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On Higher Order Complete-Vertical

and Horizontal Lifts of Complex

Structures

Mehmet Tekkoyun (∗)

Summary. - In this paper, we will obtain the (r,s) order complete-
vertical lifts and horizontal lifts of order higher of the complex
structures on complex manifold M to the canonical extensions.

1. Introduction

In modern differentiable geometry, the readers know that lift method
has an important role. Because, it is possible to generalize to the
structures on any manifold to the extensions using lift function. The
structure of extended manifolds has been obtained, especially the
canonical extended manifold kM of order k of the manifold M [1, 3].
It has been founded the higher order vertical and complete lifts of
functions, vector fields and 1-forms on vector bundle (resp. complex
manifold) to extended vector bundle (resp. extended complex man-
ifold) [2, 6]. In this study we obtain (r, s) order complete-vertical
lifts and higher order horizontal lifts of complex structures using the
above studies.

In the paper, all mappings and manifolds are assumed to be of
class C∞ and the sum is taken over repeated indices. Also we accept
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0 ≤ r ≤ k, 1 ≤ i ≤ m.

2. Background

2.1. Extended Complex Manifold

Definition 2.1. [6] Let M 2m-real dimensional manifold and kM

its k order extended manifold. A tensor field Jk on kM is called
an extended almost complex structure on kM if at every point p

of kM,Jk is endomorphism of the tangent space Tp(
kM) such that

(Jk)2 = −I. An extended manifold kM with fixed extended almost
complex structure Jk is called an extended almost complex manifold.
If k = 0, J0 is called almost complex structure; a manifold 0M = M

with fixed almost complex structure J0 is called an almost complex
manifold.

Let (xri, yri) be a real coordinate system on a neighborhood kU

of any point p of kM . In this situation, it is respectively defined

by

{
∂

∂xri

∣∣
p
, ∂

∂yri

∣∣∣
p

}
and

{
dxri|p, dyri|p

}
natural bases over IR of

tangent space Tp(
kM) and cotangent space T ∗

p (kM) of kM.

Let kM be extended almost complex manifold with fixed ex-
tended almost complex structure Jk.

kM is called extended complex
manifold if there exists an open covering

{
kU
}

of kM satisfying the
following condition: there is a local coordinate system (xri, yri) on
each kU such that for each point of kU,

Jk(
∂

∂xri
) =

∂

∂yri
, Jk(

∂

∂yri
) = − ∂

∂xri
. (1)

If k = 0, then a manifold 0M = M with fixed almost complex
structure J0 is called complex manifold. Let zri = xri+i yri, i =

√
−1,

be an extended complex local coordinate system on a neighborhood
kU of any point p of kM. If it is defined by equalities

∂

∂zri

∣∣∣∣
p

=
1

2

{
∂

∂xri

∣∣∣∣
p

− i
∂

∂yri

∣∣∣∣
p

}

(2)

∂

∂z̄ri

∣∣∣∣
p

=
1

2

{
∂

∂xri

∣∣∣∣
p

+ i
∂

∂yri

∣∣∣∣
p

}
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and

dzri
∣∣
p

= dxri
∣∣
p
+ i dyri

∣∣
p

(3)

dz̄ri
∣∣
p

= dxri
∣∣
p
− i dyri

∣∣
p

then, it has respectively obtained by

{
∂

∂zri

∣∣∣∣
p

,
∂

∂z̄ri

∣∣∣∣
p

}
and

{
dzri|p, dz̄ri|p

}

bases over complex number C of tangent space Tp(
kM) and cotan-

gent space T ∗

p (kM) of kM. Then endomorphism Jk with respect to

base over complex number C of tangent space Tp(
kM) of kM is de-

fined by

Jk(
∂

∂zri
) = i

∂

∂zri
, Jk(

∂

∂z̄ri
) = −i

∂

∂z̄ri
(4)

If J∗

k is an endomorphism of the cotangent space T ∗

p (kM) such that

J∗2
k = −I on any point p of extended manifold kM, then it is defined

by

J∗

k (dzri) = idzri, J∗

k (dz̄ri) = −idz̄ri. (5)

Let M be a differentiable manifold and F(M) be the set of functions
on M. A complex valuable function is the element of complexification
(F(M))C of F(M). Now, we shall define differential of function f

defined on M. Let f be a complex valuable function defined on any
complex manifold M and (z0i, z̄0i), 1 ≤ i ≤ m be extended complex
coordinates of M. Therefore; the differential of f is complex 1-form
given by equality

df =
∂f

∂z0i
dz0i +

∂f

∂z̄0i
dz̄0i (6)

Let M be a differentiable manifold and χ(M) be the set of vector
fields on M. A complex vector field is the element of complexification
(χ(M))C of χ(M). It is determined by

Z = Z0i ∂

∂z0i
+ Z̄0i ∂

∂z̄0i
(7)
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complex vector field Z with respect to complex coordinate system
(z0i, z̄0i) such that Z0i ∈ (F(M))C . Let M be a differentiable mani-
fold and (χ(M))C be the set of complex vector fields on M. A com-
plex 1-form is the element of algebra dual (χ∗(M))C of (χ(M))C . It
is stated by

ω = ω0idz0i + ω̄0idz̄0i (8)

complex 1-form ω with respect to complex coordinate system (z0i, z̄0i)
such that ω0i ∈ (F(M))C .

Remark 2.2. Now then, in the other sections it will accept

F(kM), χ(kM), χ∗(kM),

instead of
(F(kM))C , (χ(kM))C , (χ∗(kM))C ,

respectively.

2.2. Higher Order Lifts of Complex Functions

In this section, we extend definitions and properties about vertical
and complete lifts of complex valuable functions defined on any com-
plex manifold M to extended complex manifold kM .

Definition 2.3. [6] Let M be any complex manifold and k−1M its
(k−1) order extended complex manifold. Let f̃ be a complex valuable
function defined on k−1M. Let us denote by τk−1M : kM → k−1M

canonical projection and by

v : F(k−1M) −→ F(kM)

f̃ −→ v(f̃) = f̃ v

linear isomorphism. Then the vertical lift of function f̃ ∈ F(k−1M)
to kM is the function f̃ v ∈ F(kM) given by

f̃ v = f̃ ◦ τk−1M . (9)

Now, let f vk−1
be vertical lift of a complex valuable function

f ∈ F(M) to k−1M. In (9), if f̃ = f vk−1
, the vertical lift of function

f ∈ F(M) to kM is the function f vk ∈ F(kM) given by equality

f vk

= f ◦ τM ◦ τ2M ◦ . . . ◦ τk−1M . (10)
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Now, similarly the differential of function f ∈ F(M) we shall give the
following as the differential of f̃ ∈ F(k−1M). (zri, z̄ri), 0 ≤ r ≤ k− 1
be the extended complex coordinates of k−1M . Then the differential
of f̃ is the complex 1-form given by equality

df̃ =
∂f̃

∂zri
dzri +

∂f̃

∂z̄ri
dz̄ri. (11)

Definition 2.4. [6] Let M be any complex manifold and k−1M its
(k − 1) order extended complex manifold. Consider the linear iso-
morphism given by

ιk : χ∗(k−1M) −→ F(kM) (12)

ιk(dzri) = żri

ιk(dz̄ri) = ˙̄zri

such that Sp
{
dzri, dz̄ri : 0 ≤ r ≤ k − 1

}
= χ∗(k−1M). Given by (11)

the differential of a complex valuable function f̃ ∈ F(k−1M). Then
the complete lift of function f̃ ∈ F(k−1M) to kM is the function
f̃ c ∈ F(kM) determined by equality

f̃ c = ιk(df̃) = żri(
∂f̃

∂zri
)v + ˙̄zri(

∂f̃

∂z̄ri
)v. (13)

Now, let f ck−1
be complete lift of a complex valuable function

f ∈ F(M) to k−1M. In (13), if f̃ = f ck−1
, then the complete lift of

function f ∈ F(M) to kM is the function f ck ∈ F(kM) given by

f ck

= żri

(
∂f ck−1

∂zri

)v

+ ˙̄zri

(
∂f ck−1

∂z̄ri

)v

. (14)

The general properties of higher order vertical and complete lifts
of complex valuable functions on complex manifold M are

i) (f + g)v
r

= f vr

+ gvr

ii) (f · g)v
r

= f vr · gvr

iii) (f + g)c
r

= f cr

+ gcr

iv) (f · g)c
r

=
∑r

j=0

(
r
j

)
f cr−jvj · gcjvr−j
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v)
(

∂f
∂z0i

)vr

= ∂fcr

∂zri ,
(

∂f
∂z̄0i

)vr

= ∂fcr

∂z̄ri ,
(

∂f
∂z0i

)cr

= ∂fcr

∂z0i ,
(

∂f
∂z̄0i

)cr

= ∂fcr

∂z̄0i ,

for all f, g ∈ F(M).

2.3. Higher Order Lifts of Complex Vector Fields

In this section, we derive definitions and propositions about vertical
and complete lifts of complex vector fields defined on any complex
manifold M to extended complex manifold kM .

Definition 2.5. [6] Let M be any complex manifold and k−1M its
(k − 1) order extended complex manifold. Denote by Z̃ a complex
vector field and by f̃ a complex valuable function defined on k−1M.

Then the vertical lift of Z̃ ∈ χ(k−1M) to kM is the complex vector
field Z̃v ∈ χ(kM) given by equality

Z̃v(f̃ c) = (Z̃f̃)v . (15)

Now, let f ck−1
and Zvk−1

be respectively complete and vertical
lifts of a complex valuable function f ∈ F(M) and a complex vector

field Z ∈ χ(M) to k−1M. In (15), if f̃ = f ck−1
and Z̃ = Zvk−1

,

then the vertical lift of Z ∈ χ(M) to kM is the complex vector field

Zvk ∈ χ(kM) given by

Zvk

(f ck

) = (Zf)v
k

. (16)

Proposition 2.6. [6] Let M be any complex manifold and kM its
k order extended complex manifold. Given by (7) the complex vector
field Z ∈ χ(M). Then the vertical lift of Z ∈ χ(M) to kM is

Zvk

= (Z0i)v
k ∂

∂zki
+ (Z̄0i)v

k ∂

∂z̄ki
. (17)

Definition 2.7. [6] Let M be any complex manifold and k−1M its
(k − 1) order extended complex manifold. Let us denote by Z̃ a com-
plex vector field and by f̃ a complex valuable function defined on
k−1M. Then the complete lift of Z̃ ∈ χ(k−1M) to kM is the complex
vector field Z̃c ∈ χ(kM) given by equality

Z̃c(f̃ c) = (Z̃f̃)c. (18)
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Now, let f ck−1
and Zck−1

be respectively complete lifts of a
complex valuable function f ∈ F(M) and a complex vector field

Z ∈ χ(M) to k−1M. In (18), if f̃ = f ck−1
and Z̃ = Zck−1

, then
the complete lift of Z ∈ χ(M) to kM is the complex vector field

Zck ∈ χ(kM) given by

Zck

(f ck

) = (Zf)c
k

. (19)

Proposition 2.8. [6] Let M be any complex manifold and kM its
k order extended complex manifold. Given by (7) the complex vector
field Z ∈ χ(M). Then the complete lift of Z ∈ χ(M) to kM is

Zck

=

(
k

r

)
(Z0i)v

k−rcr ∂

∂zki
+

∂

∂z̄ki

(
k

r

)
(Z̄0i)v

k−rcr ∂

∂z̄ki
. (20)

The higher order vertical and complete lifts of complex vector
fields on any complex manifold M obey the following generic prop-
erties

i) (Z + U)v
r

= Zvr

+ Uvr

,

(Z + U)c
r

= Zcr

+ U cr

,

ii) (fZ)v
r

= f vr

Zvr

,

(fZ)c
r

=
∑r

j=0

(
r
j

)
f cr−jvj

Zcjvr−j

,

iii) Zvk

[f vk

] = 0, Zck

[f ck

] = (Zf)c
k

,

Zck

[f vk

] = (Zf)v
k

, Zvk

[f ck

] = (Zf)v
k

,

iv) [Zvk

, Uvk

] = 0, [Zck

, U ck

] = [Z,U ]c
k

,

[Zvk

, U ck

] = [Z,U ]v
k

, [Zck

, Uvk

] = [Z,U ]v
k

,

v)
(

∂
∂z0i

)vr

= ∂
∂zri ,

(
∂

∂z̄0i

)vr

= ∂
∂z̄ri ,

(
∂

∂z0i

)cr

= ∂
∂z0i ,

(
∂

∂z̄0i

)cr

= ∂
∂z̄0i ,

χ(M) = Sp
{

∂
∂z0i ,

∂
∂z̄0i

}
,

χ(kM) = Sp
{

∂
∂zri ,

∂
∂z̄ri

}
,

for all Z,U ∈ χ(M) and f ∈ F(M).

2.4. Higher Order Lifts of Complex 1- Forms

In this section, we extend definitions and propositions about verti-
cal and complete lifts of complex 1-forms defined on any complex
manifold M to extended complex manifold kM.
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Definition 2.9. [6] Let M be any complex manifold and k−1M its
(k − 1) order extended complex manifold. Denote by ω̃ a complex
1-form and by Z̃ be a complex vector field defined on k−1M. Then
the vertical lift of complex 1-form ω̃ ∈ χ∗(k−1M) to kM is complex
1-form ω̃v ∈ χ∗(kM) given by equality

ω̃v(Z̃c) = (ω̃Z̃)v. (21)

Now, let Zck−1
and ωvk−1

be respectively complete and vertical
lifts of a complex vector field Z ∈ χ(M) and a complex 1-form ω ∈
χ∗(M) to k−1M. In (21), if Z̃ = Zck−1

and ω̃ = ωvk−1
, then the

vertical lift of ω ∈ χ∗(M) to kM is the complex 1-form ωvk ∈ χ∗(kM)
given by

ωvk

(Zck

) = (ωZ)v
k

. (22)

Proposition 2.10. [6] Let M be any complex manifold and kM its
k order extended complex manifold. Given by (8) the complex 1-form
ω ∈ χ∗(M). Then the vertical lift of ω ∈ χ∗(M) to kM is

ωvk

= (ω0i)
vk

dz0i + (ω̄0i)
vk

dz̄0i. (23)

Definition 2.11. [6] Let M be any complex manifold and k−1M its
(k − 1) order extended complex manifold. Denote by ω̃ a complex
1-form and by Z̃ a complex vector field defined on k−1M. Then the
complete lift of ω̃ ∈ χ∗(k−1M) to kM is the complex 1-form ω̃c ∈
χ∗(kM) given by

ω̃c(Z̃c) = (ω̃Z̃)c. (24)

Now, let Zck−1
and ωck−1

be respectively complete lifts of a com-
plex vector field Z and a complex 1-form ω defined on M to k−1M. In
(24), if Z̃ = Zck−1

and ω̃ = ωck−1
, then the complete lift of ω ∈ χ∗(M)

to kM is the complex 1-form ωck ∈ χ∗(kM) given by

ωck

(Zck

) = (ωZ)c
k

. (25)

Proposition 2.12. [6] Let M be any complex manifold and kM its k

order extended complex manifold. Given by (8) components structure
of a complex 1-form ω ∈ χ∗(M). Then the complete lift of ω ∈ χ∗(M)
to kM is
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ωck

= (ω0i)
ck−rvr

dzri + (ω̄0i)
ck−rvr

dz̄ri. (26)

The properties of higher order vertical and complete lifts of com-
plex 1-forms on complex manifold M are

i) (ω + λ)v
r

= ωvr

+ λvr

,

(ω + λ)c
r

= ωcr

+ λcr

,

ii) (fω)v
r

= f vr

ωvr

,

(fω)c
r

=
∑r

j=0

(
r
j

)
f cr−jvj

ωcjvr−j

,

iii) (dz0i)c
r

= dzri, (dz̄0i)c
r

= dz̄ri

(dz0i)v
r

= dz0i, (dz̄0i)v
r

= dz̄0i

χ∗(M) = Sp
{
dz0i, dz̄0i

}
, χ∗(kM) = Sp

{
dzri, dz̄ri

}

for all ω, λ ∈ χ∗(M) and f ∈ F(M).

3. (r, s) Order Lifts of Complex Tensor Fields

In this section, using expressions determined the above we give the
definitions and propositions about (r,s) order complete-vertical lifts
of functions, vector fields and 1-forms on complex manifold M. We
accept 0 ≤ r, s ≤ k and r + s = k.

3.1. (r, s) Order Lifts of Functions

Definition 3.1. Let f cr

be r order complete lift of a complex valuable
function f ∈ F(M) to kM. Then if it is taken s order vertical lift of
complex function f cr ∈ F(kM) to kM, we call complete-vertical lift
of order (r,s) of f ∈ F(M) to kM the function f crvs

determined by

(f cr

)v
s

= f crvs

= f cr ◦ τrM ◦ . . . ◦ τr+s−1M . (27)

There exists chance property taking complete-vertical lift of func-
tions. i.e., It means the same complete-vertical lifts of order (r, s)
with complete-vertical lifts of order (s, r) of functions on complex
manifold to extended complex manifolds.
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3.2. (r, s) Order Lifts of Vector Fields

Definition 3.2. Let Z be a vector field on complex manifold M.

Then the complete-vertical lift of order (r,s) of Z ∈ χ(M) to kM is
the complex vector field Zcrvs ∈ χ(kM) given by equality

Zcrvs

(f ck

) = (Zf)c
rvs

. (28)

Proposition 3.3. Let M be any complex manifold and kM its k

order extended complex manifold. Given by (7) the complex vector
field Z ∈ χ(M). Then the complete-vertical lift of order (r, s) of
Z ∈ χ(M) to kM is

Zcrvs

:

((
r

k−t

)
(Z0i)v

s+k−tct−s

(
r

k−t

)
(Z̄0i)v

s+k−tct−s

)
, 0 ≤ t ≤ k.

Proof. Let Zcrvs

= Zti ∂
∂zti + Z̄ti ∂

∂z̄ti be a vector field on kM such

that a complex coordinate system (zti, z̄ti) on a neighborhood kU of

any point p of kM. Let f ck

be complete lift of order k of function f

to extended complex manifold kM. Then, from complete and vertical
lift properties it is

Zcrvs

(f ck

) = Zhi∂f ck

∂zti
+ Z̄hi∂f ck

∂z̄ti

and

(Zf)c
rvs

=

(
Z0i ∂f

∂z0i
+ Z̄0i ∂f

∂z̄0i

)crvs

=

{(
r

h

)
(Z0i)v

s+hcr−h ∂f ck

∂zk−hi
+

+

(
r

h

)
(Z̄0i)v

s+hcr−h ∂f ck

∂z̄k−hi

}
.

If the above two equalities are equaled according to (28), being t =
k − h from the following equalities

∂f ck

∂zti
=

∂f ck

∂zk−hi
and

∂f ck

∂z̄ti
=

∂f ck

∂z̄k−hi
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we have for 0 ≤ t ≤ k :

Zti =

(
r

k − t

)
(Z0i)v

s+k−tct−s

, Z̄ri =

(
r

k − t

)
(Z̄0i)v

s+k−tct−s

.

Hence, the proof is finish.

There exists commutative property taking complete-vertical lift
of vector fields. It means the same complete-vertical lifts of order
(r, s) with complete-vertical lifts of order (s, r) of vector fields on
complex manifold to extended complex manifolds. The complete-
vertical lifts of order (r, s) of complex vector fields on any complex
manifold M obey the following generic property

(fZ)c
rvs

=

(
r

h

)
f vs+hcr−h

Zchvk−h

, 0 ≤ r, s ≤ k (r + s = k).

3.3. (r, s) Order Lifts of 1-Forms

Definition 3.4. Let Z be a vector field on complex manifold M.

Then the complete-vertical lift of order (r, s) of ω ∈ χ∗(M) to kM

is the complex 1-form ωcrvs ∈ χ∗(kM) given by equality

ωcrvs

(Zck

) = (ωZ)c
rvs

. (29)

Proposition 3.5. Let M be any complex manifold and kM its ex-
tended complex manifold of order k. Given by (8) the complex 1-
form ω ∈ χ∗(M). Then the complete-vertical lift of order (r, s) of
ω ∈ χ∗(M) to kM is

ωcrvs

:

((
r
t

)
(
r
t

)(ω0i)
vs+tcr−t

,

(
r
t

)
(
r
t

)(ω̄0i)
vs+tcr−t

)
, 0 ≤ t ≤ k.

Proof. Let ωcrvs

= ωtidzti + ω̄tidz̄ti be a 1-form on kM such that a
complex coordinate system (zti, z̄ti) on a neighborhood kU of any

point p of kM. Let Zck

be complete lift of order k of vector field Z to
extended complex manifold kM. Then, from complete and vertical
lift properties it is

ωcrvs

(Zck

) =

{(
r

t

)
ωti(Z

0i)v
k−tct

+

(
r

t

)
ω̄ti(Z̄

0i)v
k−tct

}
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and

(ωZ)c
rvs

= (ω0iZ
0i + ω̄0iZ̄

0i)c
rvs

=

(
r

h

)
(ω0i)

vs+hcr−h

(Z0i)v
k−hch

+

+

(
r

h

)
(ω̄0i)

vs+hcr−h

(Z̄0i)v
k−hch

.

If the above two equalities are equaled according to (29), being
t = h from the following equalities

(Z0i)v
k−tct

= (Z0i)v
k−hch

and (Z̄0i)v
k−tct

= (Z̄0i)v
k−hch

we have

ωti =

(
r
t

)
(
k
t

)(ω0i)
vs+tcr−t

, ω̄ti =

(
r
t

)
(
k
t

)(ω̄0i)
vs+tcr−t

, ≤ t ≤ k

Hence, the proof is end.

There exists commutative property taking complete-vertical lift
of 1-forms. Clearly, It means the same complete-vertical lifts of order
(r, s) with complete-vertical lifts of order (s, r) of 1-forms on complex
manifold to extended complex manifolds.

The general property of complete-vertical lifts of order (r, s) of
complex 1-forms on any complex manifold M is

(fω)c
rvs

=

(
r

h

)
f vs+hcr−h

ωchvk−h

, 0 ≤ r, s ≤ k (r + s = k).

4. Higher Order Horizontal Lifts of Complex Tensor

Fields

4.1. The Higher Order Horizontal Lifts of Complex

Functions.

The horizontal lift of f ∈ ℑ0
0(M) = F(M) to kM is the function

fHk ∈ F(kM) given by

fHk

= f ck − γ(∇f ck−1
), (γ(∇f ck−1

) = ∇γf ck−1
),
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where ∇ is an affine linear connection on k−1M with local compo-
nents Γri

rj, 1 ≤ i, j ≤ m,∇f ck−1
is gradient of f ck−1

and γ is an
operator given by

γ : ℑr
s(

k−1M) −→ ℑr
s−1(

kM).

Thus, it is fHk

= 0 since

∇γf ck−1
= żri

(
∂f ck−1

∂zri

)v

+ ˙̄zri

(
∂f ck−1

∂z̄ri

)v

.

The higher order horizontal lifts of complex functions obey the generic
properties

i) (f · g)H
k

= 0

ii) (f + g)H
k

= 0

for all f, g ∈ F(M).

4.2. The Higher Order Horizontal Lifts of Complex

Vector Fields.

The horizontal lift of a vector field Z ∈ χ(M) to kM is the vector

field ZHk ∈ χ(kM) given by

ZHk

f vk

= (Zf)v
k

.

Obviously, we have

ZHk

= ZriDri + Z̄riD̄ri

such that for 1 ≤ i, j ≤ m :

Dri =
∂

∂zri
− Γri

rj

∂

∂zr+1i
and D̄ri =

∂

∂z̄ri
− Γ̄ri

rj

∂

∂z̄r+1i
.

The higher order horizontal lifts of complex vector fields have the
general properties

i) (Z + W )H
k

= ZHk

+ W Hk

,

ii) ZHk

(f vk

) = (Zf)v
k

,

iii) χ(U) = Sp
{

∂
∂z0i ,

∂
∂z̄0i : 1 ≤ i ≤ m

}
,

(
∂

∂z0i

)Hk

= Dri,
(

∂
∂z̄0i

)Hk

= D̄ri,

χ(kU) = Sp
{

∂
∂zri ,

∂
∂z̄ri : 0 ≤ r ≤ k, 1 ≤ i ≤ m

}
,
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for all f ∈ F(M) and Z,W ∈ χ(M). The set of local vector fields

{
Dri, D̄ri, Vri =

∂

∂zr+1i
, V̄ri =

∂

∂z̄r+1i

}

is called adapted frame to ∇.

4.3. The Higher Order Horizontal Lifts of Complex

1-Forms.

The horizontal lift of a 1-form ω ∈ χ∗(M) to kM is the 1-form

ωHk ∈ χ∗(kM) given by

ωHk

(ZHk

) = 0, ωHk

(Zvk

) = (ωZ)v
k

.

If ω = ω0idz0i + ω̄0idz̄0i we obtain

ωHk

= ωriη
ri + ω̄riη̄

ri,

such that

ηri = d̄zr+1i + Γri
rj d̄zri, η̄ri = d̄z̄r+1i + Γ̄ri

rj d̄z̄ri, 1 ≤ i, j ≤ m.

The general properties of higher order horizontal lifts of complex
1-forms are

i) (ω + θ)H
k

= ωHk

+ θHk

,

ii) ωHk

(ZHk

) = 0,

ωHk

(Zvk

) = (ωZ)v
k

,

iii) χ∗(U) = Sp
{
dz0i, dz̄0i : 1 ≤ i ≤ m

}
,

(dz0i)H
k

= η0i,

(dz̄0i)H
k

= η̄0i,

χ∗(kU) = Sp
{
dzri, dz̄ri : 0 ≤ r ≤ k, 1 ≤ i ≤ m

}
,

for all Z ∈ χ(M), f ∈ F(M), and ω, θ ∈ χ∗(M). The dual coframe

{
θri = dzri, θ̄αri = dz̄ri, ηri, η̄ri

}

is called adapted coframe to ∇.
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[7] R.O. Wells, Differential analysis on complex manifolds, GTM,
vol. 65, Springer-Verlag, New York, 1980.

Received 29 September, 2004.


