 951–971, Travaux de la Conférence Internationale d'Analyse Complexe et du 7e Séminaire Roumano-Finlandais (1993).
- [12] C. LAURENT-THIÉBAUT AND J. LEITERER, Dolbeault isomorphism for CR manifolds, Math. Ann. 325 (2003), no. 1, 165–185.
- [13] J. LE POTIER, Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque, Math. Ann. 218 (1975), no. 1, 35–53.
- [14] T. MATSUKI, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12 (1982), no. 2, 307–320.
- [15] Y. MATSUSHIMA, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J 16 (1960), 205–218.
- [16] A. L. ONISHCHIK, Complex hulls of compact homogeneous spaces, Soviet Math. Dokl. 1 (1960), 88–91.

- [17] K. STEIN, Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math. 7 (1956), 354–361.
- [18] F. TRÈVES, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.
- [19] J. A. WOLF, The action of a real semisimple group on a complex flag manifold. I. Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc. 75 (1969), 1121–1237.

Received January 27, 2006.