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Dedicated to the memory of Heiner Zieselang.

Summary. - In the present note, in part written as a survey, we

discuss the possibility of lifting finite subgroups, and in particular

finite cyclic subgroups, with respect to the canonical projections

between automorphism and outer automorphism groups of free

groups, surface groups and their abelianizations.

1. Introduction

For a group G, denote by AutG its automorphism group and by
OutG = AutG/InnG its outer automorphism group (automor-
phisms modulo inner automorphisms). For a group homomorphism
α : G → H, we say that a subgroup U of H lifts to G if there is an
injection ι : U → G such that α ◦ ι = idU .

Let Fn denote the free group of rank n, and π1Fg the fundamental
group of a closed orientable surface Fg of genus g. We consider the
natural projections

α : AutFn → Out Fn,
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β : OutFn → GL(n,Z),

γ : Aut π1Fg → Out π1Fg,

δ : Out+π1Fg → Sp(2g,Z)

where β and γ are obtained by abelianization of Fn and π1Fg; by
Sp(2g,Z) ⊂ SL(2g,Z) we denote the symplectic group (see [6]), and
by Out+π1Fg the subgroup of index two of Out π1Fg induced by
orientation-preserving diffeomorphisms of the surface Fg. It is well-
known that the kernels of these four surjections are torsionfree: this
is clear for α and γ, for β and δ see e.g. [18]. The main result is the
following

Theorem 1.1. Let n > 2, g ≥ 2. For each of the projections α, β, γ
and δ, there exist finite cyclic subgroups of the target groups which

do not lift.

We note that Out F2
∼= GL(2,Z), and Out+π1F1

∼= SL(2,Z) =
Sp(2,Z).

Corollary 1.2. For n > 2 and g ≥ 2, the projections α, β, γ and δ
do not have right inverses.

Compare also [5, Remark 3 in the introduction] and [8, Theo-
rem 2]. We note that all target groups OutFn, GL(n,Z), Out π1Fg

and Sp(2g,Z) have torisonfree subgroups of finite index (they are
virtually torsionfree), and there is the more subtle question if such
a torsionfree subgroup of finite index does lift.

In the following sections, we consider separately the four cases,
commenting also on the possibility of lifting other types of finite
subgroups, in particular those of maximal order. Some of the proofs
use classical results; the most technical case is that of β which we
consider last.

We note that, by the positive solution of the Nielsen realization
problem, every finite subgroup G of Out π1Fg can be realized by
an action of G as a group of homeomorphisms of the surface Fg;
similarly, every finite subgroup G of Out Fn can be realized by an
action of G on a finite graph with fundamental group Fn (see [20],
or the survey [18]). See [3] for a classification of the finite subgroups
of Out+π1F2 and Out+π1F3, and [19] for the finite subgroups of
OutF3.
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2. The case of δ : Out+π1Fg → Sp(2g, Z)

By the positive solution of the Nielsen realization problem [10], any
finite subgroup of Out+π1Fg can be realized by a finite subgroup
of diffeomorphisms of the surface Fg, and then also, choosing an
appropriate structure of Fg as a Riemann surface, by a finite group
of automorphisms of the Riemann surface. We note that the Nielsen
realization problem for finite cyclic and solvable groups is a classical
result, see [15] for the history of the problem (see also [17] for the
solvable case).

Let a1, b1, . . . , ag, bg denote a standard symplectic basis of the
first homology Z2g = (π1Fg)ab of the surface Fg (see [6, Chapter
V.3]). Choose any nontrivial symplectic automorphism of finite order
of the subgroup generated by a1 and b1 (the possible orders are 2,3,4
and 6), and extend it to a symplectic automorphism of the same order
of Z2g by the identity on the remaining generators a2, b2, . . . , ag, bg.
By [6, Theorem V.3.3], for g > 2 this symplectic automorphism is
not induced by a periodic automorphism of a Riemann surface of
genus g, and hence it does not lift to Out+π1Fg.

Concerning the case g = 2, note that Sp(4,Z) has a subgroup
SL(2,Z) × SL(2,Z), and hence a cyclic subgroup Z3 × Z4 of order
12; such a subgroup does not lift to Out+π1F2 since, by a result of
Wiman, the maximal order of an orientation-preserving diffeomor-
phism of Fg is 4g + 2 (see [16, 4.14.27]).

2.1. Comments

The maximal possible order of finite subgroups of Out+π1Fg is well-
known:

Theorem 2.1 ([17]). For g > 1, the order of any finite subgroup of

Out+π1Fg is bounded above by 84(g − 1).

The first proof of this has been given in [17, Satz 5.3], in an
equivalent algebraic formulation, as a consequence of a generalized
Riemann-Hurwitz formula; of course, (2.1) follows also from the sub-
sequent solution of the Nielsen realization problem [10] and the clas-
sical Riemann-Hurwitz formula.
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We do not know the maximal order of finite subgroups of the sym-
plectic group Sp(2g,Z). However, Sp(2g,Z) has a finite subgroup U
of order 12gg! (permutations of the pairs of generators ai, bi and di-
hedral groups of order 12 for each pair), and by Theorem 1 these
subgroups do not lift. By the result of Wiman mentioned above,
the maximal order of an orientation-preserving diffeomorphism of
Fg is 4g + 2; since for almost all values of g the group U has finite
cyclic subgroups of larger orders, this gives many cyclic subgroups
of Sp(2g,Z) which do not lift to Out+π1Fg.

3. The case of γ : Aut π1Fg → Out π1Fg.

Since the center of π1Fg is trivial, every finite subgroup U ofOut π1Fg

determines an extension, unique up to equivalence,

1 → π1Fg → E → U → 1

which is effective (no element of E acts by conjugation trivially on
π1Fg); note that the extension splits if and only if U lifts to Aut π1Fg.
Conversely, any such effective extension defines a subgroup U of
Out π1Fg.

By lifting to the universal covering, every cyclic group Zn of
diffeomorphisms acting freely on a surface Fg of genus g > 1 defines
a torsionfree extension

1 → π1Fg → E → Zn → 1,

and hence an inclusion of Zn into Out π1Fg which does not lift to
Aut π1Fg. In fact, the group E acts on the universal covering H2 of
Fg (as an extension of the universal covering group π1Fg); if it has
torsion, by Smith fixed point theory some element of prime power
order must have fixed points. Examples are the covering involutions
of the orientable 2-fold coverings of the nonorientable surfaces of
genus g > 2.

Alternatively, start with a torsionfree co-compact group E of
isometries of the hyperbolic plane (a surface group) and consider a
normal subgroup π1Fg with cyclic factor group Zn; then Zn acts
freely by isometries on the surface Fg defined by the normal sub-
group, and the induced group Zn of outer automorphisms of π1Fg

does not lift to Aut π1Fg.
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3.1. Comments

Each group Out π1Fg has many noncyclic and nonabelian finite sub-
groups (see [3] for g = 2 and 3). On the other hand, the finite
subgroups of Aut π1Fg are very special, in fact one has

Theorem 3.1. For g > 1, the finite subgroups of Aut π1Fg are either

cyclic or dihedral.

Proof. A finite subgroup U of Aut π1Fg defines a split extension

1 → π1Fg → E → U → 1,

so U injects into E. By results of Nielsen (see [17, Section 2]), the
extension E acts as a group of homeomorphisms of the boundary
S1 of the unit disk (the sphere at infinity of the hyperbolic plane),
and it is easy to see that finite groups of homeomorphisms of S1 are
cyclic or dihedral (see also [17, Lemma 2.1]).

Alternatively, one may apply again the solution of the Nielsen
realization problem. By this solution, U can be realized by a group
of diffeomorphisms of the surface Fg, and then also by a group of
isometries of a suitable hyperbolic surface Fg. Lifting to the universal
covering of Fg (the hyperbolic plane H2), this realizes E as a group
of isometries of H2, and every finite group of isometries of H2 is cyclic
or dihedral.

4. The case of α : Aut Fn → Out Fn

A finite subgroup U of Out Fn determines an effective extension

1 → Fn → E → U → 1,

and the extension splits if and only if U lifts to Aut Fn. Conversely,
any such extension defines a finite subgroup U of Out Fn.

Considering extensions

1 → Fn → Fn′ → Zm → 1

where also E is a free group Fn′ (so (1− n) = m(1−n′)), for each n
one easily constructs finite cyclic subgroups Zm of Out Fn which do
not lift to Aut Fn (e.g. for n′ = 2).
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4.1. Comments

The finite subgroups of maximal order of Out Fn and Aut Fn are
given by the following

Theorem 4.1 ([14]). For n > 2, the maximal order of a finite sub-

group of Out Fn and Aut Fn is 2nn!. For n > 3, up to conjugation

there is a unique subgroup of maximal order, generated by permuta-

tions and inversions of a system of free generators.

The finite subgroups of Out F3 are determined in [19]. For the
possible orders of finite cyclic subgroups of Out Fn and Aut Fn, see
[1] or [13]. The maximal order of finite abelian subgroups of Out Fn

and Aut Fn is determined in [2] and equal to 2n, for n > 3.

5. The case of β : Out Fn → GL(n, Z)

Denoting by e1, . . . , en the standard basis of Zn, we define an auto-
morphism φ of order six of Zn by

φ(e1) = −e2, φ(e2) = e1 + e2, φ(ei) = ei for i ≥ 3.

We will show that, for n > 2, the cyclic subgroup of GL(n,Z) gen-
erated by φ does not lift to OutFn.

Consider an extension

1 → Zn → Ē → Z6 → 1

where a generator of Z6 induces the automorphism φ of Zn. If Ē
is the semidirect product Zn ⋉ Z6 then the abelianization of Ē is
Z6 ×Zn−2, if the extension does not split the abelianization is Zn−2,
Z2 × Zn−2 or Z3 × Zn−2.

Suppose that φ can be lifted to an outer automorphism of Fn of
order six, represented by an automorphism ψ of Fn. Then ψ defines
an extension, unique up to equivalence,

1 → Fn → E → Z6 → 1,

and the abelianization of E is Zm × Zn−2, m = 1, 2, 3 of 6.
The group E is a finite effective extension of the free group Fn.

By [9], the finite extension E of the free group Fn is isomorphic to the
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fundamental group π1(Γ,G) of a finite graph of finite groups (Γ,G)
(the iterated free product with amalgamation and HNN-extension
over the vertex groups, amalgamated over the edge groups of a max-
imal tree, the HNN-generators corresponding to the edges in the
complement of the chosen maximal tree). The Euler characteristic

of E ∼= π1(Γ,G) or of the graph of groups (Γ,G) is

χ(E) = χ(Γ,G) =
∑

1/|Gv | −
∑

1/|Ge|

where the sum is taken over all vertex groupsGv resp. all edge groups
Ge of (Γ,G). The Euler characteristic behaves multiplicatively under
finite extensions, in particular in our situation we have χ(Fn) =
1 − n = 6χ(E), or

−χ(E) =
n− 1

6
.

Since the kernel Fn of the surjection of E onto Z6 is torsionfree,
the vertex and edge groups of E = π1(Γ,G) inject into Z6 and hence
are cyclic groups of orders 1,2,3 or 6; in the following, we shall call an
edge or vertex with associated group Zm an m-edge or an m-vertex.

We shall assume that the graph of groups (Γ,G) is reduced, i.e.
has no non-closed edges such that the edge group coincides with one
of the two vertex groups (such an edge can be contracted obtaining a
graph of groups with fewer edges). Denote by T a maximal tree of the
underlying graph Γ; then Γ−T has exactly n− 2 edges (considering
the abelianization of E). Note that any 6-vertex of (Γ,G) contributes
a direct summand Z6 or Z2 to the abelianization of E, and any 2-
vertex contributes a summand Z2. Also, all 6-edges, 3-edges and
2-edges of (Γ,G) are closed, and hence T consists only of 1-edges.

Suppose that Γ has more than one vertex. Then the contribution
of T to −χ(E) is ≥ 0, and −χ(E) ≥ (n− 2)/6 (considering only the
contribution of the edges in Γ−T ). Since −χ(E) = (n−1)/6 it follows
that Γ − T has only 6-edges except maybe for a single 3-edge and,
estimating −χ(E) from below, one easily obtains a contradiction.

Hence Γ has exactly one vertex which has to be a 6-vertex. Then
E is a split extension of Fn and Z6, and the abelianization of E
is Z6 × Zn−2. It follows now easily that (Γ,G) has no 1-edge, and
either one 2-edge and n − 3 6-edges, or two 3-edges and n − 4
6-edges. In both cases, since the unique vertex group Z6 survives in
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the abelianization, there is a nontrivial subgroup of the vertex group
which is central in E. But then the extension E was not effective
which is a contradiction.

5.1. Comments

a) The maximal order finite subgroups of Out Fn are given by (4.1).
The situation for finite subgroups of GL(n,Z) is more complicated.
It is shown in [7] that, for values on n larger than some constant, the
maximum value of finite subgroups of GL(n,Z) is again 2nn!, and
that the maximal groups are generated by permutations and inver-
sions of the standard generators of Zn. However, for n = 2, 4, 6, 7, 8, 9
and 10 there are subgroups of larger orders, the Weyl groups of the
exceptional Lie groups of types G2, F4, E6, E7 and E8 (of orders 12,
1152, 51840, 2903040 and 696729600). On the basis of a result of
Weisfeiler, Feit gave a complete classification of the maximal order
finite subgroups of GL(n,Z) (see [7, 12]; this uses the classification
of the finite simple groups).

For the maximal orders of finite cyclic subgroups of GL(n,Z),
see [12] or [13]. The maximal orders of finite abelian subgroups of
GL(n,Z) are determined in [7] and are larger than those for Out Fn

(see [2]).

b) It is more difficult to construct cyclic subgroups of prime order p of
GL(n,Z) which do not lift to Out Fn. Any integral representation of
Zp can be written as a direct sum of indecomposable representations
which (in the language of [4, Section 1]) are either trivial, regular,
cyclotomic or ”exotic” (corresponding to a non-principal ideal in a
cyclotomic representation Z[λ] where λ is a primitive p th root of
unity and a generator of Zp acts by multiplication with λ; so in this
case, the representation has a nontrivial ideal class invariant in the
ideal class group of Z[λ]). Now any subgroup Zp of Out Fn can be
induced by the action of Zp on a finite graph with fundamental group
Fn [20], and it follows from an argument due to Swan (see [4, Section
1]), or from [11, Theorem 15.5] that the induced representation of Zp

on the abelianization of the fundamental group is standard (has no
exotic indecomposable summand). On the other hand, if an integer
representation of Zp is standard than it is easy to construct an action
of Zp on a finite graph (with one global fixed point) which induces
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this representations (for each regular summand one takes a bouquet
of p circles permuted cyclically by a generator of Zp, for each cy-
clotomic summand a graph with two vertices and p + 1 connecting
edges permuted cyclically). Hence the following holds

Theorem 5.1. A cyclic subgroup Zp of prime order p of GL(n,Z)
lifts to Out Fn if and only if the corresponding integer representation

of Zp is standard.

Exotic integer representations of Zp do not exist for p < 23.
On the other hand, the situation for general cyclic subgroups Zm of
GL(n,Z) appears to be rather complicated.

Problem 5.2: Which cyclic subgroups Zm ofGL(n,Z) lift toOut Fn?
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