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On Self-Injectivity and p-Injectivity

Roger Yue Chi Ming (∗)

Summary. - A generalization of injectivity is studied and several
properties are developed. Von Neumann regular rings are char-
acterized. Sufficient conditions are given for a ring to admit a
strongly regular classical left quotient ring. A nice characteriza-
tion of strongly regular rings is given. Special direct summands
of left self-injective regular and left continuous regular rings are
considered.

1. Introduction

Since several years, injectivity, p-injectivity and their generalizations
have drawn the attention of numerous authors (cfr. for example
[2, 4, 5, 8, 10, 20, 22, 24, 41] and [11]-[15]). Here we consider mod-
ules satisfying a condition ⋆ (see (2.1)). Such modules contain their
complement submodules as direct summands. Semi-prime rings sat-
isfying ⋆ are also studied. Self.injective regular rings are character-
ized using condition ⋆. Strongly regular rings are characterized in
terms of certain annihilators. In the left continuous regular ring, the
sum of all reduced ideals is a direct summand.

Throughout, A denotes an associative ring with identity and A-
modules are unital. J, Z, Y will stand respectively for the Jacobson
radical, the left singular ideal and the right singular ideal of A. An
ideal of A will always mean a two-sided ideal of A. Of course, J,
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Z, Y are all ideals of A. A left (right) ideal of A is called reduced
if it contains no non-zero nilpotent element. For any left A-module
M, Z(M) = {y ∈ M : l(y) is an essential left ideal of A} is the left
singular submodule of M. AM is called singular (resp. non-singular)
if Z(M) = M (resp. Z(M) = (0)). Thus Z = Z(AA) and Y =
Z(AA). A is called semi-primitive or semi-simple (resp. left non-
singular or right non-singular) if J = (0) (resp. Z = 0 or Y = (0)).

Following C. Faith [6], we will write that A is VNR if it is a
von Neumann regular ring. It is well-known that A is VNR if and
only if every left (right) A-module is flat (M. Harada (1956); M.
Auslander (1957)). Also, A is VNR if and only if every left (right)
A-module is p-injective (cfr. [2, 4, 10, 11, 14, 24, 25, 28]). Note that
the Harada-Auslander characterization may be weakened as follows:
A is VNR if and only if every cyclic singular left A-module is flat (see
[29], Theorem 5) (cf. G. O. Michler’s comment in MR 80i-16021).
Flatness and p-injectivity are distinct concepts.

2. On Self-Injectivity and p-Injectivity

Recall that a left A-module, M, is p-injective if, for any principal
left ideal P of A, every left A-homomorphism of P into M extends
to one of A into M ([6, p.122], [18, p.577], [23, p.340], [28]).

A is called a left p-injective ring if AA is p-injective (p-injectivity
is similarly defined on the right side). Indeed, the study of flat mod-
ules over non-VNR rings has motivated various authors to consider
p-injective modules over rings which are not necessarily VNR (cfr.
the bibliography). K. R. Goodearl’s classic [7] has motivated exten-
sive research in the area of VNR rings and associated rings. Accord-
ing to a theorem of P. Menal - P. Vamos [6, p.108], any arbitrary ring
may be embedded in a FP-injective ring (and hence in a p-injective
ring). This has given an impetus to the study of p-injective rings
(cfr. [6, Theorem 6.4], [9, 11, 16, 17]). In 1974, we introduced the
concept of p-injective modules [28] to study VNR rings, self-injective
rings and associated rings. This is later generalized to YJ-injectivity
([18, p.578], [24, 34, 41]), also called GP-injectivity by other authors
[4, 12, 15]. Recall that a left A-module M is YJ-injective if, for any
a ∈ A, a 6= 0, there exists a positive integer n (depending on a) such
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that an 6= 0 and every left A-homomorphism of Aan into M extends
to one of A into M [34]. A is called a left YJ-injective ring if AA
is YJ-injective. YJ-injectivity is similarly defined on the right side.
Note that A is left YJ-injective if and only if, for any a ∈ A, a 6= 0,
there exists a positive integer n such that anA is a non-zero right
annihilator [34, Lemma 3] (cfr. also [15, 24, 41]).

We here consider the following generalization of injectivity.

Definition 2.1. We say that a left A-module M satisfies ⋆ if, for
any left submodule N containing a non-zero complement left submod-
ule of M, every left A-homomorphism of N into M extends to an
endomorphism of AM.

We will write that A satisfies ⋆ if AA satisfies ⋆. It is clear that
simple left A-modules and uniform left A-modules satisfy ⋆.

Proposition 2.2. Let M be a left A-module satisfying ⋆. Then any
complement left submodule of M is a direct summand of M.

Proof. Let C be a non-zero complement left submodule of M ; I a
relative complement of C in M such that E = C ⊕ I is an essential
submodule of AM. If p : E −→ C is the natural projection, the set
of submodules U of M containing E such that p extends to a left
A-homomorphism of U into C has, by Zorn’s Lemma, a maximal
member L. Let g : L −→ C be the extension of p to L. If j : C −→ M
is the inclusion map, then j ◦ g : L −→ M and by hypothesis, j ◦ g
extends to an endomorphism f of AM. Suppose that f(M) * C.
Since C is a relative complement of I in M, then (f(M)+C)∩I 6= (0).
If d ∈ (f(M) + C) ∩ I, d 6= 0, d = f(m) + c, m ∈ M, c ∈ C, and
F = {v ∈ M : f(v) ∈ E} is therefore a submodule of M which
strictly contains L (because m ∈ F , since f(m) = d − c ∈ E, and
m 6∈ L). Now define t : F −→ E by t(v) = f(v) for all v ∈ F. Then
p◦t : F −→ C extends p to F, which contradicts the maximality of L.
Therefore f(M) ⊆ C which yields f(M) = C. Now C ∩ ker f = (0)
and if b ∈ M, b = f(b) + (b − f(b)) ∈ C + ker f which leads to
M = C ⊕ ker f.

If A is a left self-injective regular ring, then for any essentially
finitely generated left A-module M, M = Z(M) ⊕ N, where N is a
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non-singular injective left A-module [39, Corollary 10]. This moti-
vates the study of non-singular injective modules.

Proposition 2.3. Let A be a semi-prime ring satisfying ⋆. If M, N
are non-singular injective left A-modules, then there exists a central
idempotent e ∈ A such that AeM is isomorphic to a submodule of

AeN and A(1 − e)N is isomorphic to a submodule of A(1 − e)M.

Proof. Let

E =

{

(Q,P ) :
are respectively left submodules of M and N,

AQ is isomorphic to AP

}

.

The set S of all the families {(Qi, Pi)} of elements of E such that
{Qi} and {Pi} are independent families of submodules of M and N,
respectively, has a maximal member {(Qi, Pi)}i∈I0 (cfr. the proof
of [30, Lemma 2]). If Mo, No are the injective hulls of

⊕

i∈I0
Qi,

⊕

i∈I0
Pi respectively in M, N, then M = M0⊕M1 and N = N0⊕N1.

Since Qi ≈ Pi, with i ∈ I0, then M0 ≈ N0. Write T = {a ∈ A :
aM1 = 0}. Then T is an ideal of A which is a complement left
ideal of A (in as much as M1 is non-singular and for any element
c in an essential extension of AT in AA, Lc ⊆ T for some essential
left ideal L of A). By (2.2), AT is a direct summand of AA. If
T = Ae, e = e2 ∈ A, then e is central in A (because A is semi-
prime). It follows that eM = eMo ≈ eN0 ⊆ eN. Now suppose
that (1 − e)N1 6= 0. If b ∈ (1 − e)N1, b 6= 0 since AAb is non-
singular, then l(b) is again a direct summand of AA by (2.2) which
yields AAb ≈ AAu, u = u2 ∈ A, and eu = 0. Since u 6= 0, then
u ∈ T (otherwise, u = ue = eu = 0). Therefore uy 6= 0 for some
y ∈ M1 and AAuy is again projective (being a cyclic non-singular left
A-module). Looking at the epimorphism Au −→ Auy, we conclude
that Auy is isomorphic to a submodule of Ab ⊆ N1, which contradicts
the maximality of {(Qi, Pi)}i∈I0 in S. Therefore (1 − e)N1 = 0 and
hence

(1 − e)N = (1 − e)N0 ≈ (1 − e)M0 ⊆ (1 − e)M.

Corollary 2.4. If A is a prime ring satisfying ⋆, then for non-
singular injective left A-modules, M, N, either M is isomorphic to
a submodule of N or N is isomorphic to a submodule of M.
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Well-known examples of self-injective rings are quasi-Frobenius
rings, pseudo-Frobenius rings and the maximal quotient rings of non-
singular rings.

Recall that A is left continuous (in the sense of Y. Utumi) if every
left ideal of A which is isomorphic to a complement left ideal is a
direct summand of AA. In [32], left continuous rings are generalized
as follows: A is a left GQ-injective ring if, for any left ideal C of
A which is isomorphic to a complement left ideal of A, every left
A-homomorphism of C into A extends to an endomorphism of AA.

Theorem 2.5. The following conditions are equivalent:

1. A is a left self-injective regular ring;

2. A is a left non-singular left p-injective ring satisfying ⋆;

3. A is a left non-singular left GQ-injective ring satisfying ⋆.

Proof. Evidently (1) implies (2) and (3).

Now assume (2). Since A is left p-injective, then every left ideal
which is isomorphic to a direct summand of AA is itself a direct
summand of AA. Since A satisfies ⋆, then every complement left
ideal of A is a direct summand of AA by (2.2). A is therefore a left
non-singular left continuous ring which is then VNR by a well-known
result of Y. Utumi. Then any non-zero left ideal I of A contains a
non-zero idempotent. Consequently, every left A-homomorphism of
I into A extends to an endomorphism of AA. A is therefore left self-
injective and (2) implies (1).

Assume (3). Since A is left GQ-injective, then J = Z and A/J
is VNR [32, Proposition 1]. Since A is left non-singular, then A is
VNR. Then for any non-zero left ideal I of A (which contains a non-
zero idempotent), every left A-homomorphism of I into A extends
to an endomorphism of AA and hence (3) implies (1).

As before, write A is ELT (resp.MELT) if each essential (resp.
maximal essential, if it exists) left ideal of A is an ideal of A.

Corollary 2.6. If A is a semi-prime ELT left GQ-injective ring
satisfying ⋆, then A is a left and right self-injective regular, left and
right V-ring of bounded index.
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Proof. If we suppose that Z 6= (0), then exists z ∈ Z, z 6= 0 such
that z2 = 0 [32, Lemma 7]. Since I = l(z) is an ideal of A, then
(Az)2 = AzAz ⊆ IAz ⊆ Iz = (0) which contradicts the semi-
primeness of A. Therefore Z = (0) and A is left self-injective regular
by (2.5)(3). The corollary follows from [31, Lemma 1.1].

Corollary 2.7. A is simple Artinian if and only if A is a prime
ELT left GQ-injective ring satisfying ⋆.

Rings whose simple modules are either injective or projective
and various generalizations are studied since several years (cfr. for
example, [2, 5, 12, 13, 15, 20]). Such rings need not be semi-prime
as shown by the following example.

Example 2.8. If A denotes the 2 × 2 upper triangular matrix ring
over a field, then A is an Artinian, hereditary ring whose simple
one-sided modules are either injective or projective but is not a semi-
prime ring (indeed, the Jacobson radical J of A is non-zero with
J2 = (0)). Also, all singular one-sided modules are injective while
all non-singular one-sided modules are projective.

For a left A-module M, if N is a submodule of M,

ClM (N) = {y ∈ M : Ly ⊆ N for some essential left ideal L ⊆ A}

is the closure of N in M. ClM (0) = Z(M) is the singular submodule
of M.

Proposition 2.9. Let A be a semi-prime ring whose simple right
modules are either YJ-injective or projective. If M is a homomor-
phic image of a left A-module satisfying ⋆, then Z(M) is a direct
summand of AM.

Proof. Let Q be a left A-module satisfying ⋆, g : Q −→ M an
epimorphism of left A-modules. By (2.2), every complement left
submodule of Q is a direct summand of Q. Since A is a semi-prime
ring whose simple right modules are either YJ-injective or projec-
tive, then Z = O [38, Proposition 1]. Since g is an epimorphism,
g−1(Z(M)) = ClQ(ker g), then by [27, Theorem 4], g−1(Z(M)) is a
complement left submodule of Q. Therefore Q = g−1(Z(M))⊕N. It
follows that M = g(Q) = Z(M) ⊕ g(N), where g(N) ≈ N.
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A well-known theorem of I. Kaplansky asserts that a commuta-
tive ring is VNR if and only if it is a V-ring. In the non-commutative
case, the work of O. E. Villamayor has motivated many papers on
generalizations of V-rings and VNR rings (cfr. the bibliography of
[18]).

Applying [38, Propositions 2 and 9], we get

Remark 2.10. If A is a MELT ring whose simple left modules are
YJ-injective, then J = Z = Y = (0).

QUESTION 1. Are the rings in (2.10) fully left idempotent?

Remark 2.11. If A contains a non-singular maximal left ideal, then
A is left non-singular.

Proof. Let M be a maximal ideal of A such that Z(M) = (0). If

AM is essential in AA, then M ∩ Z = Z(M) = (0) implies that
Z = (0). If AM is a direct summand of AA, suppose that Z 6= O.
Since M ∩ Z = (0), then A = M ⊕ Z. Now Z cannot contain a
non-zero idempotent which implies that Z = (0), a contradiction!
Therefore Z = (0) in any case.

Note that the analogous result holds for reduced rings. Indeed,
if A contains a reduced maximal left ideal, then A is reduced [37,
Lemma 2].

Lemma 2.12. Let A be a ring whose simple left modules are either
p-injective or projective. Then the centre of A is VNR.

Proof. Let C denote the centre of A. For any c ∈ C, set L = Ac+l(c).
Let K be a complement left ideal of Asuch that L⊕K is an essential
left ideal of A. Then Kc = cK ⊆ L∩K = (0) which implies that K ⊆
l(c), whence K = K∩ l(c) ⊆ K∩L = (0). Therefore L is an essential
left ideal of A. Now suppose that L 6= A. Let M be a maximal left
ideal of A containing L. Then AA/M must be p-injective. Define
g : Ac −→ A/M by g(ac) = a + M for all a ∈ A. Since AA/M is
p-injective, there exists y ∈ A such that 1 + M = g(c) = cy + M.
Now cy = yc ∈ M implies that 1 ∈ M, which contradicts M 6= A.
We have shown that A = L = Ac + l(c). Then c = bc2, b ∈ A and
therefore c = cbc. Now set d = c2b3. Then

cdc = (cbc)bcbc = (cbc)bc = c
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and

c2b = bc2 = c.

For every u ∈ A,

bc2u = cu = uc = ubc2 = c2ub

and hence

b3c2u = c2ub3.

Now

du = c2b3u = b3c2u = c2ub3 = uc2b3 = ud

which proves that d ∈ C. C is therefore a VNR ring.

Theorem 2.13. The following conditions are equivalent for a ring A
with centre C :

1. A is VNR;

2. every simple left A-module is either p-injective or projective
and for each maximal ideal N of C, A/AN is VNR.

Proof. (1) implies (2) evidently. (2) implies (1) by [1, Theorem 3]
and (2.12).

The next result is motivated by recurrent questions of V. A. Hire-
math in private communications concerning classical quotient rings
(which are not necessarily semi-simple, Artinian). See, for very nice
results of Hiremath, consult the bibliography of R. Wisbauer [23].

Proposition 2.14. Let A be an ELT left p.p. ring whose comple-
ment left ideals are ideals of A. Then A admits a classical left quotient
ring Q which is strongly regular.

Proof. Given a, c ∈ A, c being a non-zero-divisor, let K be a com-
plement left ideal of A such that L = Ac ⊕ K is an essential left
ideal of A. Since K is an ideal of A, then Kc ⊆ K ∩ Ac = (0) which
implies that K = (0) (c being a non-zero-divisor). Then L = Ac is
an essential left ideal which, by hypothesis, is an ideal of A. Now
ca ∈ L yields ca = dc for some d ∈ A. We have just shown that
A satisfies the left Ore Condition which is equivalent to A having a
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classical left quotient ring Q. Since Z = (0) and every complement
left ideal of A is an ideal of A, then A is a reduced ring [37, Lemma
3]. By [35, Theorem 2], every element a of A is of the form a = ce,
where c is a non-zero-divisor and e is a central idempotent. Now
given q ∈ Q, q = b−1a with b, a ∈ A, b being a non-zero-divisor. If
a = ce as above, then

q = b−1a

= b−1ce

= b−1cebb−1c−1c

= b−1ceb(b−1c−1)c

= (b−1ce)b(db−1)c

for some d ∈ A. Since e is a central idempotent,

q = (b−1ce)bd(b−1ce) = q(bd)q,

which proves that Q is VNR. By [33, Proposition 1.5], Q is a reduced
ring and hence Q is strongly regular.

Recall that if every ideal of A is a complement left ideal of A, then
every ideal of A is generated by a central idempotent [36, Proposition
2] (consequently, A is biregular). We also know that A is strongly
regular if and only if A is a reduced ring whose finitely generated
right ideals are principal complement right ideals of A [31, Theorem
2.6].

QUESTION 2. Is A strongly regular if A is a reduced ring
whose finitely generated right ideals are complement right ideals?

We proceed to give a new characterization of strongly regular
rings.

Lemma 2.15. Let T be a non-zero ideal of A which contains no non-
zero nilpotent left ideal of A. If e is an idempotent in T such that Ae
is an ideal of A, then e is central in A.

Proof. Since Ae is an ideal of A, Ae = AeA and eA ⊆ Ae. Then
eA(1−e) ⊆ Ae(1−e) = 0 implies that ea = eae for every a ∈ A. Now
A = eA⊕ (1− e)A and for any u ∈ (1− e)A, b ∈ A, b = ec+(1− e)d,
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with c, d ∈ A, whence bu = ecu + (1 − e)du and since eA ⊆ Ae,
ec = we for some w ∈ A. Therefore

bu = weu + (1 − e)du = (1 − e)du ∈ (1 − e)A

which shows that (1− e)A is also an ideal of A. Then ((1− e)Ae)2 =
(0) implies that (1− e)Ae = (0) (since T contains no non-zero nilpo-
tent left ideal of A). Now ae = eae for each a ∈ A which proves that
e is central in A.

Theorem 2.16. The following conditions are equivalent:

1. A is strongly regular;

2. for every b ∈ A, Ab + r(AbA) is an ideal of A which is a
complement left ideal of A.

Proof. Assume (1). For any b ∈ A, Ab = AbA is generated by a
central idempotent. If Ab = Ae, e = e2 being central, then r(AbA) =
(1−e)A = A(1−e) and Ab+r(AbA) = Ae+A(1−e) = A. Therefore
(1) implies (2).

Assume (2). For every b ∈ A, T = Ab + r(AbA) is an ideal
of A which implies that AbA ⊆ T , whence T = AbA + r(AbA)
is a complement left ideal of A. Suppose there exists d ∈ A such
that (AdA)2 = (0). Then r(AdA) is an essential left ideal of A.
But r(AdA) = AdA + r(AdA) is a complement left ideal of A by
hypothesis. Therefore r(AdA) = A which yields d = 0. We have
shown that A must be a semi-prime ring. For any c ∈ A, let C =
AcA. Since A is semi-prime, then C ∩ r(C) = O. Set L = C ⊕ r(C).
If AK is a relative complement of AL in AA, then E = L ⊕ K is
an essential left ideal of A. Now LK ⊆ L ∩ K = (0) implies that
K ⊆ r(L) ⊆ r(C), whence K = K ∩ r(C) ⊆ K ∩ L = (0). Therefore
L is an essential left ideal of A. But L = Ac+r(AcA) is a complement
left ideal of A by hypothesis. Therefore L = A which proves that
C = Au, u = u2 ∈ A. Since A is semi-prime, u is central in A by
(2.15). We have proved that A is a biregular ring. Now for every
b ∈ A,

A = Ab ⊕ r(AbA) = AbA ⊕ r(AbA)

and if r(AbA) = Aw, where w is a central idempotent, then

A = Ab ⊕ Aw = A(1 − w) ⊕ Aw.
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Then b = b(1 − w) + bw and bw = wb ∈ Ab ∩ Aw = (0), whence
b = b(1 − w) which yields Ab ⊆ A(1 − w). Since A = Ab ⊕ Aw,

A(1 − w) = Ab ⊕ (Aw ∩ A(1 − w)) = Ab

and therefore Ab is generated by a central idempotent. Thus (2)
implies (1).

Applying [36, Proposition 2] to (2.16), we get:

Corollary 2.17. A is a finite direct sum of division rings if and
only if every ideal of A is a complement left ideal and for every
b ∈ A, Ab + r(AbA) is an ideal of A.

(2.15) also yields the next remark

Remark 2.18. If e is an idempotent in A and Ae is a minimal left
ideal of A which is an ideal of A, then e is central in A.

Remark 2.19. If M is an injective maximal left ideal of A, M = Ae,
e = e2 ∈ A and A(1−e) is an ideal of A, then A is a left self-injective
ring.

A condition for non-singularity.

Proposition 2.20. Let A be a MELT ring such that for any maximal
essential left ideal M of A, A/MA is flat. Then Z = (0).

Proof. Suppose that Z 6= (0). By [32, Lemma 7], there exists z ∈ Z,
z 6= 0 such that z2 = 0. Let M be a maximal left ideal of A containing
l(z). Then M is an essential left ideal of A and M is an ideal of A by
hypothesis. Therefore A/MA is flat. Since z ∈ l(z) ⊆ M, z = dz for
some d ∈ M [3, p.458]. Therefore 1−d ∈ l(z) ⊆ M and since d ∈ M,
1 ∈ M which contradicts M 6= A. We have proved that Z = (0).

Note that the ring considered in (2.20) needs not be semi-prime
(cfr. (2.8)).

Finally, we consider the reduced ideals in a ring.

Proposition 2.21. Let A be a semi-prime left YJ-injective ring.
Then T, the sum of all reduced ideals of A, is the unique maximal
strongly regular ideal of A and T is a left annihilator.
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Proof. Suppose that l(r(T )) is not a reduced ideal of A. Then there
exists w ∈ l(r(T )), w 6= 0 such that w2 = 0. Now T = TA and if
Tw = O, TAw = O and Aw2 ⊆ l(r(T ))·r(T ) = (0) which contradicts
A semi-prime. Therefore Tw 6= O and hence there exists a reduced
ideal R of A such that Rw 6= (0). This implies that R ∩ Aw 6= (0).
Let z ∈ R ∩ Aw, z 6= 0. Then by [34, Lemma 5], z = zvz for some
v ∈ R and Az = Ae, e = vz being an idempotent. Now z = bw,
b ∈ A and

vbwe = vze = e2 = e 6= 0

which implies that we 6= 0. But (we)2 = wvbwwe = 0, which con-
tradicts R being a reduced ideal of A. We have shown that l(r(T ))
must be a reduced ideal of A. It follows that T = l(r(T )) is the
unique maximal reduced ideal of A. By [34, Lemma 5], T is the
unique maximal strongly regular ideal of A and T = l(r(T )) is a left
annihilator.

Corollary 2.22. If A is a left self-injective regular ring and T is
the sum of all reduced ideals of A, then A = T ⊕ Q, where T is a
left and right self-injective strongly regular ring and Q is a left self-
injective regular ring such that every non-zero ideal of Q contains a
non-zero nilpotent element.

Note that if Q is a left continuous regular ring such that every
non-zero ideal of Q contains a non-zero nilpotent element, then Q is
left self-injective [19, Theorem 3]. Consequently, the next decompo-
sition follows.

Corollary 2.23. If A is a left continuous regular ring and T is the
sum of all reduced ideals of A, then A = T ⊕Q, where T is a left and
right continuous strongly regular ring and Q is a left self-injective
regular ring such that every non-zero ideal of Q contains a non-zero
nilpotent element.
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