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Summary. - These are the notes of a short course on algebraic
statistics, a new discipline across the fields of statistical mod-
eling and computational commutativa algebra. The basics of the
theory are provided together with brief reference to applications to
design of experiments, to exponential and graphical models, and
to computational biology.

1. Introduction

These notes are based on five lectures that the first author has given
in September 2004 at Politecnico di Torino during the school on Com-
putational Algebra for Algebraic Geometry and Statistics. Hence the
first author is grateful to the organizers for having been given this
opportunity. The second author organized a draft of this lecture
notes as part of her Laurea Magistralis project.

The notes are basic and informal. They are intended to give
the reader a first glimpse of algebraic statistics, and some of the ex-
citing developments. The interested reader has now many different
sources to extend his/her knowledge in this area. The (by now clas-
sic) book [13] is a good starting source. The recent book [12] has

(∗) Authors’ addresses: Serkan Hoşten, San Francisco State University, USA,
e-mail: serkan@math.sfsu.edu

Suela Ruffa, Politecnico di Torino, corso Duca degli Abruzzi, 24, 10129 Torino,
Italia, e-mail: suela.ruffa@polito.it
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been a tremendous addition. In particular, the first four chapters of
this book give an excellent introduction to algebraic statistics with a
view towards computational biology. The lectures were also partially
based on the lectures notes by Bernd Sturmfels of his John von Neu-
mann Lecture in 2003 (see http://www-m10.ma.tum.de/neumann/).
For more advanced topics, Journal of Symbolic Computation is about
to publish a special issue (Volume 41, Issue 2) on Computational Al-
gebraic Statistics that contains a dozen articles.

We hope algebraic statistics will become an influential subject.

2. Algebraic Varieties and Statistical Models

2.1. Ideals, varieties, and Gröbner bases

By a polynomial f in n indeterminates p1, . . . , pn we mean a fini-
te linear combination of monomials pα = pα1

1 · · · · · pαn
n

f(p) =
∑

α∈A

cαp
α.

In most applications the coefficients cα one uses are rational num-
bers. For the development of the theory Q could be replaced by any
field k, such as the real numbers R, complex numbers C, or any finite
field. Algebraic geometry has a long tradition of using C and other
algebraically closed fields. The set of all polynomials k[p1, . . . , pn]
with the indeterminates p1, . . . , pn and coefficients in the field k is
a ring under the usual addition and multiplication of polynomials.
Given a set of polynomials f1, . . . , fm in k[p1, . . . , pn], the set of si-
multaneous solutions

V (f1, . . . , fm) = {a ∈ kn | f1(a) = · · · = fm(a) = 0 }

is called the algebraic variety defined by f1, . . . , fm. Many applica-
tions of algebraic geometry are concerned with computing, describ-
ing, or understanding such a variety.

Definition 2.1. A nonempty set I ⊆ k[p1, . . . , pn] is called an ideal,
if

(i) f + g ∈ I for each f, g ∈ I, and
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(ii) h · f ∈ I for each f ∈ I and h ∈ k[p1, . . . , pn].

One can easily show that for the ideal I = 〈f1, . . . , fm〉 the set of
solutions

V (〈f1, . . . , fm〉) = {a ∈ kn | f(a) = 0 ∀ f ∈ I }

equals the variety V (f1, . . . , fm). This means that if a second set of
polynomials g1, . . . , gt generates the same ideal I = 〈f1, . . . , fm〉 =
〈g1, . . . , gt〉 then the varieties V (f1, . . . , fm) and V (g1, . . . , gn) are
equal. All what matters is the ideal and not the individual poly-
nomials in the polynomial system. Consequently, we introduce the
notion of the variety of an ideal.

Definition 2.2. Given an ideal I ⊆ k[p1, . . . , pn], the set of its so-
lutions

V (I) = {a ∈ Cn | f(a) = 0∀ f ∈ I }

is called the affine variety defined by I.

The natural question arises whether there are ideals which are not
related to polynomial system solving because we cannot find finitely
many polynomials f1, . . . , fm so that I = 〈f1, . . . , fm〉. Luckily, this
is not the case. Here we will prove one of the pillars of algebraic
geometry and commutative algebra, namely Hilbert’s basis theorem.

Theorem 2.3. Every ideal I in k[p1, . . . , pn] is finitely generated.

Proof. The proof is done by induction on n, the number of indeter-
minates. We note that k[p1, . . . , pn] = k[p1, . . . , pn−1][pn]. In other
words, the polynomials in k[p1, . . . , pn] can be viewed as univariate
polynomials in the variable pn whose coefficients are polynomials
themselves in the remaining n− 1 indeterminates.

The case for n = 1 is easy, since in this case k[p1] = k[p] is a
principal ideal domain, i.e., every ideal is generated by a single poly-
nomial: If I is the zero ideal, it is generated by the zero polynomial,
and we are done. Otherwise, let f ∈ I be a nonzero polynomial
with least degree. We claim that I = 〈f〉. Suppose g ∈ I. Then
there are polynomials q and r in k[p] such that g = fq + r with the
property that the degree of r is strictly smaller than the degree of f .
If r 6= 0, then we conclude that r is in I, and that would contradict
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the minimality of deg(f). So r has to be the zero polynomial, and
this finishes the case for n = 1.

Now suppose that n > 1. We construct a sequence of polyno-
mials from I as follows. Let f1 ∈ I be a polynomial with mini-
mal degree in the variable pn. Then for j ≥ 1, if 〈f1, . . . , fj〉 is
strictly smaller than I we let fj+1 ∈ I \ 〈f1, . . . , fj〉 be a poly-
nomial of minimal degree in pn. We also let uj ∈ k[p1, . . . , pn−1]
be the leading coefficient of fj. The ideal in Q[p1, . . . , pn−1] gen-
erated by these leading coefficients is finitely generated by induc-
tion. We can assume that u1, . . . , um generate this ideal. Now
we claim that I = 〈f1, . . . , fm〉. If this is not the case, we must
have picked a polynomial fm+1 ∈ I \ 〈f1, . . . , fm〉. Its leading coef-
ficient um+1 is in 〈u1, . . . , um〉, and therefore um+1 =

∑m
j=1 rjuj for

rj ∈ k[p1, . . . , pn−1]. By our construction d := degpn
(fm+1) is greater

than or equal to the degrees of f1, . . . , fm in pn, and we could define
the following polynomial

g := fm+1 −

m
∑

j=1

rjfjp
d−dj
n

where dj := degpn
(fj). The degree of g is strictly smaller than the

degree of fm+1. But note that g is also in I \ 〈f1, . . . , fm〉. This
contradicts the minimality of deg(fm+1), and we are done.

Monomial orders and Gröbner bases

Definition 2.4. A monomial order ≤ is a total order of all mono-
mials pu ∈ k[p1, . . . , pn] such that

(i) 1 = p0 ≤ pu for all monomials pu, and

(ii) pu ≤ pv implies pupw ≤ pvpw for all pw.

Typical examples of monomial orders are the lexicographic and
the graded reverse lexicographic orders.

Definition 2.5. Fix an order on the variables p1 > p2 > · · · pn.
Then pu <lex p

v in the lexicographic order, if there exists j ∈ {1, . . . ,
n} such that ui = vi for i = 1, . . . , j − 1 and uj < vj .
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Definition 2.6. Fix an order on the variables p1 > p2 > · · · > pn.
Then pu <grevlex p

v with respect to the graded reverse lexicographic
order, if deg(pu) < deg(pv) or deg(pu) = deg(pv) and there exists
j ∈ {1, . . . , n} such that ui = vi for i = j + 1, . . . , n and uj > vj.

In the second definition deg(pu) is the degree of the monomial pu

and is equal to u1 + · · · + un. Monomial orders allow us to compare
monomials. In particular, we can compare the monomials in a given
polynomial and determine the largest one. This leads us to the
definition of the initial monomial and initial term.

Definition 2.7. Let ≤ be a monomial order on k[p1, . . . , pn] and
let

f =
∑

α∈A

cαp
α

be a nonzero polynomial. Then in(f), the initial term of f , is the
term cβp

β such that pβ = maxα∈A p
α. The monomial pβ itself is

called the initial monomial of f .

Example 2.8. Let f = 3p3qr2 + 6p2q2r3 − 5pq3r2 ∈ Q[p, q, r]. We
define the lex and grevlex orders with respect to x > y > z. Then
inlex(f) = 3p3qr2 and ingrevlex(f) = 6p2q2r3.

Definition 2.9. Let I be a nonzero ideal in k[p1, . . . , pn] and let ≤
be a monomial order. Then the initial ideal of I with respect to ≤ is
the ideal

in≤(I) := 〈in≤(f) : f ∈ I〉

generated by the initial terms of the polynomials in I.

Recall that by the Hilbert’s basis theorem in(I) is finitely gener-
ated. Moreover, the proof of Theorem 2.3 shows that the generators
of in(I) can be chosen to be monomials. Hence computing the initial
ideal of I returns a monomial ideal, an ideal generated by monomials.

Definition 2.10. Given a monomial order ≤ on k[p1, . . . , pn], a set
of polynomials g1, . . . , gm generating the ideal I = 〈g1, . . . , gm〉 is
called a Gröbner basis with respect to ≤ if

in≤(I) = 〈in≤(g1), . . . , in≤(gm)〉.

Furthermore, if
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(i) the coefficient of each initial term in(gi) is equal to one, and

(ii) no term of gi is divisible by {in(g1), . . . , in(gm)} \ {in(gi)},

then such a Gröbner basis is called a reduced Gröbner basis of I.

It is not hard to show that the reduced Gröbner basis of I with
respect to a term order is unique; see [2, Chapter 2, §7, Proposition
6].

Example 2.11. Let’s take the ideal I = 〈pq−rs, pr−s2〉 ⊂ Q[p, q, r,
s] and the grevlex order p > q > r > s. The reduced Gröbner basis
is

{pr − s2, pq − rs, r2s− qs2},

where the underlined terms are the initial terms. If we change the
monomial order to the lex s > r > q > p then the reduced Gröbner
basis changes to

{rs− pq, s2 − pr, pqs− pr2, pr3 − p2q2}.

We will not delve into the details of how one can compute Gröb-
ner bases as in the above example. The standard algorithm is known
as the Buchberger’s algorithm (see [2, Chapter 2]), and it is imple-
mented in all computational algebra systems such Maple, Mathe-
matica, CoCoA, Singular, Macaulay 2 etc.

2.2. Parametric versus implicit descriptions

Let g1, . . . , gn ∈ k[θ1, . . . , θd] be n polynomials in d indeterminates.
We can define the map

ϕ : kd → kn

(θ1, . . . , θd) 7→ (g1(θ), . . . , gn(θ))

where θ = (θ1, . . . , θd). We refer to the space kd as the parameter
space and the points θ as the parameters. The image im(ϕ) of this
polynomial map is said to be given parametrically. In general im(ϕ)
is not an affine variety but we can look at the smallest affine variety
containing im(ϕ). This is called the Zariski closure of im(ϕ), denoted
by im(ϕ). To compute im(ϕ) we need the elimination theorem (see
[2, Chapter 2, §1, Theorem 2, §3, Theorem 1]).
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Theorem 2.12. Let J = 〈p1 − g1(θ), . . . , pn − gn(θ)〉 be an ideal in
the polynomial ring k[θ1, . . . , θd, p1, . . . , pn]. Then

im(ϕ) = V (J ∩ k[p1, . . . , pn]).

The equations defining the im(ϕ) are called the implicit equations
of this variety, and the process of finding these equations from a
parametric representation is called implicitization. What concerns
us here is the algorithmic method of computing the intersection J ∩
k[p1, . . . , pn]. This is accomplished via Gröbner bases using a special
type of monomial order called an elimination order: a monomial
order of k[θ1, . . . , θd, p1, . . . , pn] where {θ1, . . . , θd} > {p1, . . . , pn}.

Theorem 2.13. Let I be an ideal of k[θ1, . . . , θd, p1, . . . , pn] and let
≤ be an elimination term order where {θ1, . . . , θd} > {p1, . . . , pn}.
If G is the reduced Gröbner basis of I then G ∩ k[p1, . . . , pn] is the
reduced Gröbner basis of I ∩ k[p1, . . . , pn].

Proof. We need to show that the initial ideal of I∩k[p1, . . . , pn] is gen-
erated by the initial terms of G∩k[p1, . . . , pn]. If f ∈ I∩k[p1, . . . , pn],
then its initial term has to be divisible by the initial term of some
g ∈ G. Hence this initial term is a monomial of k[p1, . . . , pn]. But
then the elimination term order implies that g ∈ G ∩ k[p1, . . . , pn]
and we are done.

Phylogenetic invariants

We present an application of polynomial implicitization in the rapid-
ly growing field of algebraic phylogenetics. The specific example
below is taken from [18].

Phylogenetics is the study of the historical evolution of a set of
species from a common ancestor using certain characteristics one can
observe today. Typically, this evolution is represented by a phylo-
genetic tree. In the contemporary phylogenetics the characteristics
one uses to reconstruct a phylogenetic tree is pieces of DNA and
RNA sequences (sometimes the whole genome) of the organisms in
question. To give a concrete example let’s look at the following tree
on n = 3 leaves pictured below.

Each node of the tree T (the leaves and non-leaves altogether) is
a random variable. We will treat one of the simplest (but commonly
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1 2 3

π

a

c d

b

used) cases where all of these five random variables are binary, that
is, they take values 0 or 1. The random variables at the leaves are
observed, and they correspond to a binary characteristic we can ob-
serve of three species. The random variables at the interior nodes are
hidden. These in turn correspond to the same binary characteristic
of two ancestral species which we cannot observe. The probability
distribution at the root is an unknown vector (π0, π1), where π0 rep-
resents the probability of observing 0 at the root. For each of the
four edges of the tree, we have the same 2 × 2-transition matrix:

Ma = Mb = Mc = Md =

(

a00 a01

a10 a11

)

.

The four entries in this matrix are also unknown, and each entry
aij represents the probability that an i ∈ {0, 1} changes to a j ∈
{0, 1} as the evolutionary clock is ticking. Together with the two
root distribution parameters we get six model parameters describing
our model of evolution. Assuming that all transitions on the edges
are independent events, the monomial πuauiauvavjavk represents the
probability of observing u at the root, v at the interior node, i at the
leaf 1, j at the leaf 2, and k at the leaf 3, where u, v, i, j, k ∈ {0, 1}.
Since the probabilities at the root and the interior node are hidden,
while the probabilities at the three leaves are observed we can write
a polynomial that represents the probability of observing i, j, and k
at the leaves 1, 2, and 3 respectively. In the language we developed
in this section we have a polynomial map φ : R6 −→ R8 defined by

φ(π0, φ1, a00, a01,a10, a11) =

= (p000, p001, p010, p011, p100, p101, p110, p111)



INTRODUCTORY NOTES TO ALGEBRAIC STATISTICS 47

where

p000 = π0a
4
00 + π0a00a01a

2
10 + π1a

2
10a

2
00 + π1a

3
10a11

p001 = π0a
3
00a01 + π0a00a01a10a11 + π1a

2
10a00a01 + π1a

2
10a

2
11

p010 = π0a
3
00a01 + π0a00a01a10a11 + π1a

2
10a00a01 + π1a

2
10a

2
11

p011 = π0a
2
00a

2
01 + π0a00a01a

2
11 + π1a

2
10a

2
01 + π1a10a

3
11

p100 = π0a
3
00a01 + π0a

2
01a

2
10 + π1a11a10a

2
00 + π1a

2
10a

2
11

p101 = π0a
2
00a

2
01 + π0a

2
01a10a11 + π1a11a10a00a01 + π1a10a

3
11

p110 = π0a
2
00a

2
01 + π0a

2
01a10a11 + π1a11a10a00a01 + π1a10a

3
11

p111 = π0a
3
01a00 + π0a

2
01a

2
11 + π1a11a10a

2
01 + π1a

4
11.

Using Theorem 2.13 we can compute the implicit equations of
im(ϕ). This variety is defined by p101 − p110 and p001 − p010 together
with a single polynomial of degree seven

p2
000p

4
011p110 + 2p2

000p
2
011p

3
110 + p2

000p
5
110 − 2p000p

2
010p

3
011p110

− 2p000p
2
010p011p

3
110 + 2p000p010p

3
011p100p110 − 2p000p010p

2
011p100p

2
110

+ 2p000p010p011p100p
3
110 − 2p000p010p100p

4
110 − p000p

4
011p

2
100

− p000p
3
011p100

2p110 − p000p
2
011p

2
100p

2
110 + p4

010p
2
011p110

− 2p3
010p

2
011p100p110 + 2p3

010p011p100p
2
110 + p2

010p
3
011p

2
100

+ p2
010p

2
011p

2
100p110 − 2p2

010p011p
2
100p

2
110

+ p2
010p

2
100p

3
110 + p010p

2
011p

3
100p110.

2.3. Statistical models as algebraic varieties

Let X be a discrete random variable taking values in {1, . . . , n}. In
many examples in statistics the probabilities P(X = i) are given
parametrically by polynomial gi(θ1, . . . , θd) where θ1, . . . , θd are the
parameters. Then the map

ϕ : Rd → Rn

(θ1, . . . , θd) 7→ (g1(θ), . . . , gn(θ)).

describes the probability distributions on the state space {1, . . . , n}
prescribed by the polynomials g1, . . . , gn as θ varies in the parameter
space. Usually the parametrization map ϕ is restricted to an open
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subset U ⊂ Rd, and hence what we are really interested in is ϕ(U)∩
∆n, where ∆n = {(p1, . . . , pn) : pi ≥ 0, p1 + · · · + pn = 1} is the
(n − 1)-dimensional probability simplex.

Definition 2.14. A statistical model is im(ϕ) ∩ ∆n.

Example 2.15. We consider a gene with two alleles A and a. X
is the random variable taking values in {AA, Aa, aa}. Let θ be
the probability of observing the allele A and 1 − θ the probability of
observing the allele a. We mean

p1 = P(X = AA) = θ2

p2 = P(X = Aa) = 2θ(1 − θ)

p3 = P(X = aa) = (1 − θ)2.

We want to describe im(ϕ), where

ϕ : (0, 1) → R3

θ 7→ (g1(θ), g2(θ), g3(θ))

with g1(θ) = θ2, g2(θ) = θ(1 − θ), g3(θ) = (1 − θ)2.
Using Theorem 2.13, we find im(ϕ) = V (〈p4

2−4p1p2, p1+p2+p3−1〉)

Example 2.16. Suppose X and Y are two independent random vari-
ables described as follows. We let X be “the time that a man watches
soccer on TV in Italy” and Y be “the amount of hair that a man has
on his head”. These variables take three possible values (time < 1
hour, 1 hour < time < 3 hours, time > 3 hours), with probability
p1, p2, p3 respectively, and (bold, receding, full), with probability q1,
q2, q3 respectively. Because these random variables are assumed to
be independent the joint probability P (X = i, Y = j) = pij is given
by

pij = piqj

and the corresponding map is

ϕ : R6 → R3×3

(p1, p2, p3, q1, q2, q3) 7→ (piqj i, j = 1, 2, 3)
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We can look at the image as the 3×3 matrix obtained by the product:





p11 p12 p13

p21 p22 p23

p31 p32 p33



 =
(

p1 p2 p3

)





q1
q2
q3



 .

This matrix has at most rank one; that is all 2× 2 minors are 0 and

im(ϕ) = V (I2×2)

where

I2×2 = 〈pijpkl − pilpjk 1 ≤ i ≤ k ≤ 3, 1 ≤ j ≤ l ≤ 3〉.

In our example the statistical model is V (I2×2(pij)ij
) ∩ ∆9.

3. Linear and Exponential Models

3.1. Linear models

A linear model is a statistical model where the polynomials g1, . . . , gn

are linear polynomials in the parameters θ1, . . . , θd:

gi(θ1, . . . , θd) = ci0 + ci1θ1 + ci2θ2 + · · · + cidθd.

Hence the algebraic variety im(ϕ) is an affine subspace of Rn. The
description of a linear model as it stands looks quite simple. How-
ever, there are many interesting questions one can ask in an applied
context. For this we will use a widely studied example, namely, the
design of experiments. In fact, this topic is one of the first statistics
topics that pioneered the use of computational algebra. For a back-
ground and more details we refer the reader to the book by [13] and
the papers [14] and [15].

Design of experiments

We start with an example inspired by an example in [14] to clarify
the mathematical framework.
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Example 3.1. Suppose that a company is getting ready to launch
a new product, say, a shaving gel for men. There are certain fea-
tures of the product that this company sees as the most important
attributes which determine the success among the consumers. For
instance, these attributes could be the color of the gel, the perfume
used in it, how soft it feels when shaving, the size of the packaging
etc. The important thing is that there is a finite list A1, A2, . . . , Ak of
k attributes. Furthermore, each attribute Ai can take a value from a
finite list of values Di = {di1, di2, . . . , dij}. In our example, the color
of the gel might be of three types: white, blue, and green. One way
of doing a market research on this product is to present this shaving
gel with various values of its attributes to consumers and ask them
to rate the product from 1 (very poor) to 5 (excellent). Although this
is a simple idea, there are many difficulties conducting this experi-
ment. In our example, if the four attributes each have three values,
then there are 81 different shaving gels a consumer has to try to
evaluate all possible products, a costly and arduous task. The design
of the experiment is then used to make a smart choice of a subset
of possible products to infer consumer preferences that one wants to
know.

Now we will place the problems in the above example into a
mathematical framework. In the situation as above the values dij

can be taken to be numerical values. For instance, the three colors
white, blue, and green would be coded by the integers 0, 1, and 2. If
we assume all such values are numerical values than a design point,
i.e., any one of the possible shaving gels in Example 3.1 is a point
in Rk. Let D1,D2, . . . ,Dk be finite subsets of R. These sets are
associated to each of the k attributes Ai which take values in the set
Di. If we consider every attribute we obtain a full factorial design
D = D1×· · ·×Dk, whereas if we consider a subset F of D we obtain
a fraction. The points in F are called design points and indicated
with ui ∈ Rk i = 1, . . . , n, where n = |F | is the cardinality of F .

The totality of the design points is then an affine variety F =
{u1, . . . , un} ⊂ Rk ⊂ Ck consisting of finitely many points. The
experiment itself is a function

f : F −→ R.
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In Example 3.1 the function f maps design points (different shaving
gels) to some value given by the consumers, a real number between
1 and 5.

We now take the fraction F ⊂ D and we define the model

p(θ1, . . . , θd, x1, . . . , xk) =
∑

α∈S

θαx
α

where S is the support set and d is the cardinality of S. Note that
this is a linear model defined by

gi(θ1, . . . , θd) := p(θ1, . . . , θd, ui) =
∑

α∈S

θαx
α(ui)

where xα(ui) = uα1
i1 · · · uαk

ik . With this we can formulate two prob-
lems:

1. Direct problem: Given a fraction F = {u1, . . . , un} what
are the linear models which can be identified by F? In other
words, given the support S and the responses f(ui) = yi is
there a unique (θ1, . . . , θd) so that yi = p(θ1, . . . , θd, ui) for
i = 1, . . . , n?

2. Inverse problem: Given a model p(θ1, . . . , θd, x1, . . . , xk) =
∑

α∈S θαx
α what are the minimal fraction F ⊂ D that identify

the model?

Ideals of points

Before we continue, let’s make an observation: the function f :
F −→ R is a polynomial function, i.e. f(x1, . . . , xk) is a polynomial.
Using Lagrange’s interpolation we can find such a polynomial. How-
ever, this polynomial is not unique. In fact, two polynomials f1 and
f2 give the same function f if and only if f1 − f2 vanishes on all of
the points in F . More generally we make the following definition.
Here and elsewhere, we set k[x] = k[x1, . . . , xn].

Definition 3.2. Let V ⊂ kn be an affine variety. The ideal of V is

I(V ) := {f ∈ k[x] : f(a) = 0, for all a ∈ V }.
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It is not hard to see that I(V ) is indeed an ideal. Now two polyno-
mials f and g in k[x] will be the same functions when restricted to V
if and only if their difference vanishes on V , in other words, f − g is
in I(V ). Therefore, the polynomial functions on V can be identified
with the elements of the quotient ring k[x]/I(V ).

Proposition 3.3. Let V ⊂ kn be an affine variety. Then the ring
of polynomial functions on V is the quotient ring k[x]/I(V ).

What we will do next depends on our ability to do computations in
quotient rings such as k[x]/I(V ). We review this topic briefly.

Definition 3.4. Let M ⊂ k[x] be a monomial ideal. Then monomi-
als not in M

{xα : xα 6∈M}

are called the standard monomials of M .

Lemma 3.5. Let G = {g1, . . . , gs} be the reduced Gröbner basis of the
ideal I with respect to a monomial order ≤. Then f = g in k[x]/I
where g is the unique remainder of f obtained by reduction on G.
This remainder is a k-linear combination of the standard monomials
of in≤(I).

Proof. The first statement follows from the fact that when we do
long division with respect to Gröbner basis we get unique remain-
ders. The division algorithm guarantees that no term of g is divisible
by the initial term of any gi. Since in(I) = 〈in(g1), . . . , in(gs)〉 the
monomials appearing in g are standard monomials of in(I).

Theorem 3.6. Let I be an ideal in k[x] and ≤ a monomial order.
Then the standard monomials of in≤(I) form a k-basis for k[x]/I.
Moreover, k[x]/I and k[x]/in(I) are isomorphic as vector spaces.

Proof. Lemma 3.5 shows that the standard monomials of in≤(I) span
k[x]/I. To show linear independence, suppose f = c1x

α1 + · · · ctx
αt

where xα1 , . . . , xαt is a subset of the standard monomials is zero in
k[x]/I. This means f ∈ I, and in≤(f) ∈ in(I). Since the monomials
in f are all standard monomials we conclude that f = 0, and hence
c1 = · · · = ct = 0.
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When we are working over an algebraically closed field such as C

we can use Hilbert’s Nullstellensatz [2, Chapter 4, §1, Theorem 2] to
prove the following.

Proposition 3.7. Let V = {P1, . . . , Pn} ⊂ Ck where Pi = (pi1, . . . ,
pik) for i = 1, . . . , n. Then

I(V ) =
n
⋂

i=1

〈x1 − pi1, . . . , xk − pik〉.

Using the proposition we can compute I(V ), and then compute
a Gröbner basis to get the standard monomials. In the case of a
full factorial design D where Di = {0, 1, . . . , di} both I(D) and any
Gröbner basis of I(D) is easy to compute.

Proposition 3.8. Let D ⊂ Rk be a full factorial design. Then I(D)
is generated by k polynomials gi where

gi = xi(xi − 1)(xi − 2) · · · (xi − di).

Furthermore, the set {g1, . . . , gk} forms a reduced Gröbner basis for
any monomal order.

Proof. The first statement follows from Proposition 3.7. For the sec-
ond statement observe that for any monomial order in(gi) = xdi+1

i .
The cardinality of the standard monomials of 〈in(gi) : i = 1, . . . , k〉
is equal to that of the standard monomials of in(I(D)). Hence the
two ideals have to be the same, and this proves the second state-
ment.

There is one result remaining that allows us to answer Question
1.

Theorem 3.9. Let V = {P1, . . . , Pn} ⊂ Ck be an affine variety con-
sisting of finitely many points, and let ≤ be a monomial order. Then
the dimension of C[x]/I(V ) as a C-vector space is equal to n. This
number is in turn the number of standard monomials of in≤(I(V )).

Proof. We have already established that
C[x]

I(V )
and

C[x]

in≤(I(V ))
are

isomorphic as vector spaces. The standard monomials of in≤(I(V ))
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is a basis for both vector spaces, and in the case of a finite affine
variety V the number of the standard monomials, and hence the
dimension of these two vector spaces, is finite. We let m denote
this dimension. We leave it as an execise to show that there exists
polynomials f1, . . . , fn ∈ C[x] such that fi(pi) = 1 and fi(pj) = 0 for
i 6= j. We define a linear transformation φ : Cm = C[x]/I(V ) −→
Cn by φ(f) = (f(p1), . . . , f(pn)). The existence of f1, . . . , fn above
implies that φ is surjective, and hence also injective. This shows that
m = n.

Now given a fraction F = {u1, . . . , ud}, we consider R[F ] :=
R[x1, . . . xk]/I(F ), all polynomial functions on F . The above results
show that we can compute a reduced Groebner basis of I(F ) with
respect to some term ordering ≤. Let this basis be {g1, . . . , gs}. The
ideal of the initial terms in≤(I(F )) is generated by

{in≤(g1), . . . , in≤(gs)}.

We take the support set S to be the standard monomials of the ideal
in≤(I(F )). The estimates of parameters θ1, . . . , θd are the solution
of











xα1(u1) xα2(u1) · · · xαd(u1)
xα1(u2) xα2(u2) · · · xαd(u2)

...
...

. . .
...

xα1(ud) xα2(ud) · · · xαd(ud)





















θ1
θ2
...
θd











=











pu1

pu2

...
pud











. (1)

The rank of the matrix in (1) is d. To show this suppose we reason
by contradiction. Suppose that the columns are linearly dependent,
that is there exist θ1, . . . , θd ∈ R not all 0 such that

p(θ1, . . . , θd, x1, . . . , xk) =
∑

xα∈S

θαx
α = 0.

This means that p(·, ·) vanishes on F . Thus p(θ1, . . . , θd, x1, . . . , xk)
is in I(F ). But this is not possible because all terms of p(·, ·) are
standard monomials and none of them is divisible by (in≤(gi)).
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Example 3.10. D1 = D2 = {0, 1} and I(D) = 〈x2 − x, y2 − y〉. In
this case the standard monomials are {1, x, y, xy}. Let us take the
model

p(a, b, c, d, x, y) = a+ bx+ cy + dxy.

We have the system






















p00 = a

p10 = a+ b

p01 = a+ c

p11 = a+ b+ c+ d

that has a unique solution.
A modified example would be to assume that there is no “interaction”
between the x and y variables. Thus the model is

p(a, b, c, d, x, y) = a+ bx+ cy.

If we denote with:

AT =









1 0 0
1 1 0
1 0 1
1 1 1









p =









p00

p10

p01

p11









θ =





a
b
c





the system is
AT θ = p.

This system has solution if p00 − p10 − p01 + p11 = 0 that is if p ∈
im(AT ) is orthogonal to ker(A) (observe that a basis for ker(A) is
〈(1,−1,−1, 1)〉).

3.2. Exponential models

The easiest introduction to exponential models is to use the last
example above. Instead of the linear model we have used we will use
an exponential model for a fraction F ⊂ Nk. It is defined as

p(θ1, . . . , θd, x1, . . . , xk) = exp
(

∑

xα∈S

θαx
α
)
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and if we apply the change of coordinates

zi = exp(θi)

we obtain

p(θ1, . . . , θd, x1, . . . , xk) = z
xα1 (u)
1 · · · z

xαd(u)
d

which is a product of monomials.

Example 3.11. The exponential model for the first part of the Ex-
ample 3.10 is

p = exp(a+ bx+ cy + dxy).

In order to find a, b, c, d we have to solve the system























p00 = exp a = t

p10 = exp(a+ b) = ts

p01 = exp(a+ c) = tu

p11 = exp(a+ b+ c+ d) = tsuv

where ea = t, eb = s, ec = u, ed = v.
In the second situation of Example 3.10 we have:

p = exp(a+ bx+ cy)

and the system























p00 = exp a = t

p10 = exp(a+ b) = ts

p01 = exp(a+ c) = tu

p11 = exp(a+ b+ c) = tsu

.

In this case we conclude that p00p11 − p01p10 = 0.

3.2.1. Exponential models and toric varieties

Let A be a d×n integer matrix with columns a1, . . . , an with ai ∈ Zd.
The class of models to be considered consists of discrete probability
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distributions defined via the matrix A. Let ψ : Cd 7→ Cn be the
monomial map given by

(z1, . . . , zd) →
(

d
∏

i=1

za1i

i , . . . ,

d
∏

i=1

zani

i

)

.

The toric variety defined by A is the Zariski closure of the image
of this monomial map, i.e. XA := im(ψ).

Proposition 3.12. The toric variety XA is defined by the ideal

IA = 〈pu − pv : u, v ∈ Nn and u− v ∈ ker(A)〉.

Proof. It is easy to check the binomials in IA vanish on XA. Now
let f(p) =

∑

α cαp
α such that ψ(f(p)) = 0. If f(p) is not the zero

polynomial it has to have two terms cup
u and cvp

v, such that ψ(pu) =
ψ(pv). This means that Au = Av, and the polynomial f(p)−cu(pu−
pv) vanishes on XA and has one fewer term. Induction on the number
of terms of f(p) gives the result.

In the monomial map ψ which defined the toric variety XA we
have used complex spaces as the domain and the range of this map.
In order to work with probability distributions we will restrict ψ to
the real map ϕ

ϕ : Rd
≥0 → Rn

≥0.

It is an interesting question to figure out whether a given probability
distribution p ∈ ∆n is in the image of ϕ. Such a probability dis-
tribution is said to factor according to A. The following theorem
is Theorem 3 of [7] which characterizes when p factors according to
A. We will not give the proof here. The statement of the theo-
rem contains a combinatorial condition on the matrix A: A subset
F ⊂ {1, . . . , n} is said to be nice if for every j 6∈ F the support of the
j-th column aj of the matrix A is not contained in

⋃

k∈F supp(ak).

Theorem 3.13. The probability distribution p factors according to A
if and only if p is in X≥0

A := XA ∩ Rn
≥0 and the support of p is nice.
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Example 3.14. From [7] we consider the following example. Con-
sider the matrix

A =





3 0 0 2 1 2 1 0 0
0 3 0 1 2 0 0 2 1
0 0 3 0 0 1 2 1 2



 ,

that defines the map

ϕ : (z1, z2, z3) 7→ (z3
1 , z

3
2 , z

3
3 , z

2
1z2, z1z

2
2 , z

2
1z3, z1z

2
3 , z

2
2z3, z2z

2
3).

We eliminate the variables z1, z2, z3 from the ideal

I =(p1 − z3
1 , p2 − z3

2 , p3 − z3
3 , p4 − z2

1z2, p5 − z1z
2
2 ,

p6 − z2
1z3, p7 − z1z

2
3 , p8 − z2

2z3, p9 − z2z
2
3)

to obtain the sets of polynomials:

p1p5 − p2
4, p2p4 − p2

5, p1p7 − p2
6, p3p6 − p2

7, p2p9 − p2
8, p3p8 − p2

9 (2)

p1p2 − p4p5, p1p3 − p6p7, p3p2 − p8p9 (3)

p1p8−p5p6, p1p9−p4p7, p2p6−p4p8, p2p7−p5p9, p3p4−p6p9, p3p5−p7p8

(4)
p6p8 − p4p9, p5p7 − p4p9 (5)

p1p7p8 − p4p6p9, p
2
7p8 − p6p

2
9. (6)

The polynomials in (2) define X>0
A , and the ones in (2) and (3) define

distributions that factor according to A. The polynomials in the first
three sets give the complex toric variety XC

A. The toric ideal IA is
the union of the polynomials in (2)–(5). Finally all the polynomials
form a reduced Gröbner basis for IA.

4. Graphical models

4.1. Construction of a graphical model

Let Xi be a discrete random variable taking values in Di = {1, . . . ,
di} for i = 1, . . . , n. Let G be a graph with n vertices that are
associated to each random variableXi. If C1, . . . , Ck are the maximal
cliques of the graph G, then for each clique C = {Xi1 , . . . ,Xis} we
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consider a set of variables ψC(ui1 , . . . , uis), where ui ∈ Di. The joint
probability p(X1 = u1, . . . ,Xn = un) = Pu1u2...un is

Pu1u2...un = ψC1(u) · · ·ψCk
(u). (7)

The definition of the joint probabilities is given by a monomial in
the variables ψCi

(· · · ) and hence is an exponential model. Such an
exponential model is called a graphical model (see [11]).

Example 4.1. In this example we illustrate the matrix A(G) which
defines a graphical model. We consider four binary random variables
X1, . . . ,X4 and the graph in Figure 1.

�
�
�
�
�
�@

@
@

@
@

@r

�
�
��

4

r 2

r

3

r1

Figure 1: Graph for Example 4.1.

There are two maximal cliques, namely, C1 = {1, 2} and C2 =
{2, 3, 4}. The variables associated to the first one are

ψ{1,2}(0, 0), ψ{1,2}(0, 1), ψ{1,2}(1, 0), ψ{1,2}(1, 1),

and those corresponding to the second one are

ψ{2,3,4}(0, 0, 0), ψ{2,3,4}(1, 0, 0), . . . , ψ{2,3,4}(1, 1, 1).

From (7) we know that Pijkl = ψC1(ij)ψC2(jkl) for all i, j, k, l = 0, 1.
For instance, P0101 = ψC1(01)ψC2(101).

We can represent joint probabilities in the matrix A(G) (Table
4.1), whose columns are indexed by the joint probabilities and rows
are indexed by the set of possible values obtained by the variables on
each clique. The entry in the column corresponding to pijkl and in
the row corresponding to ψC1(ij) and ψC2(jkl) are 1, and the other
entries are 0.
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p0000 p0001 · · · · · · · · · p1111

ψ1,2(00) 1 1 · · · · · · · · · 0
ψ1,2(01) 0 0 · · · · · · · · · 0
...

...
...

...
ψ1,2(11) 0 0 1
ψ2,3,4(000) 1 0 0
ψ2,3,4(001) 0 1 0
...

...
...

ψ2,3,4(111) 0 0 · · · · · · · · · 1

Table 1: Matrix corresponding to the graph in Figure 1.

4.2. Independence models

Now let X1, . . . ,Xn be discrete random variables. Given three sub-
sets X,Y,Z of {X1, . . . ,Xn}, the symbols X ⊥⊥ Y |Z denotes the
conditional independence statement that the variables in X are in-
dependent of the variables in Y given those in Z. These variables
satisfy

P(X = a, Y = b, Z = c)P(X = a
′, Y = b

′, Z = c) =

P(X = a, Y = b
′, Z = c)P(X = a

′, Y = b, Z = c)

for all vectors c and for all distinct vectors a,a′, b, b′. An indepen-
dence statement as X ⊥⊥ Y |Z gives rise to polynomial equations
and these polynomial define the independence ideal IX⊥⊥Y |Z .

Example 4.2. Let X,Y,Z be three binary random variables, and
suppose we have the independence statement X ⊥⊥ Y |Z. We get

P(X = a, Y = b, Z = c)P(X = a′, Y = b′, Z = c) = (8)

P(X = a, Y = b′, Z = c)P(X = a′, Y = b, Z = c)

for distinct a, a′, b, b′ and for all c.
If we consider a = b = 0, a′ = b′ = 1, c = 0, 1 the ideal representing
the independence property is generated by two quadratic binomials

IX⊥⊥Y |Z = 〈p000p110 − p010p100, p001p111 − p011p101〉
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and the independence variety is VX⊥⊥Y |Z = V (IX⊥⊥Y |Z).

If we have more than one set of independence statements on
{X1, . . . ,Xn}, say,

X(1) ⊥⊥ Y (1)|Z(1), . . . ,X(k) ⊥⊥ Y (k)|Z(k),

then the independence ideal is defined as

I = IX(1)⊥⊥Y (1)|Z(1) + . . .+ IX(k)⊥⊥Y (k)|Z(k) .

The variety defined by this ideal is

V = VX(1)⊥⊥Y (1)|Z(1)

⋂

· · ·
⋂

VX(k)⊥⊥Y (k)|Z(k)

and it is called an independence model. If X ∪Y ∪Z = {X1, . . . ,Xn}
for each independence statement we have a saturated independence
model.

4.3. Hammersley-Clifford Theorem

The defining ideal of a graphical model may not be easily computed.
However, in these exponential models we can introduce two inde-
pendence models which in certain cases describe the whole graphical
models. These are the pairwise independence model and the global
independence model.

Definition 4.3. 1. The pairwise independence model is an inde-
pendence model with the further conditions

Xi ⊥⊥ Yj|{X1, . . . ,Xn}\{Xi,Xj}

where (i, j) is not an edge in G.
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2. The global independence model is an independence model with
the further conditions

Y ⊥⊥ Z|W

where Y,Z,W ⊆ {X1, . . . ,Xn} and Y,Z will be disconnected
when W is removed.

Following Definition 4.3 we introduce two ideals Ipairwise and
Iglobal and the corresponding varieties V (Ipairwise) and V (Ipairwise).
Clearly Ipairwise ⊂ Iglobal and

Xpairwise = V (Ipairwise) ⊃ V (Iglobal) = Xglobal.

If we consider the map ϕA(G) : Rd
>0 → Rn

>0 then

im(ϕA(G)) ⊆ XA(G) ⊆ Xglobal ⊆ Xpairwise.

These bring us to one of the highlights of probability theory con-
nected to graphical models, namely Hammersley-Clifford theorem.
We state this theorem in the language we have developed so far.

Theorem 4.4 (Hammersley-Clifford).

im(ϕA(G)) = X>0
A(G) = X>0

pairwise. (9)

4.4. Decomposable models

Among all classes of graphical models there is a particular class which
has been used extensively. For this we need a definition.

Definition 4.5. G is called chordal if every cycle of length ≥ 4 has
a chord.

The smallest nontrivial example of a chordal graph G is in Fig-
ure 2.

Chordal graphs are “treelike” and have nice decomposition proper-
ties, as you can see in Figure 3.
Graphical models where G is chordal graph are called decomposable
models. These models are “easy” from many perspectives. In the
algebraic language we have seen we summarize this idea in the fol-
lowing theorem.



INTRODUCTORY NOTES TO ALGEBRAIC STATISTICS 63

�
�

�
r

r r

r

Figure 2: A chordal graph.
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Figure 3: Decomposition properties of a chordal graph.

Theorem 4.6. The following statements are equivalent

(i) G is chordal

(ii) IG is quadratically generated

(iii) IG has a quadratic Gröbner basis.

This theorem and its proof appears in [7]. The papers [8] and [5]
also contain one direction of the same theorem, namely that if G is
chordal then IG has a quadratic Gröbner basis. A thorough study
of binary graph models has been done in [3]. Also there is a directed
version of the graphical models known as Bayesian networks, see [6].

5. Maximum likelihood estimation

5.1. Definitions

Suppose that we have the statistical model:

ϕ : Rd
>0 → Rn

>0

θ = (θ1, . . . , θd) → (g1(θ), . . . , gn(θ))

which define the family of probability densities pi = gi(θ).
If the nonnegative integer vector u = (u1, . . . , un) is the data set
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(where u1 counts how many times you observe the variable assume
its first value, u2 counts how many times you observe the variable
assume its second value, etc.) then we want to find what the best
parameters θ are that will explain the data. One way of doing this
is to solve the following optimization problem

max
θ

(

gu1
1 (θ) · · · gun

n (θ)
)

.

A solution θ̂ of this estimation problem is called a maximum likeli-
hood estimate. An equivalent problem is:

max
p∈V

(

pu1
1 · · · pun

n

)

with the condition

n
∑

i=1

pi = 1

Example 5.1. Consider two independent binary variables with joint
probabilities

p00 = θ1θ2 p01 = θ1(1 − θ2)
p10 = (1 − θ1)θ2 p11 = (1 − θ1)(1 − θ2).

To find the maximum likelihood estimate we have to solve

max
θ1,θ2

((θ1θ2)
u00(θ1(1 − θ2))

u01((1 − θ1)θ2)
u10((1 − θ1)(1 − θ2))

u11)

where u00, . . . , u11 are the data.
Equivalently taking logarithms, we maximize the function

log[(θ1θ2)
u00(θ1(1 − θ2))

u01((1 − θ1)θ2)
u10((1 − θ1)(1 − θ2))

u11 ].

By taking the derivatives we obtain the system of critical equations










u00 + u01

θ1
−
u10 + u11

1 − θ1
= 0

u00 + u10

θ2
−
u01 + u11

1 − θ2
= 0.

The solutions of this system of linear equations are θ̂1, θ̂2, the maxi-
mum likelihood estimates of θ1, θ2 where

θ̂1 =
u00 + u01

u00 + u01 + u10 + u11
θ̂2 =

u00 + u01

u00 + u01 + u10 + u11
.
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5.2. MLEs for linear and toric models

We treat two general models for which the MLE can be found rela-
tively easily. The first case is the linear models, i.e. the case when
gi = ai0 + ai1θ1 + . . .+ aidθd for i = 1, . . . , n. This linear model can
be described as

Vlin = {p ∈ Rn
≥0 : Ap = b,

n
∑

i=1

pi = 1}

for a matrix A of rank d. The maximum likelihood problem is then

maximize

n
∑

i=1

ui log pi such that p ∈ Vlin.

Using Lagrange multipliers the critical equations are

ui/pi =

d
∑

j=1

λjaij + µ, i = 1, . . . , n,

where λj and µ are Lagrange multipliers. The Hessian of the objec-
tive function is a diagonal matrix with the diagonal entries −ui/p

2
i ,

and hence it is negative definite. This implies that linear models
have a unique MLE.

Theorem 5.2. The maximum likelihood estimate for a linear model
is unique.

Now we look at toric models. Given a matrix A ∈ Zd×m, we
assume that the vector (1, . . . , 1) is in the space generated by the
rows of A (that is there exist (s1, . . . , sd) such that (s1, . . . , sd)A =
(1, . . . , 1)).
In terms of ideals this means:

pu − pv ∈ IA ⇔ Au = Av
pu − pv ∈ IA ⇔ (s1, . . . , sd)Au = (s1, . . . , sd)Av

and this implies
∑n

i=1 ui =
∑n

i=1 vi. Hence all polynomials in IA
are homogenous and thus XA is a projective toric variety. Now let



66 S. HOŞTEN AND S. RUFFA

(u1, . . . , un) be the observed data set and N =
∑n

i=1 ui the sample
size, then the ML problem becomes

max
(

za1
1

)u1 · · ·
(

zan
n

)un subject to za1
1 + · · · + zan

n = 1 (10)

where (a1, . . . , an) are the columns of A.

Proposition 5.3. Let (ẑ1, . . . , ẑd) be a solution of (10) where p̂i =
ẑai ∈ XA, then

Ap̂ =
1

N
b (11)

where b = Au.

Proof. We introduce a Lagrange multiplier λ. The solutions of (10)
must satisfy the d conditions

∂

∂zi
zb = λ(

∂

∂zi
(

n
∑

j=1

zaj − 1)) for i = 1, . . . , n.

Then if we multiply every condition by zi we obtain

biz
b = λ(

n
∑

j=1

ajiz
aj − 1) for i = 1, . . . , n.

In vector form for the optimal solution we have

ẑb = λAp̂

Au = b = λAp̂ and

(s1, . . . , sd)Au = λ(s1, . . . , sd)Ap̂

(1, . . . , 1)u = λ(1, . . . , 1)p̂

thus
n

∑

i=1

ui = N = λ
n

∑

i=1

p̂i

λ = N.

The above development implies the following theorem where we
let PA(b) = {x ∈ Rn | Ax = b, x ≥ 0}.

Theorem 5.4. For a toric model defined by the matrix A given data
u1, . . . , un, there is a unique point in XA ∩ PA

(

b
N

)

and this is the
maximum likelihood estimate.
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5.3. Maximum likelihood degree

Recall that the MLE problem is

max
θ

(

gu1
1 (θ) · · · gun

n (θ)
)

and using the logarithms

max
θ

(

u1g1(θ) + · · · + ungn(θ)
)

.

Let g(θ) = gu1
1 (θ) . . . gun

n (θ), then the critical equations for this prob-
lem are

∂

∂θi
g(θ) = 0 ∀ i = 1, . . . , d (12)

We know that an MLE is a solution to these critical equations. How-
ever, in general the MLE is not unique, and we can even look at the
complex solutions for equations (12).

Definition 5.5. The number of complex solution to the MLE prob-
lem for a general data vector u is the maximum likelihood degree of
the model.

The following theorem is the main result in [9].

Theorem 5.6. Let g1, . . . , gn be polynomials of degrees b1, . . . , bn in
d unknowns. If the ML degree is finite then it is less than or equal
to the coefficient of td in the function

(1 − t)d

(1 − tb1) · · · (1 − tbn)
.

If the gi’s are sufficiently generic this coefficient is equal to the ML
degree.

Example 5.7. We consider a model with d = 2, n = 4, where
g1(θ1, θ2), . . . , g4(θ1, θ2) are quadratic polynomials. Given data u1,
. . . , u4, the critical equations are















u1

g1(θ)

∂g1(θ)

∂θ1
+ · · · +

u4

g4(θ)

∂g4(θ)

∂θ1
= 0

u1

g1(θ)

∂g1(θ)

∂θ2
+ · · · +

u4

g4(θ)

∂g4(θ)

∂θ2
= 0.
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We want to find ML degree by using Theorem 5.6. In this case
b1 = b2 = b3 = b4 = 2 and

(1 − t)d

(1 − 2t) · · · (1 − 2t)
= 1 + 6t+ 25t2 + 88t3 + · · ·

and hence the ML degree is 25. However, we note that for non-
generic polynomials gi the ML degree can be much lower than 25.

5.4. Solving likelihood equations

Let the model variety be a projective variety V ⊆ Pn with coor-
dinates (p0 : p1 : . . . : pn) and let the probability simplex ∆n =
{(p0, p1, . . . , pn) ∈ Rn+1 | pi > 0

∑

pi = 1}. We use V>0 to denote
the intersection between V and ∆n (V>0 = V ∩∆n). The maximum
likelihood problem is to find a point p=(p0 : p1 : . . . : pn) which best
explains data vectors uo, . . . , un. Then we have to solve the following
optimization problem

max
p
L =

pu0
0 · · · pun

n

(p0 + · · · + pn)u0+···+un
subject to pi ∈ V>0.

Let Vsing denote the singular locus of the variety V and set Vreg :=
V \Vsing. We will compute critical points in the complex projective
variety, in fact on

U = Vreg\V (p0 · · · pn · (
∑

pi))

Now we assume that V is generated by r homogeneous polynomials
f1, . . . , fr. Let be

J =













p0 p1 · · · pn

p0
∂f1

∂p0
p1

∂f1

∂p1
· · · pn

∂f1

∂pn

...
...

. . .
...

pn
∂fr

∂pn
p1

∂fr

∂p1
· · · pn

∂fr

∂pn













.

Now we assume that we are given a prime ideal P ⊆ R[p0, . . . , pn]
defining V and a data vector (u0, . . . , un). Now we write the steps
of the algorithm to find the solutions to the ML problem (see [10].
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1. Compute c = codim(V ). Let Q be the ideal generated by c× c
minors of the jacobian of P (Q is the ideal of the singular locus
of V ).

2. Compute the syzygy module M of J over R[V ] = R[p0, . . . ,
pn]/P .

3. Let I ′u be the ideal in R[V ] generated by polynomials
∑n

i=0 uiφi

where φi runs over the minimal generators of M .

4. Compute the saturation ideal1

Iu = I ′u : ((p0 · · · pn) · (
∑

pi)Q)∞.

5. Find the solutions to Iu.

6. Check which of those solutions are local maxima.

Observation

• Note that the steps 3,4,5,6 depend on the data while step 1
and step 2 does not.

• The first four steps have as output the likelihood equations.
The last two steps have as output the local maxima of the
likelihood functions.

• This algorithm has been implemented by Luis Garcia as a SIN-
GULAR code. See http://www.math.tamu.edu/~lgp.
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maximum likelihood degree, Amer. J. Math., in press.
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