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A Note on the CR Cohomology of

Levi-Flat Minimal Orbits in

Complex Flag Manifolds

Andrea Altomani (∗)

Summary. - We prove a relation between the ∂̄M cohomology of a

minimal orbit M of a real form G0 of a complex semisimple Lie

group G in a flag manifold G/Q and the Dolbeault cohomology

of the Matsuki dual open orbit X of the complexification K of a

maximal compact subgroup K0 of G0, under the assumption that

M is Levi-flat.

1. Introduction

Many authors have studied the ∂̄M cohomology of CR manifolds (see
e. g. [6, 7, 12] and references therein). In particular, since Andreotti
and Fredricks [2] proved that every real analytic CR manifold M
can be embedded in a complex manifold X, it is natural to try to
find relations between the ∂̄M cohomology of M and the Dolbeault
cohomology of X.

In this paper we examine this problem for a specific class of
homogeneous CR manifolds, namely minimal orbits in complex flag
manifolds that are Levi-flat.

Given a (generalized) flag manifold Y = G/Q, with G a complex
semisimple Lie group and Q a parabolic subgroup of G, a real form
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G0 of G acts on Y with finitely many orbits. Among these there is
exactly one orbit that is compact, the minimal orbit M = G0 ·o. Let
K0 be a maximal compact subgroup of G0, and K its complexifica-
tion. Then X = K ·o is an open dense complex submanifold of G/Q
and contains M as an embedded submanifold. It is known that M
is a deformation retract of X, so Hp(M, C) = Hp(X, C) ([4], [8]).

Let E be a K-homogeneous complex vector bundle on X and
E|M its restriction to M . Under the additional assumption that M
is Levi-flat we prove that the restriction map from the Dolbeault co-
homology Hp,q(X,E) to the ∂̄M cohomology Hp,q(M,E|M ) is con-
tinuous, injective and has a dense range. More precisely we show
that

Hp,q(M,E|M ) = OM (M) ⊗OX(X) Hp,q(X,E)

where OM (M) (resp. OX(X)) is the space of CR (resp. holomor-
phic) functions on M (resp. X), and that the restriction map from
OX(X) to OM (M) is injective, continuous and has a dense range.

2. Preliminaries on minimal orbits in complex flag

manifolds

Let G be a complex connected semisimple Lie group, with Lie al-
gebra g, and let Q be a parabolic subgroup of G, with Lie algebra
q. Then Q is the normalizer of q, Q = NG(q) and is connected.
The coset space Y = G/Q is a compact complex manifold, called a
flag manifold (it is a complex smooth projective variety). It is not
restrictive to assume that q does not contain any simple ideal of g.

Let σ be an anti-holomorphic involution of G; we will also denote
by σ its differential at the identity and we will write x̄ = σ(x). A
real form of G is an open subgroup G0 of Gσ. It is a Lie subgroup
and its Lie algebra g0 satisfies g0 = gσ and g = C ⊗ g0.

Let K0 be a maximal compact subgroup of G0, and θ the cor-
responding Cartan involution: K0 = Gθ

0. Still denoting by θ the
complexification of θ, there is exactly one open subgroup K of Gθ

such that K ∩ G0 = K0. Let k and k0 be the corresponding Lie
subalgebras.

The groups G0 and K act on Y via left multiplication. There
is exactly one closed G0-orbit M ([1, 19]) and it is contained in
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the unique open K orbit X ([3, 14]), we denote by j : M → X the
inclusion. The open orbit X is dense in Y and is the dual orbit of
M , in the terminology of [14].

The manifolds M and X do not depend on the choice of G and
G0, but only on g0 and q ([1, 14]). So there is no loss of generality
assuming that G is simply connected, that G0 is connected and that
M and X are the orbits through the point o = eQ. We will write
M = M(g0, q).

The isotropy subgroups at o of the actions of G0 and K are G+ =
G0 ∩Q and L = K∩Q, with Lie algebras g+ = g0 ∩ q and l = k∩ q.
Since M is compact, the action on M of maximal compact subgroup
K0 is transitive: M = K0/K+, where K+ = K0 ∩ Q = G0 ∩ L and
Lie(K+) = k+ = k0 ∩ q = g0 ∩ l.

In the language of [1] the pair (g0, q) is an effective parabolic
minimal CR algebra and M is the associated minimal orbit. On M
there is a natural CR structure induced by the inclusion into X.

We recall that M is totally real if the partial complex structure
is trivial. We give a more complete characterization of totally real
minimal orbits:

Theorem 2.1. The following are equivalent:

1. M is totally real.

2. q̄ = q.

3. l = kC
+.

4. X is a Stein manifold.

5. X is a smooth affine algebraic variety defined over R and M
is the set of its real points.

Proof. (5) ⇒ (4) because every closed complex submanifold of a
complex vector space is Stein.

(4) ⇒ (3) Since X is Stein, its covering X̃ = K/L0 is also Stein
([17]). Furthermore K is a linear algebraic group that is the com-
plexification of a maximal compact subgroup K0; the result then
follows from Theorem 3 of [15] and Remark 2 thereafter.

(3) ⇒ (5) If l is the complexification of k+, then L is the com-
plexification of K+. Hence X = K/L is the complexification of
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M = K0/K+ in the sense of [9], and (5) follows from Theorem 3 of
the same paper.

(1) ⇔ (2) is easy, and proved in [1].
(5) ⇒ (1) is obvious.
(2) ⇒ (3) We have that k̄ = k, thus k∩ q = (k∩ q∩ g0)

C = kC
+.

We denote by ON the sheaf of smooth CR functions on a CR
manifold N . If N is complex or real, then ON is the usual sheaf of
holomorphic or smooth (complex valued) functions. For every open
set U ⊂ N , the space ON (U) is a Fréchet space (with the topology
of uniform convergence of all derivatives on compact sets).

Corollary 2.2. If M is totally real then j∗
(

OX(X)
)

is dense in

OM (M) = C∞(M).

Proof. Let X ⊂ C
N be an embedding as in (5) of Theorem 2.1, so

that M = X ∩ R
N . The restrictions of complex polynomials in C

N

are contained in OX(X) and dense in OM (M) (see e.g. [18]).

3. Levi-flat orbits and the fundamental reduction

In this paper we consider Levi-flat minimal orbits. They are or-
bits M = M(g0, q), where q′ = q + q̄ is a subalgebra (necessarily
parabolic) of g. Let Q′ = NG(q′), Y ′ = G/Q′, G′

+ = G ∩ Q′,
M ′ = M(g0, q

′) = G0/G
′
+, K′

+ = K0 ∩ Q′, L′ = K ∩ Q′ and
X ′ = K/L′.

From Theorem 2.1 we have that M ′ is totally real and X ′ is Stein.
The inclusion Q → Q′ induces a fibration

π : Y = G/Q −→ G/Q′ = Y ′ (1)

with complex fiber F ≃ Q′/Q. This fibration is classically referred
to as the Levi foliation, and is a special case of the fundamental
reduction of [1]. In fact Levi-flat minimal orbits are characterized by
the property that the fibers of the fundamental reduction are totally
complex.

We identify F with π−1(eQ).

Lemma 3.1. π−1(M ′) = M , π−1(X ′) = X and F is a compact con-

nected complex flag manifold.
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Proof. First we observe that F is connected because Q′ is connected.
Let F ′ be the fiber of the restriction π|M : M → M ′. Then F ′

is totally complex and CR generic in F , hence an open subset of
F . Proposition 7.3 and Theorem 7.4 of [1] show that there exists a
connected real semisimple Lie group G′′

0 acting on F ′ with an open
orbit, and that the Lie algebra of the isotropy is a t-subalgebra (i. e.
contains a maximal triangular subalgebra) of g′′0. Hence a maximal
compact subgroup K′′

0 of G′′
0 has an open orbit, which is also closed.

Since F ′ is open in F and F is connected, K′′
0 is transitive on F , and

F ′ = F , proving the first two statements.

Furthermore the isotropy subgroup G′′
+ for the action of G′′

0 on
F and the homogeneous complex structure are exactly those of a
totally complex minimal orbit, hence by [1, § 10] F is a complex flag
manifold.

The total space M is locally isomorphic to an open subset of
M ′ × F , hence to U × R

k, where U is open in C
n, for some integers

n and k.

For a Levi flat CR manifold N and a nonnegative integer p, let Ωp
N

be the sheaf of p-forms that are CR (see [7] for precise definitions).
They are ON -modules and Ω0

N ≃ ON .

Let Ap,q
N be the sheaf of (complex valued) smooth (p, q)-forms

on N , ∂̄N the tagential Cauchy-Riemann operator and Zp,q
N , (resp.

Bp,q
N ) the sheaf of closed (resp. exact) (p, q)-forms. As usual we

denote by Hp,q(N) = Zp,q
N (N)/Bp,q

N (N) the cohomology groups of
the ∂̄M complex on smooth forms. The Poincaré lemma is valid for
∂̄N (see [11]), thus the complex:

0 → Ωp
N → Ap,0

N

∂̄N−−→ . . .
∂̄N−−→ Ap,q

N

∂̄N−−→ . . .

is a fine resolution of Ωp
N . This implies that Hp,q(N) ≃ Hq(Ωp

N ).

Let EN be a homogeneous CR vector bundle on N (i. e. a com-
plex vector bundle with transition functions that are CR ) with fiber
E, and let EN be the sheaf of its CR sections.

We denote by E
p
N the bundle of CR , EN -valued, p-forms, with

associated sheaf of CR sections Ep
N = Ωp

N ⊗ON
EN .

Let Ap,q
N,EN

= Ap,q
N ⊗ON

EN , denote by ∂̄EN
the tangential Cauchy-

Riemann operator on EN and let Zp,q
N,EN

(resp. Bp,q
N,EN

) be the sheaf
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of ∂̄EN
-closed (resp. exact) smooth forms with values in EN .

Then Hp,q(N,EN ) = Zp,q
N,EN

(N)/Bp,q
N,EN

(N), but we also have:

Hp,q(N,EN ) = Hq(Ep
N ) = H0,q(N,Ep

N ) = Z0,q

N,E
p

N

(N)/B0,q

N,E
p

N

(N).

For any open set U ⊂ N , the spaces Ap,q
N,EN

(U) and Zp,q
N,EN

(U) are
Fréchet spaces with the topology of uniform convergence of all deriva-
tives on compact sets. If Bp,q

N,EN
(N) is closed in Zp,q

N,EN
(N), then

Hp,q(N,EN ), with the quotient topology, is also a Fréchet space.

4. Statements and proofs

Let EF be a L′-homogeneous holomorphic vector bundle on F . The
L′ action induces a natural L′ action on Ap,q

F,EF
, hence on Hp,q(F,EF ),

because the action of L′ preserves closed and exact forms. Since F is
a compact complex manifold, Hp,q(F,EF ) is finite dimensional and
we can construct the K-homogeneous holomorphic vector bundle on
X ′:

H
p,q
X′ (F,EF ) = K ×L′ Hp,q(F,EF ).

In a similar way we define a K0-homogeneous complex vector
bundle on M ′:

H
p,q
M ′(F,EF ) = K0 ×K′

+
Hp,q(F,EF ).

The following thorem has been proved by Le Potier ([13], see also
[5]):

Theorem 4.1. Let X, X ′ and F be as above, EX a K-homogeneous

holomorphic vector bundle on X and EX |F its restriction to F . Then

there exists a spectral sequence pEs,t
r , converging to Hp,q(X,EX),

with
pEs,t

2 =
⊕

i

H i,s−i
(

X ′,Hp−i,t+i
X′ (F,EX |F )

)

.

For p = 0 the spectral sequence collapses at r = 2 and, recalling
that X ′ is a Stein manifold, we obtain:

H0,q(X,EX) = H0,0
(

X ′,H0,q
X′ (F,EX |F )

)

.

Recalling that Hp,q(X,EX) = H0,q(X,Ep
X ) we finally obtain:
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Proposition 4.2. Let X, X ′ and F be as above, EX a K-homogeneous

holomorphic vector bundle on X and EX |F its restriction to F .

Then:

Hp,q(X,EX) = H0,0
(

X ′,H0,q
X′ (F,Ep

X |F )
)

as Fréchet spaces.

A statement analogous to the last proposition holds for M :

Proposition 4.3. Let M , M ′ and F be as above, EM a K0-homogeneous

CR vector bundle on M and EM |F its restriction to F . Then:

Hp,q(M,EM ) = H0,0
(

M ′,H0,q
M ′(F,Ep

M |F )
)

as Fréchet spaces.

Proof. Fix p, q, let ZM ′ = π∗(Z
0,q

M,E
p

M

), BM ′ = π∗(B
0,q

M,E
p

M

) and HM ′

be the sheaf of sections of H
0,q
M ′(F,Ep

M |F ) We already know that
Hp,q(M,EM ) ≃ ZM ′(M ′)/BM ′(M ′).

We now define a map φ : ZM ′ → HM ′ as follows.

Let U ⊂ M ′, x ∈ U , x = gK′
+, g ∈ K0 and ξ ∈ ZM ′(U). Let

ξg = (g−1 · ξ)|F . This is a closed E
p
M -valued (0, q)-form on F , that

determines a cohomology class [ξg] in H0,q(F,Ep
M |F ). Then the class

of (g, [ξg ]) in H
0,q
M ′(F,Ep

M |F ) does not depend on the particular choice
of g, but only on x, hence it defines a section sξ = φ(ξ) of HM ′ on
U .

The sheaves ZM ′ , BM ′ , HM ′ , ker φ are OM ′-modules and φ is a
morphism of OM ′-modules. Since OM ′ is fine, to prove that φ(M ′) is
continuous, surjective and that its kernel is exactly BM ′(M ′) it sufices
to check that this is true locally, and this reduces to a straightforward
verification.

We prove now the main theorem of this paper:

Theorem 4.4. Let M and X be as above, EX a K-homogeneous

holomorphic vector bundle over X. Then:

Hp,q(M,EX |M ) ≃ OM (M) ⊗
OX(X) Hp,q(X,EX).
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Proof. Define M ′ and X ′ as above, fix integers p, q ≥ 0 and let HX′ =
H

0,q
X′ (F,Ep

X |F ), HM ′ = H
0,q
M ′(F,Ep

X |F ) = HX′ |M ′ . By Proposi-
tions 4.2 and 4.3, we have that Hp,q(M,EX |M ) = Γ(M ′,HM ′) and
Hp,q(X,EX) = Γ(X ′,HX′).

Since dimR M ′ = dimC(X ′), a global section of HX′ that is zero
on M ′ must be zero on X ′, i. e. the restriction map Γ(X ′,HX′) →
Γ(M ′,HM ′) is injective.

On the other hand, X ′ is Stein, thus HX′ is generated at every
point by its global sections. Together with the fact that HM ′ =
HX′ |M ′ this implies that

Γ(M ′,HM ′) = OM ′(M ′) ⊗
OX′(X′) Γ(X ′,HX′),

where in the right hand side we implicitly identify global holomorphic
sections on X ′ with their restrictions to M ′.

The theorem follows from the observation that OM (M) ≃ OM ′(M ′)
and OX(X) ≃ OX′(X ′) because the fiber F of π is a compact con-
nected complex manifold.

This, together with Corollary 2.2, implies the following.

Corollary 4.5. With the same assumptions, the inclusion j : M →
X induces a map:

j∗ : Hp,q(X,EX) −→ Hp,q(M,EX |M )

that is continuous, injective and has a dense range.

5. An example

Let G = SL(4, C), and Q be the parabolic subgroup of upper trian-
gular matrices. We consider the real form G0 = SU(1, 3), identified
with the group of linear trasformations of C

4 that leave invariant the
Hermitian form associated to the matrix

B =

(

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

)

.

Then G/Q is the set of complete flags {ℓ1 ⊂ ℓ2 ⊂ ℓ3 ⊂ C
4} and

M = G0 · eQ is the submanifold {ℓ1 ⊂ ℓ2 ⊂ ℓ3 ⊂ C
4 | ℓ3 = (ℓ1)⊥}.
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Let Q′ be the set of block upper triangular matrices of the form

Q′ =

{

g =

(

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

)

| g ∈ G

}

,

so that M ′ is the totally real manifold {ℓ1 ⊂ ℓ3 ⊂ C
4 | ℓ3 = (ℓ1)⊥}

and M fibers over M ′ with typical fiber F isomorphic to CP
1. The

fibration is given by

(ℓ1, ℓ2, ℓ3) 7−→ (ℓ1, ℓ3). (*)

Choose K to be the stabilizer in G of the subspaces V =
Span(e1 − e4) and W = Span(e1 + e4, e2, e3) so that K is isomor-
phic to S(GL(1, C) × GL(3, C)) and K0 to S(U(1) × U(3)). Then
X is the set of flags {ℓ1 ⊂ ℓ2 ⊂ ℓ3 ⊂ C

4} in a generic position
with respect to the subspaces V and W , and X ′ is the set of flags
{ℓ1 ⊂ ℓ3 ⊂ C

4} in a generic position with respect to V and W .
The map from X to X ′ given by (*) is a fibration with typical fiber
isomorphic to CP

1 and X ′ is a Stein manifold.
Finally let E = X × C be the trivial line bundle. According to

Propositions 4.2 and 4.3 the cohomology of M and X is given by

Hp,q(X) = Hp,q(X,E) = H0,0
(

X ′,H0,q
X′ (F,Ep|F )

)

,

Hp,q(M) = Hp,q(M,E|M ) = H0,0
(

M ′,H0,q
M ′(F,Ep|F )

)

.

Recalling that Hp,q(F ) ≃ C if p = q = 0 or p = q = 1 and 0
otherwise, we obtain:

{

Hp,q(X) ≃ OX(X) ≃ OX′(X ′) if p = q = 0 or p = q = 1;

Hp,q(X) = 0 otherwise;

and analogously:

{

Hp,q(M) ≃ OM (M) ≃ OM ′(M ′) if p = q = 0 or p = q = 1;

Hp,q(M) = 0 otherwise;

and it is clear that

Hp,q(M) = OM (M) ⊗OX(X) Hp,q(X).
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