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Planar Convex Bodies with a
Common Directed X-ray

G. L. Butcher, A. Medin and D. C. Solmon (∗)

Summary. - We study X (K), the set of convex bodies in the plane
with the same directed X-ray as the convex body K. We show that
X (K) is complete in the metrics of the uniform and Lp norms.
In fact these metrics turn out to be equivalent even though X (K)
is almost always infinite dimensional. In addition, we charac-
terize the compact subsets of X (K) and determine necessary and
sufficient conditions for X (K) to be uniformly bounded.

1. Introduction

Generally, geometric tomography is centered around the question of
what X-ray data is sufficient to uniquely determine a convex body.
The most significant results of this type when the data are point or
directed X-rays were given by Falconer [2], Gardner [3] and Volčič
[9]. An overview of these and other results can be found in Gard-
ner [4]. The directed X-ray of a convex body from a known source
consists of the lengths of the intersection of the body with all rays
emanating from the source. Continuing work in [6] we investigate a
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situation where uniqueness does not obtain, that of a single directed
X-ray. (If the source is interior to the body, the body is clearly
uniquely determined by this data, but we always assume the source
to be outside the body.) Throughout K is a convex body (compact,
convex set with nonempty interior) in the plane R

2. The boundary
of K is denoted ∂K. We study topological and geometric properties
of X (K), the set of convex bodies in the plane which have the same
directed X-ray as K. In particular, we show that even though X (K)
is (with some singular exceptions) infinite dimensional, the compact
subsets of X (K) are precisely the closed and bounded sets in both
the uniform and Lp topologies. Also, in contrast to the situation
with parallel X-rays, we show that X (K) may be bounded and char-
acterize when this occurs in terms of the directed X-ray. A better
understanding of X (K) may help in developing algorithms for recon-
struction and techniques for attacking questions of determination.

This work began during the NSF sponsored REU program in
the summer of 2002 at Oregon State University. Preliminary results
appeared in [1].

The authors are indebted to the reviewer for a careful reading
of the manuscript and suggestions that improved both accuracy and
style.

2. Background

Since there will be only one X-ray source, it is convenient to choose
polar coordinates with the origin at the source and assume that K
is contained in the open upper half-plane H = {(x, y) ∈ R

2 : y > 0}.
A ray ϕ = ϕ0 which meets the interior of K intersects ∂K at two
points (r(ϕ0), ϕ0) (a near side point) and (R(ϕ0), ϕ0) (a far side
point) with 0 < r(ϕ0) < R(ϕ0). Rays ϕ = α, ϕ = β which meet K,
but do not meet the interior of K, are called supporting rays. Since
K ⊂ H, 0 < α < β < π. The near and far side points at α are
defined respectively by min{r : (r, α) ∈ K} and max{r : (r, α) ∈ K}.
The near and far side points at β are defined analogously. The set
of near side points of K determines the near side function r(ϕ) and
the set of far side points determines the far side function R(ϕ). The
directed X-ray ofK isX(ϕ) = R(ϕ)−r(ϕ). K is uniquely determined
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by any pair of the three functions r, R, X.
Throughout, the independent variable of a function will be the

polar variable ϕ ∈ [α, β] and functions f, F, r, R, X are defined
and nonnegative on that interval.

A function f is concave away from the origin (or is a near side
function) if it is continuous and given any two points on the graph
of f , the chord joining the two points is separated from the origin by
the graph of f . f is concave toward from the origin (or is a far side
function) if it is continuous and given any two points on the graph
of f , the chord joining the two points separates the graph of f from
the origin. The X-ray body of K, written KX , is the body with near
side r = 0 and far side R = X. Note the origin O ∈ KX and KX is
the only element of X (K) that contains a point in ∂H. (A result of
Longinetti [8] shows that KX is convex.)

It is useful to have analytical methods to determine whether a
function is concave toward or away from the origin. Such are pro-
vided by the quadratic form Q introduced in [7] and operators de-
rived from it in [6].

Definition 2.1. Suppose that 0 < α ≤ ϕ1 < ϕ2 < ϕ3 ≤ β < π and
f : [α, β] → [0,∞). We define the quadratic form Q by

Qf(ϕ1, ϕ2, ϕ3) = f(ϕ1)f(ϕ2) sin(ϕ2 − ϕ1)

+f(ϕ2)f(ϕ3) sin(ϕ3 − ϕ2) − f(ϕ1)f(ϕ3) sin(ϕ3 − ϕ1).

We will repeatedly use both geometric and analytic aspects of
the following result [7, 6].

Lemma 2.2. Let α ≤ ϕ1 < ϕ2 < ϕ3 ≤ β and f ≥ 0 on [α, β]. The
sum of the areas of the triangles with vertices (O; (f(ϕ1), ϕ1);
(f(ϕ2), ϕ2)) and (O; (f(ϕ2), ϕ2); (f(ϕ3), ϕ3)) is ≤ (≥) the area of
the triangle with vertices (O; (f(ϕ1), ϕ1); (f(ϕ3), ϕ3)) if and only if
Qf(ϕ1, ϕ2, ϕ3) ≤ 0 (Qf(ϕ1, ϕ2, ϕ3) ≥ 0). Consequently a continu-
ous, nonnegative f on [α, β] is concave away from the origin (toward
the origin) if and only if Qf(ϕ1, ϕ2, ϕ3) ≤ 0 (Qf(ϕ1, ϕ2, ϕ3) ≥ 0)
for all choices of ϕ1, ϕ2, ϕ3 as designated.

Throughout, when we state that Qf ≥ 0 or Qf ≤ 0 we mean
that this holds for all choices of the arguments with α ≤ ϕ1 < ϕ2 <
ϕ3 ≤ β.
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We will need a formula for Q(f + g) in terms of Qf and Qg. Due
to the length of the expression we write fj for f(ϕj) and gj for g(ϕj).

Q(f + g) =
(f1 + g1) sin(ϕ2 − ϕ1) + (f3 + g3) sin(ϕ3 − ϕ2)

f1 sin(ϕ2 − ϕ1) + f3 sin(ϕ3 − ϕ2)
Q(f)

+
(f1 + g1) sin(ϕ2 − ϕ1) + (f3 + g3) sin(ϕ3 − ϕ2)

g1 sin(ϕ2 − ϕ1) + g3 sin(ϕ3 − ϕ2)
Q(g)

−
sin(ϕ2 − ϕ1) sin(ϕ3 − ϕ2)

(f1 sin(ϕ2 − ϕ1) + f3 sin(ϕ3 − ϕ2))
×

sin(ϕ3 − ϕ1)[f1g3 − f3g1]
2

(g1 sin(ϕ2 − ϕ1) + g3 sin(ϕ3 − ϕ2))
. (1)

We sketch the elementary and tedious derivation. From Defini-
tion 2.1

Q(f+g) = (f1+g1)(f2+g2) sin(ϕ2−ϕ1)+(f2+g2)(f3+g3) sin(ϕ3−ϕ2)

−(f1 + g1)(f3 + g3) sin(ϕ3 − ϕ1).

Solving for f2 and g2 in the definition of Q(f) and Q(g) gives

f2 + g2 =
Q(f) + f1f3 sin(ϕ3 − ϕ1)

f1 sin(ϕ2 − ϕ1) + f3 sin(ϕ3 − ϕ2)
+

Q(g) + g1g3 sin(ϕ3 − ϕ1)

g1 sin(ϕ2 − ϕ1) + g3 sin(ϕ3 − ϕ2)
.

Now replace f2 + g2 in the formula for Q(f + g) by the above expres-
sion. One obtains the first two term on the right hand side of (1)
and the additional terms

[(f1 + g1) sin(ϕ2 − ϕ1) + (f3 + g3) sin(ϕ3 − ϕ2)]×

[

f1f3 sin(ϕ3 − ϕ1)

f1 sin(ϕ2 − ϕ1) + f3 sin(ϕ3 − ϕ2)
+
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g1g3 sin(ϕ3 − ϕ1)

g1 sin(ϕ2 − ϕ1) + g3 sin(ϕ3 − ϕ2)

]

− (f1 + g1)(f3 + g3) sin(ϕ3 − ϕ1).

It remains to show that this expression is equal to the last term in

(1). Rationalizing gives the correct denominator and with a little
algebra the numerator becomes sin(ϕ3 − ϕ1) times

f1f3[g1 sin(ϕ2 − ϕ1) + g3 sin(ϕ3 − ϕ2)]
2+

g1g3[f1 sin(ϕ2 − ϕ1) + f3 sin(ϕ3 − ϕ2)]
2 − (f1g3 + f3g1)×

[(f1 sin(ϕ2 − ϕ1) + f3 sin(ϕ3 − ϕ2))×

(g1 sin(ϕ2 − ϕ1) + g3 sin(ϕ3 − ϕ2))]

= sin(ϕ2 − ϕ1) sin(ϕ3 − ϕ2)[2f1f3g1g3 − f2
1g

2
3 − f2

3 f
2
1 ]

= − sin(ϕ2 − ϕ1) sin(ϕ3 − ϕ2)[f1g3 − f3g1]
2.

This completes the derivation of (1).
If we let ϕ2 ↓ ϕ1 in the definition of Q we obtain

lim
ϕ2↓ϕ1

Qf

ϕ2 − ϕ1
(2)

= f(ϕ1)
2 − f(ϕ1)f(ϕ3) cos(ϕ3 − ϕ1) + f ′+(ϕ1)f(ϕ3) sin(ϕ3 − ϕ1).

Similarly, letting ϕ2 ↑ ϕ3 gives

lim
ϕ2↑ϕ3

Qf

ϕ3 − ϕ2
(3)

= f(ϕ3)
2 − f(ϕ1)f(ϕ3) cos(ϕ3 − ϕ1) + f ′−(ϕ3)f(ϕ1) sin(ϕ3 − ϕ1).

The sign of these expressions also characterizes whether a continuous
f is concave away (≤ 0) or toward (≥ 0) the origin. Here f ′+ (f ′−)
denotes the right (left) hand derivative.

Another operator that we will use that characterizes the direction
of concavity is the curvature operator defined by

Kf(ϕ) = f2 + 2(f ′)2 − ff ′′ = f3

(

1

f
+

(

1

f

)′′)

(4)

= κf (ϕ)(f2 + (f ′)2)3/2,
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where κf (ϕ) is the signed curvature of the graph of f at ϕ. This op-
erator is well defined when f is C2. In order to deal with the general
situation we will need the lower and upper curvature operators;

Kf(ϕ) = f2 + 2(D1f)2 − fD2f , (5)

and

Kf(ϕ) = f2 + 2(D1f)2 − fD2f, (6)

where

D1f(t) =
f ′+(t) + f ′−(t)

2
,

is the average of the left and right drivatives,

D2f(t) = limh→0+

f(t− h) + f(t+ h) − 2f(t)

h2
,

D2f(t) = limh→0+
f(t− h) + f(t+ h) − 2f(t)

h2
,

are the lower and upper second derivatives respectively. A function
f : [α, β] → [0,∞) is concave away from the origin (toward the
origin) if and only if it is continuous and Kf(ϕ) ≤ 0 (Kf(ϕ) ≥ 0)
for all ϕ ∈ (α, β). If f is concave away from or toward the origin,
then f has a second derivative at almost every point and at such
points Kf(ϕ) = Kf(ϕ) = Kf(ϕ). Moreover, Kf exists at every
point, allowing the value −∞ which occurs at all nonsmooth points
(points at which f does not have a derivative). A similar situation
holds for Kf when f is concave toward the origin provided −∞ is
replaced by +∞. Thus if f is concave away from (toward) the origin
D1f = f ′ at points where Kf (Kf) are finite. See [6] for derivations
of these properties of the curvature operators.

We conclude this section with two results that will be used in
the sequel. The first addresses what the conditions Qf ≤ 0, Qf ≥ 0
imply without the assumption that f is continuous.

Lemma 2.3. 1. Suppose that f ≥ 0 and Qf ≤ 0 on [α, β]. If
f > 0 at two points in [α, β) or (α, β], then f > 0 on [α, β]
and is continuous on (α, β). In any event, for any ϕ0 ∈ [α, β],
limϕ→ϕ0 f(ϕ) exists and is ≤ f(ϕ0).
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2. Suppose F ≥ 0 and QF ≥ 0 on [α, β]. If F > 0 on (α, β),
then F is continuous on (α, β) and limϕ↓α F (ϕ) ≥ F (α) and
limϕ↑β F (ϕ) ≥ F (β). (One of the limits may be +∞.)

Proof. We prove 1. (The proof of 2 is similar, although a little
care needs to be taken to ensure that the limits are finite in (α, β).)
Suppose that α ≤ ϕ1 < ϕ2 < ϕ3 ≤ β with f(ϕj) > 0 for j = 1, 2. If
f(ϕ3) = 0, then Qf(ϕ1, ϕ2, ϕ3) = f(ϕ1)f(ϕ2) sin(ϕ2−ϕ1) > 0 which
is a contradiction. Hence f > 0 on [ϕ2, β]. The same argument shows
that if ϕ ∈ [α,ϕ2) and f(ϕ) = 0, then Qf(ϕ,ϕ2, β) > 0. Hence f > 0
on [α, β]. This shows that if f vanishes at any point, then there are
at most two points where f is nonzero. So, if f vanishes at any
point, limϕ→ϕ0 f(ϕ) = 0 ≤ f(ϕ0). Thus we need only consider the
case where f > 0 on [α, β]. In fact, repeating the argument above
we see that this implies inf f > 0, so f is bounded below by some
positive number.

Next we show that that the left and right hand limits exist at
every point. From Lemma 2.2 f(ϕ) ≤ max{f(α), f(β)}, so f is
bounded. Let f∗ = limϕ↓ϕ0

f(ϕ) and f∗∗ = limϕ↓ϕ0f(ϕ). Let ϕj ↓
ϕ0, ψj ↓ ϕ0 with ϕj < ψj such that f(ϕj) → f∗ and f(ψj) → f∗∗.
Then for all j > 1

0 ≥ Qf(ϕj, ψj , ψ1) = f(ϕj)f(ψj) sin(ψj − ϕj)

+f(ψj)f(ψ1) sin(ψ1 − ψj) − f(ψ1)f(ϕj) sin(ψ1 − ψj).

Letting j → ∞ we obtain

0 ≥ f(ψ1)(f
∗∗ − f∗) sin(ψ1 − ϕ0).

Since f(ψ1) 6= 0, we have

limϕ↓ϕ0f(ϕ) = f∗∗ ≤ f∗ = limϕ↓ϕ0
f(ϕ).

Thus equality holds throughout and the right hand limit exists.
If we replace ϕj by ϕ0 and repeat the same argument, we find
limϕ↓ϕ0 f(ϕ) ≤ f(ϕ0). The proof for the left hand limit is essen-
tially the same. It remains to show that f is continuous on (α, β).

Fix ϕ0 ∈ (α, β) and define f(ϕ0+) = limϕ↓ϕ0 f(ϕ) and f(ϕ0−)
= limϕ↑ϕ0 f(ϕ). Let ϕ1 = ϕ0 − γ, ϕ2 = ϕ0 and ϕ3 = ϕ0 + γ where
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γ > 0 is small. Since Qf ≤ 0, 0 ≥ limγ→0
Qf(ϕ1,ϕ2,ϕ3)

sinγ . On the other
hand

lim
γ→0

Qf(ϕ1, ϕ2, ϕ3)

sin γ
= f(ϕ0)f(ϕ0+)+f(ϕ0−)f(ϕ0)−2f(ϕ0−)f(ϕ0+)

= f(ϕ0+)(f(ϕ0) − f(ϕ0−) + f(ϕ0−)(f(ϕ0) − f(ϕ0+) ≥ 0,

since f(ϕ0) ≥ f(ϕ0+) and f(ϕ0) ≥ f(ϕ0−). Since f(ϕ0+) > 0 and
f(ϕ0−) > 0, we must have f(ϕ0) = f(ϕ0+) = f(ϕ0−), completing
the proof.

The last result of the section summarizes some topological prop-
erties of X (K) that we will use. See Theorem 5.1 [6].

Theorem 2.4. Let K ⊂ H be a convex body with near side r, far
side R and directed X-ray X = R− r. Then for 0 ≤ t ≤ 1, the body
Kt with near side tr and far side tr +X is convex. Hence X (K) is
star-shaped with respect to the X-ray body KX . Thus X (K) is both
path connected and simply connected.

3. Metrics and Compactness.

We first study X (K) under the topology of uniform convergence.

Definition 3.1. Let L, M ∈ X (K). The distance between L and
M is d∞(L,M) = ‖r − s‖∞ = maxϕ∈[α,β] |r(ϕ) − s(ϕ)|, where r, s
are the near side functions of L, M respectively.

Since the near side of the X-ray body KX is the zero function,
d∞(KX , L) = ‖r‖∞ = maxϕ∈[α,β] r(ϕ) = max{r(α), r(β)}. A subset
S of X (K) is bounded (more precisely uniformly bounded) if there
exists a finite A > 0 such that if r is the near side function of a body
in S, then ‖r‖∞ ≤ A.

Definition 3.2. Let F be a family of continuous real valued func-
tions defined on an interval I. F is equicontinuous on I if for each
ǫ > 0 there exists δ > 0 such that g ∈ F , x, y ∈ I and |x − y| < δ
implies |g(x)−g(y)| < ǫ. F is equicontinuous at a point x0 ∈ I if for
each ǫ > 0 there exists δ > 0 such that g ∈ F , x ∈ I and |x−x0| < δ
implies |g(x) − g(x0)| < ǫ.
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We will say that a subset of X (K) is equicontinuous on an interval
(at a point) when the family of near side functions, associated to the
bodies in the set, is equicontinuous according to the above definition.

The main result of this section is the following.

Theorem 3.3. The space X (K) is complete in the metric of uniform
convergence. Moreover closed, bounded subsets of X (K) are compact
and consequently bounded subsets are equicontinuous.

(By compact we mean sequentially or countably compact. That
is, a subset A of a metric space M is compact if every sequence
from A contains a subsequence that converges to a point in A. As is
well known, in a metric space this is equivalent to the open covering
definition of compactness. See [5] for example .)

The completeness is easy. Indeed, if {rj} is a Cauchy sequence
of near side functions of convex bodies in X (K), then by the com-
pleteness of the continuous functions on a compact interval in the
uniform topology, {rj} converges uniformly to a continuous function
r and Qr ≤ 0 since each Qrj is. So r is concave away from the
origin. Similarly, Rj = rj +X converges uniformly to the continuous
function R = r + X. QR ≥ 0 since each QRj is, and hence R is
concave toward the origin. Thus the body with near side function r
and far side function R is convex with directed X-ray X.

The characterization of the compact sets requires two lemmas.

Lemma 3.4. Bounded subsets of X (K) are equicontinuous on com-
pact subsets of (α, β).

Proof. Fix α0, β0 such that α < α0 < β0 < β and let r be a near
side function of a convex body in X (K). In light of (1), (2) and the

fact that Q(r +X) ≥ 0, evaluating limϕ2↓ϕ1

Q(r+X)
ϕ2−ϕ1

gives

0 ≤
r3 +X3

r3
[r21 − r1r3 cos(ϕ3 − ϕ1) + r3r

′
1+ sin(ϕ3 − ϕ1)]

+
r3 +X3

X3
[X2

1 −X1X3 cos(ϕ3 − ϕ1) +X3X
′
1+ sin(ϕ3 − ϕ1)]

−
(r1X3 − r3X1)

2

r3X3
,
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where we again use the abbreviated notation rj = r(ϕj) etc. Since
Qr ≤ 0, (2) gives r21 − r1r3 cos(ϕ3 −ϕ1) + r3r

′
1+ sin(ϕ3 − ϕ1) ≤ 0, so

|r1X3 − r3X1|

≤
√

r3(r3 +X3)
√

X2
1 −X1X3 cos(ϕ3 − ϕ1) +X3X ′

1+ sin(ϕ3 − ϕ1).

Now r1X3 − r3X1 = X3(r1 − r3) + r3(X3 −X1) and hence

X3|r3 − r1| − r3|X3 −X1| ≤ |r1X3 − r3X1|.

Combining these inequalities we obtain

|r1 − r3| ≤
r3
X3

|X3 −X1|+

√

r3(r3 +X3)

X3

√

X2
1 −X1X3 cos(ϕ3 − ϕ1) +X3X ′

1+ sin(ϕ3 − ϕ1).

If we restrict X to [α0, β0], then X3 ≥ a > 0 for some fixed positive
number a and |X ′

1+| is bounded by [6] Lemma 2.1.5. Hence if ‖r‖∞ ≤
M , then given ǫ > 0, there exists δ > 0 such that ϕ1, ϕ3 ∈ [α0, β0]
and ϕ3 − ϕ1 < δ implies |r1 − r3| < ǫ. So, bounded subsets of X (K)
are equicontinuous on [α0, β0].

The Arzela Theorem, [5] p. 102, characterizes the compact sub-
sets of the continuous functions on a compact interval (in the uni-
form topology) as precisely those sets which are closed, (uniformly)
bounded and equicontinuous. We need to look more closely at near
side functions of bodies in X (K) near the endpoints of the interval.

Lemma 3.5. Let {rj} be a sequence of near side functions of bodies in
X (K). If for each ϕ ∈ [α, β], {rj(ϕ)} converges to a finite number,
then {rj} converges to the near side function, r, of a body in X (K).
Moreover, {rj} is equicontinuous on [α, β] and rj → r uniformly.

Proof. Define r on [α, β] by r(ϕ) = lim rj(ϕ). The sequences {rj(α)}
and {rj(β)} converge and hence are bounded. Since rj is concave
away from the origin, ‖rj‖∞ = max(rj(α), rj(β)). Hence {rj} is
bounded. Also, since Qrj ≤ 0 and Q(rj + X) ≥ 0, the pointwise
convergence guarantees that Qr ≤ 0 and Q(r +X) ≥ 0. Hence, if r
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is continuous on [α, β], then r is the near side function of a body in
X (K).

From the previous lemma, {rj} is equicontinuous on compact
subsets of (α, β). By the Arzela theorem and a standard diagonaliza-
tion process, there is a subsequence of {rj} that converges uniformly
on all compact subsets of (α, β). Hence r is continuous on (α, β). We
need to show that r is continuous at the endpoints of the interval.
From Lemma 2.3.1 r(α+) ≤ r(α). It remains to show equality. If not,
then r(α+) < r(α). Let R = r+X and Rj = rj +X. Each QRj ≥ 0
and Rj converges pointwise to R = r+X ≥ X > 0 on (α, β). Hence
we have R(α+) = X(α) + r(α+) < X(α) + r(α) = R(α), which
contradicts Lemma 2.3.2. The proof is identical at β.

Now we establish the equicontinuity of {rj} on [α, β]. Since this
sequence is equicontinuous on all compact subsets of (α, β), a sim-
ple triangle inequality argument shows that it suffices to establish
equicontinuity at α and β. The proofs being identical, we show the
sequence is equicontinuous at α. For purposes of contradicton sup-
pose that {rj} is not equicontinuous at α. Then there exists an ǫ > 0
and a sequence ϕj ↓ α such that

|rj(ϕj) − rj(α)| > ǫ.

Hence for j sufficiently large, either rj(ϕj) > r(α) + ǫ/2 or r(α) >
rj(ϕj) + ǫ/2. We show that each leads to a contradiction.

Suppose that rj(ϕj) > r(α) + ǫ/2 for j sufficiently large. Then

Qrj(α,ϕj , ϕ1) = rj(α)rj(ϕj) sin(ϕj − α)

+rj(ϕ1)[rj(ϕj) sin(ϕ1 − ϕj) − rj(α) sin(ϕ1 − α)]

= rj(α)rj(ϕj) sin(ϕj − α) + rj(ϕ1)×

[(rj(ϕj)− rj(α)) sin(ϕ1 −ϕj)− rj(α)(sin(ϕ1 −α)− sin(ϕ1 −ϕj)] > 0,

unless rj(α) = rj(ϕ1) = 0. Lemma 2.3 and the fact that rj(ϕj) >
r(α) + ǫ/2 > 0 show this is impossible and we have a contradiction.

It remains to consider the case r(α) > rj(ϕj)+
ǫ
2 for j sufficiently

large. Note Rj = rj +X and from the previous inequality and the
continuity of X

Rj(α) −Rj(ϕj) = rj(α) − rj(ϕj) +X(α) −X(ϕj) >
ǫ

4
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for j sufficiently large. Proceeding as before with rj replaced by Rj,

0 ≤ QRj(α,ϕj , ϕ1) = Rj(ϕj)Rj(α) sin(ϕj − α)

+Rj(ϕj)Rj(ϕ1)(sin(ϕ1 − ϕj) − sin(ϕ1 − α))

−Rj(ϕ1) sin(ϕ1 − α)(Rj(α) −Rj(ϕj)).

Again as j → ∞ the first two summands go to zero, and hence for j
sufficiently large

0 ≤ QRj(α,ϕj , ϕ1) < −ǫRj(ϕ1) sin(ϕ1 − α)/8.

This is a contradiction. Hence {rj} is equicontinuous at α.
To see that the convergence rj → r is uniform, note that by

equicontinuity and the Arzela theorem every subsequence of {rj} has
a uniformly convergent subsequence. Since {rj} converges pointwise
to r, each uniformly convergent subsequence must also converge to
r. Hence {rj} itself must converge uniformly to r.

Now, the proof of the remainder of the main theorem is easy.

Proof of Theorem 3.3. Let {rj} be a bounded sequence of near side
functions of bodies in X (K). By Lemma 3.4 {rj} is equicontinuous
on compact subsets of (α, β) and thus contains a subsequence that
converges uniformly on compact subsets of (α, β) to a function r that
is continuous on (α, β). Choosing further subsequences if necessary,
we obtain a subsequence of the original that converges also at α and
β. By the previous lemma, this subsequence converges uniformly to
a function that is the near side of a convex body in X (K). Hence
closed, bounded subsets of X (K) are compact.

Further, from the Arzela Theorem the compact subsets are pre-
cisely those sets which are closed, bounded and equicontinuous. Hence
bounded subsets of X (K) are equicontinuous completing the proof.

Before discussing the Lp topologies we will need the following.

Lemma 3.6. Fix ǫ > 0 and define Cǫ = inf
[

min r(ϕ)
‖r‖∞

]

where the inf is

taken over all L ∈ X (K) whose near side function satisfies ‖r‖∞ ≥
ǫ. Then Cǫ > 0 and is an increasing function of ǫ. Morevoer, if
infϕ∈(α,β) KX > 0, then Cǫ → 0 as ǫ→ 0.
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Proof. First we show that for each ǫ > 0, Cǫ > 0. Suppose not.
Then there exists a sequence of near side functions {rj} of bodies in

X (K) such that ‖rj‖∞ ≥ ǫ and
min rj(ϕ)
‖rj‖∞

→ 0 as j → ∞. Consider

the functions sj =
ǫrj

‖rj‖∞
. ‖sj‖∞ = ǫ and from Theorem 2.4 each

sj is a nearside function of a body in X (K). Thus {sj} contains a
subsequence that converges uniformly to a near side function s of
a body in X (K). By construction ‖s‖∞ = ǫ > 0 and min s = 0
which contradicts Lemma 2.3.1. Hence Cǫ > 0. It is clear from
the definition that Cǫ is an increasing function of ǫ. Suppose now
that inf KX > 0. By Theorem 7.3 [6] for any line (segment) ℓ that
intersects both supporting rays, the body with near side tℓ and far
side tℓ+X is in X (K) when t > 0 is sufficiently small. In particular,

for α > ψ > β − π consider the line ℓ(ϕ) = csc(ψ−ϕ)
csc(ψ−α) . The ratio

ℓ(β)
ℓ(α) = csc(ψ−β)

csc(ψ−α) goes to 0 as ψ → α.

The lemma has an immediate corollary that will be useful when
discussing boundedness of X (K).

Corollary 3.7. Let {rj} be a sequence of near side functions of
bodies in X (K). If ‖rj‖∞ → ∞ as j → ∞, then min rj → ∞ as
j → ∞.

The Lp metrics, 1 ≤ p < ∞ on X (K) are defined in the natural
way. If r, s are near side functions of bodies L, M in X (K), then
the distance between L and M is

dp(L,M) = ‖r − s‖p =

[
∫ β

α
|r(ϕ) − s(ϕ)|pdϕ

]1/p

.

Since the area under a polar curve r on [α, β] is 1
2

∫ β
α r

2dϕ, ‖r‖2 has
a geometric interpretation. The case p = 2 of Theorem 3.9 below
shows that X (K) is isomorphic to a closed subset of the Hilbert space
L2[α, β].

Lemma 3.8. Let r be the near side function of a body in X (K). Then
for 1 ≤ p <∞

1. ‖r‖p ≤ (β − α)1/p‖r‖∞;
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2. ‖r‖∞ < ǫ or ‖r‖∞ ≤ ‖r‖p/(Cǫ(β − α)1/p),

where Cǫ is the constant defined in Lemma 3.6. Consequently, if
S ⊂ X (K) is bounded in any of the the metrics dp, 1 ≤ p <∞, then
S is bounded in the metric d∞.

Proof. The first inequality is standard. There is nothing to prove in
the second if ‖r‖∞ < ǫ, so assume that ‖r‖∞ ≥ ǫ. Then we have

‖r‖pp =

∫ β

α
(r(ϕ))pdϕ ≥ (β − α)(min r(ϕ))p ≥ (β − α)(Cǫ‖r‖∞)p.

Theorem 3.9. X (K) is complete in the metrics dp, 1 ≤ p ≤ ∞ and
the compact sets in any of these metric spaces are precisely the closed
bounded sets.

Proof. We need only establish the result when 1 ≤ p <∞. Both the
completeness and characterization of compact sets follow easily from
the lemma and the fact that closed bounded sets are compact in the
metric d∞. Indeed from the lemma any sequence that is bounded in
dp is also bounded in d∞, and has a uniformly convergent sequence
(by compactness in d∞) which must also converge in dp.

The following is immediate.

Corollary 3.10. For 1 ≤ p ≤ ∞, the metric spaces {X (K), dp}
are equivalent, that is they are homeomorphic as topological spaces.

4. Perturbation and Dimension

In this section we study one way to perturb a body in X (K) and still
remain in X (K). One of the consequences is that for almost all con-
vex bodies K ⊂ H, X (K) is infinite dimensional. In fact it is locally
infinite dimensional; that is if L ∈ X (K), U is a neighborhood of L
in X (K) and n is a natural number, U contains a subset homeomor-
phic to an open subset of R

n. The only known exception is when the
convex body is a parallel wedge W (a quadrilateral whose near and
far sides are parallel). In this case X (W ) is homeomorphic to a half-
line. There are functions R which are concave toward the origin on
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[α, β] which are not directed X-rays of convex bodies in H. If L were
a body with near side r = 0 and far side R, then X (L) = {L}. (See
[6] Examples 6.6 - 6.8.) It appears that X (K) may have dimension
0, 1 or ∞, with the former two exceptional.

The main tool in the next two sections will be the operators K, K
and K defined in (4), (5) and (6). We will repeatedly use inequalities
that these operators satisfy. The following were derived in [6] Lemma
3.8.

Lemma 4.1. 1. K(tf) = t2K, K(tf) = t2Kf, K(tf) = t2Kf.

2. K(f + g) = f+g
f Kf + f+g

g Kg − 2fg
[

f ′

f − g′

g

]2
.

3. f+g
f Kf + f+g

g Kg − 2fg
[

D1f
f − D1g

g

]2
≤ K(f + g) ≤

≤ f+g
f Kf + f+g

g Kg − 2fg
[

D1f
f − D1g

g

]2
≤ K(f + g) ≤

f+g
f Kf + f+g

g Kg − 2fg
[

D1f
f − D1g

g

]2
.

4. f−g
f Kf − f−g

g Kg + 2fg
[

D1f
f − D1g

g

]2
≤ K(f − g) ≤

≤ f−g
f Kf − f−g

g Kg + 2fg
[

D1f
f − D1g

g

]2
.

5. f−g
f Kf − f−g

g Kg + 2fg
[

D1f
f − D1g

g

]2
≤ K(f − g) ≤

≤ f−g
f Kf − f−g

g Kg + 2fg
[

D1f
f − D1g

g

]2
.

It is assumed that no expression is of the form ∞−∞ and that all
of the functions f, g, f + g, f − g are positive where they occur.

In order to avoid repeatedly stating the same hypotheses (unless
otherwise stated) r, R are the near and far side functions of a convex
body K ⊂ H and X = R− r.

The following situation will be exceptional in our construction.

Definition 4.2. ∂K contains parallel points of zero curvature (with
respect to the source) at ϕ0, α < ϕ0 < β if Kr(ϕ0) = KR(ϕ0) = 0
and the tangent lines to ∂K at ϕ0 are parallel. More generally, we
include the case where there exists a sequence {ϕj}, ϕj → ϕ0 such
that

limKr(ϕj) = limKR(ϕj) = 0,
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and the tangent lines to ∂K at ϕ0 are parallel. If the above holds
with ϕj → ϕ0 replaced by ϕj ↓ ϕ0 (ϕj ↑ ϕ0) and tangent line re-
placed by right (respectively left) tangent line, we say that K has
right (respectively left) parallel points of zero curvature at ϕ0.

Lemma 4.3. If infϕ∈(α,β) KX = 0, then ∂K has parallel (possibly left
or right) points of zero curvature at some point ϕ0. Conversely, if
∂K has parallel points of zero curvature at ϕ0, limϕ→ϕ0 KR(ϕ) =
0 and limϕ→ϕ0 Kr(ϕ) = 0, then infϕ∈(α,β) KX = 0. (The limits
involving r, R may be replaced by left or right hand limits and the
conclusion remains valid with obvious alterations.)

Proof. First suppose that KX(ϕ0) = 0. Then Lemma 4.1.4 with
f − g = R− r gives

0 = KX(ϕ0) ≥
X

R
KR(ϕ0)−

X

r
Kr(ϕ0)+2rR

[

D1R(ϕ0)

R(ϕ0)
−
D1r(ϕ0)

r(ϕ0)

]2

.

All terms on the right are nonnegative. Hence all must vanish. Since
R′(ϕ)
R(ϕ) − r′(ϕ)

r(ϕ) = cot(ω−ϕ)− cot(ψ−ϕ) where ω, ψ are the angles of

inclination of the tangent line to the graphs of R, r at ϕ ([6] formula
(1)), the vanishing of the last term implies that the tangent lines
to ∂K at ϕ0 are parallel. However if ϕ0 = α or β and the tangent
lines are parallel, then the expressions D1R(ϕ0)

R(ϕ0) and D1r(ϕ0)
r(ϕ0) would

be infinite and opposite in sign so their difference could not vanish.
Suppose that inf KX = 0, but KX(ϕ) > 0 for all ϕ. Then choose a
convergent sequence, say ϕj → ϕ0, such that KX(ϕj) → 0. Applying
Lemma 4.1.4 to KX(ϕj) and taking the limit again gives the desired
result. (If the sequence ϕj approached ϕ0 from the left or right, then
we would have left or right parallel points of zero curvature.) For
the converse, suppose limϕ→ϕ0 KR(ϕ) = 0 and limϕ→ϕ0 Kr(ϕ) = 0.
Since R′′, r′′ exists almost everywhere, we may choose a sequence
of points ϕj → ϕ0 such that KR(ϕj) = KR(ϕj) = KR(ϕj) → 0 and
Kr(ϕj) = Kr(ϕj) = Kr(ϕj) → 0. Then, Lemma 4.1.2 gives

KX(ϕj) =
X

R
KR(ϕj) −

X

r
Kr(ϕj) + 2rR

[

R′(ϕj)

R(ϕj)
−
r′(ϕj)

r(ϕj)

]2

→ 0

as j → ∞.
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Lemma 4.4. Suppose that infϕ∈(α,β) KR(ϕ) = 0. Then either
infϕ∈(α,β)K(tr+X) > 0 for all t, 0 ≤ t < 1, or ∂K contains parallel
points (possibly left or right) of zero curvature.

Proof. Since X = R − r, tr + X = R − (1 − t)r and from Lemma
4.1.1 and 4.1.4

K(tr +X) = K(R− (1 − t)r) ≥
R− (1 − t)r

R
KR

−
(1 − t)(R − (1 − t)r)

r
Kr + 2(1 − t)rR

[

D1R

R
−
D1r

r

]2

,

where all summands on the right are nonnegative. If inf K(tr +X)
vanishes for some t, 0 ≤ t < 1, then the inf of each of the summands
must vanish simultaneously and there exists a sequence ϕj → ϕ0,
α ≤ ϕ0 ≤ β such that

lim
ϕj→ϕ0

KR(ϕj) = lim
ϕj→ϕ0

Kr(ϕj) = lim
ϕj→ϕ0

[

D1R

R
−
D1r

r

]2

= 0.

The last identity cannot hold at α or β. Thus α < ϕ0 < β. Hence
∂K has parallel points of zero curvature at ϕ0. The proof remains
the same if the limit is replaced by a left or right hand limit.

Lemma 4.5. For each t, 0 ≤ t < 1, there is a convex body Lt in H
with directed X-ray tr+X. Consequently, if F is concave toward the
origin and > 0 on [α, β], F can be uniformly approximated by func-
tions that are directed X-rays of convex bodies in H. If in addition
F ′

+ → −∞ at α (or F ′
− → +∞ at β) and r ∈ C2[α, β)], then there

exists a constant C > 0, independent of t, 0 ≤ t ≤ 1, such that

D2(F + tr) ≤ C[D1(F + tr)]2 for ϕ sufficiently close to α (or β).

Proof. By Theorem 2.4 the body Kt with near side tr and far side
tr+X is convex for 0 ≤ t ≤ 1. Take L0 = KX , the X-ray body of K.
Fix t, 0 < t < 1 and choose t1 so that 0 < t1 < 1 − t. Let Lt be the
body with near side t1r and farside (t+t1)r+X. Since 0 < t+t1 < 1,
the function (t + t1)r +X is concave toward the origin and Lt is a
convex body in H with directed X-ray (t+ t1)r+X − t1r = tr+X.
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If a function F is concave toward the origin and positive on [α, β],
we can construct a convex body L ⊂ H whose far side is F . If f is
the near side of L, then the bodies Lt with near side tf and far side
tf + (F − f), 0 ≤ t < 1 provide the desired uniform approximation.

Lemma 6.3 [6] establishes the desired inequality when t = 0.
When r ∈ C2([α, β]), r, r′, r′′ are all bounded and the inequality
easily extends to 0 < t ≤ 1 uniformly in t, for a possibly bigger
constant C.

Theorem 4.6. Suppose ∂K contains no parallel points of zero cur-
vature and n is a positive integer. Then every neighborhood of K
in X (K) contains a subset homeomorphic to an open set in Rn. In
particular since n is arbitrary, every neighborhood of K is infinite
dimensional.

Proof. By the previous lemma we may assume without loss of gen-
erality that R is the directed X-ray of a convex body in H. Choose
constants a1 > · · · > an > 1 and sufficiently close to 1 that the
functions fj(ϕ) = csc(ajϕ) are defined and positive on [α, β]. It is
not hard to see that the functions f1, · · · , fn are concave away from
the origin and linearly independent. Indeed, one readily computes
Kfj = (1 − a2

j)f
2
j < 0. The family of convex bodies that we recon-

struct will have near sides r+
∑n

j=1 tjfj and far sides R+
∑n

j=1 tjfj
with the tj > 0 and sufficiently small. It is clear from Lemma 4.1.1
and 4.1.3 that K(r +

∑n
j=1 tjfj) ≤ 0, so there is no difficulty with

the near side. We need to show that we can choose the tj so that the
far sides are all concave toward the origin. This is done by induction
on n. Since K does not contain parallel points of zero curvature and
is a directed X-ray, Lemma 4.4 gives that KR > δ > 0 for some
positive number δ. We show that for t1 > 0 and sufficiently small,
K(R+ tf1) ≥

δ
2 > 0 for 0 ≤ t ≤ t1. From Lemma 4.1.3 we have

K(R+ tf1) =
R+ tf1

R
K(R) + t

R+ tf1

f1
Kf1 − 2tf1R

[

D1R

R
−
f ′1
f1

]2

= KR+ t
R+ tf1

f1
Kf1 + 2tf1R

{

KR

2R2
−

[

D1R

R
−
f ′1
f1

]2
}

.

(The proof of the first step proceeds exactly like that of Theorem
6.5 [6], but we include it here for completeness.) Since f1 is C2 the
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second summand, though negative, goes to zero uniformly as t→ 0.
Since R is bounded below by a positive number, the last term can
only cause difficulty if D1R is unbounded. This can only occur at α
or β. Thus we only need consider when |D1R| → ∞ at these points.
Expanding KR, we have

KR+ 2tf1R

{

KR

2R2
−

[

D1R

R
−
f ′1
f1

]2
}

= KR+ tf1

[

R−D2R
]

+ 4tf ′1D1R− 2tf1R

(

f ′1
f1

)2

.

Since KR > 0, D2R < R + 2 (D1R)2

R . Using this and the estimate in
Lemma 4.5 we have the above is

≥ (C −
2tf1

R
)(D1R)2 + 4tf ′1RD1R− 2tf1R

(

f ′1
f1

)2

.

Since R is bounded below by a positive number, f1 is bounded and
C > 0, we have C − 2tf1

R > 0 for t sufficiently small. Thus there

exists t1 such that K(R + tf1) >
δ
2 whenever 0 ≤ t ≤ t1. Moreover,

from Lemma 4.5 the functions R+ tf1, 0 ≤ t ≤ 1 satisfy the estimate
of the previous lemma. The rest follows easily by induction. Assume
that t∗1, · · · t

∗
n−1 have been chosen such that

1. K(R +
∑n−1

j=1 tjfj) >
δ

2n−1 whenever 0 ≤ tj ≤ t∗j , and

2. the functions R +
∑n−1

j=1 ttfj satisfy the uniform estimate of
Lemma 4.5.

By induction there exists t∗n > 0 such that K(R+
∑n

j=1 ttfj) >
δ
2n > 0

whenever 0 ≤ tn ≤ t∗n. Finally, if we let ǫ > 0 be given and choose
the positive numbers t∗1, · · · , t

∗
n such that

max
[

∑n
j=1 t

∗
jfj(α),

∑n
j=1 t

∗
jfj(β)

]

< ǫ, we have a set of dimension

n in X (K) contained in an ǫ neighborhood of K. This completes the
proof.

We have left open the question of dimension when ∂K contains
parallel points of zero curvature, but believe that unless K is a par-
allel wedge, X (K) is locally infinite dimensional. A way to prove this
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would be to construct an infinite dimensional family of functions that
are concave away from the origin which have zero curvature on the
appropriate set, which when added to the far side of K preserves
concavity toward the origin. We haven’t worked out the details.

5. Boundedness

The set of convex bodies with a common parallel X-ray from a single
direction is clearly unbounded since translation of the convex body
parallel to the direction of the X-ray does not change the X-ray.
In this section we show that there are nontrivial situations where
X (K) is bounded, and hence compact by Theorem 3.3. We give both
geometric and analytic characterizations of when X (K) is bounded
and specific examples.

Lemma 5.1.

KX

X2
≥

2rR

X2

[

D1R

R
−
D1r

r

]2

=
2r

R

[

D1X

X
−
D1r

r

]2

=
2R

r

[

D1X

X
−
D1R

R

]2

.

Proof. From Lemma 4.1.4 with f − g = X = R− r we have

KX

X2
≥

KR

RX
−

Kr

rX
+

2rR

X2

[

D1R

R
−
D1r

r

]2

.

Since X = R− r and X ′ = R′ − r′, one computes

[

D1R

R
−
D1r

r

]2

=
X2

r2

[

D1X

X
−
D1R

R

]2

=
X2

R2

[

D1X

X
−
D1r

r

]2

.

The result follows from this and the fact that KR ≥ 0 and Kr ≤ 0.

Lemma 5.2. Suppose ℓ is a line (segment). If the body with far side ℓ
and near side ℓ−X is convex, then the body with far side tℓ and near
side tℓ−X is convex for all t ≥ 1. Consequently, if X (K) contains
a body with a flat far side, then X (K) is unbounded.
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Proof. We need to show that K(tℓ−X) ≤ 0 for all t ≥ 1. Since ℓ is
a line, Kℓ = 0 and Lemma 4.1.5 gives

K(tℓ−X) ≤ −
tℓ−X

X
KX + 2tℓX

[

D1X

X
−
ℓ′

ℓ

]2

= (7)

= KX − tℓX

{

KX

X2
− 2

[

D1X

X
−
ℓ′

ℓ

]2
}

,

the last equality holding where KX is finite.
On the other hand from Lemma 4.1.3 and Lemma 5.1 (with R

replaced by ℓ)

0 = K(ℓ) = K(X + (ℓ−X)) ≤
ℓ

X
KX +

ℓ

ℓ−X
K(ℓ−X)

−2
Xℓ2

(ℓ−X)

[

D1X

X
−
ℓ′

ℓ

]2

.

Consequently

2ℓX

[

D1X

X
−
ℓ′

ℓ

]2

≤
ℓ−X

X
KX

since K(ℓ − X) ≤ 0. The term on the left of the equal sign in (7)
equals −∞ whenever KX = +∞, so we only need consider points
where KX is finite. Assuming this and substituting the last inequal-
ity into (7) gives

K(tℓ−X) ≤ (1 − t)KX ≤ 0, whenever t ≥ 1.

Lemma 5.3. A necessary condition that there exists a body in X (K)
whose far side is a line (segment) ℓ is that

KX

X2
≥ 2

[

D1X

X
−
ℓ′

ℓ

]2

,

with strict inequality at points where KX > 0. A sufficient condition
for this to occur is that for some δ, 0 < δ < ‖X‖∞,

KX

X2
≥

2

1 − δX

[

D1X

X
−
ℓ′

ℓ

]2

.
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Proof. From Lemma 4.1.5 at points where KX is finite

K(ℓ−X) ≥ KX − ℓX

{

KX

X2
− 2

[

D1X

X
−
ℓ′

ℓ

]2
}

.

This expression is positive where the necessary condition fails.

For the sufficiency note that from the expression on the right
hand side of the equal sign in (7) K(tℓ − X) ≤ 0 for t sufficiently
large provided that for some δ > 0

KX

X2
− 2

[

D1X

X
−
ℓ′

ℓ

]2

≥ δ
KX

X
,

which is easily rewritten as the sufficient condition.

We turn now to the case of a flat near side. Suppose that a line
segment ℓ is the near side of a convex body with directed X-ray X.
Then Lemma 4.1.3 and 4.1.1 give

K(X + tℓ) = KX + tℓX

{

KX

X2
− 2

[

D1X

X
−
ℓ′

ℓ

]2
}

.

The last expression is ≥ 0 for all t > 0 if and only if

KX

X2
≥ 2

[

D1X

X
−
ℓ′

ℓ

]2

, when α < ϕ < β.

This gives a sufficient condition for unboundedness. In fact, the
condition is also necessary.

Theorem 5.4. A necessary and sufficient condition that X (K) be
unbounded is that there exists a line (segment) ℓ such that

KX

X2
≥ 2

[

D1X

X
−
ℓ′

ℓ

]2

, when α < ϕ < β. (8)

Moreover the inequality above is satisfied for a line (segment) ℓ if and
only if for all t ≥ 0, the body with near side tℓ and far side tℓ+X is
convex.
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Proof. It remains to prove the necessity. Suppose that X (K) is un-
bounded. Then for each integer j ≥ 1 there exists a bodyKj ∈ X (K)
with near side function rj with ‖rj‖∞ → ∞, and in light of Lemma
3.6 min rj ≥ j. By Theorem 2.4 the functions sj = rj/‖rj‖∞ are
near side functions of convex bodies in X (K), and by compactness
(Theorem 3.3), {sj} has a subsequence that converges uniformly to a
function s which by completeness is a nearside function for a body in
X (K). (Lemma 3.6 assures that s > 0 on [α, β].) We show that s = ℓ
is a line segment. Indeed, the functions Sj = (rj + X)/‖rj‖∞ are
concave toward the origin and converge uniformly to s also. Thus,
s is both concave away from and toward the origin. Hence s = ℓ
is a line segment. For simplicity of notation, we assume that the
sequence {sj} itself converges uniformly to ℓ. From (2) we have for
any α < ϕ1 < ϕ3 < β that:

s2j(ϕ1)−sj(ϕ1)sj(ϕ3) cos(ϕ3−ϕ1)+sj(ϕ3)(sj)
′
+(ϕ1) sin(ϕ3−ϕ1) ≤ 0.

Since sj → ℓ, taking the limit superior throughout the above in-
equality gives

ℓ2(ϕ1)−ℓ(ϕ1)ℓ(ϕ3) sin(ϕ3−ϕ1)+ℓ(ϕ3) sin(ϕ3−ϕ1)lim(sj)
′
+(ϕ1) ≤ 0.

Since ℓ is a line

ℓ2(ϕ1) − ℓ(ϕ1)ℓ(ϕ3) sin(ϕ3 − ϕ1) + ℓ(ϕ3)ℓ
′(ϕ1) sin(ϕ3 − ϕ1) = 0,

and since ϕ1 is arbitrary

lim(sj)
′
+(ϕ) ≤ ℓ′(ϕ), ϕ ∈ (α, β).

Repeating this argument but using (3) we obtain the same inequality
with (sj)

′
+ replaced by (sj)

′
−. Thus

lim D1sj(ϕ) ≤ ℓ′(ϕ).

In a similar way for Sj = sj + X
‖rj‖∞

we have

Sj(ϕ1)
2−Sj(ϕ1)Sj(ϕ3) cos(ϕ3−ϕ1)+Sj(ϕ3)(Sj)

′
+(ϕ1) sin(ϕ3−ϕ1) ≥ 0.

Noting that Sj → ℓ also, upon taking the limit inferior and using

that ℓ is a line we obtain lim
[

(sj)
′
+(ϕ1) + X′

‖rj‖∞

]

≥ ℓ′(ϕ.) Since X ′
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is bounded on compact subsets of (α, β), proceeding as above we
obtain

ℓ′(ϕ) = limD1sj(ϕ), when α < ϕ < β,

where the convergence is pointwise and uniform on compact subsets
of (α, β). From Lemma 5.1 and the fact that min rj ≥ j

KX

X2
≥

2rj
Rj

[

D1X

X
−
D1rj
rj

]2

=
2rj

rj +X

[

D1X

X
−
D1sj
sj

]2

≥
2j

j +X

[

D1X

X
−
D1sj
sj

]2

.

Letting j → ∞ establishes (8) completing the proof.

We can rephrase the characterization so that one can determine
whether X (K) is bounded from the directed X-ray. To this end first

note that if ψ is the angle of inclination of a line ℓ, then ℓ′(ϕ)
ℓ(ϕ) =

cot(ψ − ϕ).

Theorem 5.5. X (K) is unbounded if and only if

sup
ϕ∈(α,β)

[

ϕ− cot−1

(

−
D1X

X
−

√

KX

2X2

)]

≤ (9)

inf
ϕ∈(α,β)

[

ϕ− cot−1

(

−
D1X

X
+

√

KX

2X2

)]

,

If ℓ is a line (segment) with angle of inclination ψ with ψ between
the sup and inf above, then the body with near side tℓ and far side
tℓ+X is convex for all t ≥ 0.

Proof. Suppose that ℓ is a line with angle of inclination ψ satisfying
(8). We take α > ψ > β − π so that 0 < ϕ − ψ < π. Since
ℓ′

ℓ = cot(ψ − ϕ) = − cot(ϕ− ψ) we may rewrite (8) as

−
D1X

X
−

√

KX

2X2
≤ cot(ϕ− ψ) ≤ −

D1X

X
+

√

KX

2X2
.
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Figure 1: Top: a = ρ
c = 0.7, X (Kρ,c) is unbounded. Bottom: a =

0.8, X (Kρ,c) is bounded.

Since 0 < ϕ − ψ < π, we may apply cot−1 throughout reversing all
inequalities. Then solve for ψ. Since ψ is constant, we obtain (9).
The last statement of the theorem follows from Theorem 5.4.

In order that the theorem on boundedness be of interest there
must exist nontrivial examples where X (K) is bounded. We conclude
with one. Consider convex bodies Kc,ρ, c > ρ > 0 which are circles
of radius ρ > 0 with center on the vertical axis at a distance c
from the origin. One readily computes that the near side function is
r = c sin(ϕ)−

√

ρ2 − c2 cos2 ϕ, the far side function is R = c sin(ϕ)+
√

ρ2 − c2 cos2 ϕ and the directed X-ray

X = 2
√

ρ2 − c2 cos2 ϕ = 2c
√

a2 − cos2 ϕ, a =
ρ

c
.

Using the alternate formula Kf = f3
(

1
f + ( 1

f )′′
)

, (4), one com-

putes
KX

X2
= 1 +

(1 − a)2 cos2 ϕ+ sin2 ϕ(a2 + cos2 ϕ)

(a2 − cos2 ϕ)2
.
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So the quantitities X′

X and KX
X2 depend only on a. Graphs of (ϕ, f(ϕ))

and (ϕ, g(ϕ)) (in rectangular coordinates) where f, g are the func-
tions on the left and right hand side of (9) are shown in Figure 1.
From the graph and Theorem 5.5, we see that X (Kc,ρ) is unbounded
when a = ρ

c = .7 and bounded when a = .8. Further computations
shows that there exists a number µ, 0.74 < µ < 0.75 such that
X (Kc,ρ) is unbounded when a ≤ µ and bounded when a > µ.
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