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Higher Order Lifts of

Complex Structures

M. Tekkoyun, Ş. Civelek and A. Görgülü (∗)

Summary. - We study about lifts on extended complex manifold.
More clearly, we will obtain higher order vertical and complete
lifts of differentiable elements on complex manifold M to the ex-
tended complex manifold kM.

1. Introduction

Lift method has an important role in differentiable geometry. Be-
cause, using lift function it is possible to generalize to differentiable
structures on any manifold the extended manifold. The structure
of extended manifolds has been obtained, especially the canonical
extended manifold kM of order k of the manifold M [1, 4]. Author
obtained the higher order vertical and complete lifts of functions,
vector fields and 1-forms on vector bundle to extended vector bun-
dle [3]. In this study we define the extended complex manifold kM of
a complex manifold M and obtain higher order vertical and complete
lifts of functions, vector fields and 1-forms on M to kM.

Throughout the paper, all mappings and manifolds are assumed
to be differentiable of class C∞ and the sum is taken over repeated
indices.
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2. Extended Complex Manifold (ECM)

Definition 2.1. Let M 2m-real dimensional manifold and kM its
k order extended manifold. A tensor field Jk on kM is called an ex-
tended almost complex structure on kM if at every point p of kM,Jk

is endomorphism of the tangent space Tp(
kM) such that (Jk)

2 = −I.

An extended manifold kM with fixed extended almost complex struc-
ture Jk is called an extended almost complex manifold. If k = 0, J0

is called almost complex structure; a manifold 0M = M with fixed
almost complex structure J0 is called an almost complex manifold.

Let (xri, yri), 0 ≤ r ≤ 1, 1 ≤ i ≤ m be a real coordinate system
on a neighborhood kU of any point p of kM . In this situation, it is
respectively defined by

{(
∂

∂xri

)∣∣∣∣
p

,

(
∂

∂yri

)∣∣∣∣
p

}
and

{
(dxri)|p, (dyri)|p

}

natural bases over R of tangent space Tp(
kM) and cotangent space

T ∗

p (kM) of kM.

Definition 2.2. Let kM be extended almost complex manifold with
fixed extended almost complex structure Jk.

kM is called extended
complex manifold if there exists an open covering

{
kU
}

of kM sat-
isfying the following condition: there is a local coordinate system
(xri, yri), 0 ≤ r ≤ 1, 1 ≤ i ≤ m on each kU such that for each point
of kU,

Jk(
∂

∂xri
) =

∂

∂yri
, Jk(

∂

∂yri
) = − ∂

∂xri
. (1)

If k = 0, then a manifold 0M = M with fixed almost complex struc-
ture J0 is called complex manifold.

Let zri = xri+i yri, i =
√
−1, 0 ≤ r ≤ k, 1 ≤ i ≤ m, be an

extended complex local coordinate system on a neighborhood kU of
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any point p of kM. If it is defined by equalities

(
∂

∂zri

)∣∣∣∣
p

=
1

2

{(
∂

∂xri

)∣∣∣∣
p

− i

(
∂

∂yri

)∣∣∣∣
p

}

(2)
(

∂

∂z̄ri

)∣∣∣∣
p

=
1

2

{(
∂

∂xri

)∣∣∣∣
p

+ i

(
∂

∂yri

)∣∣∣∣
p

}

and
(
dzri

)∣∣
p

=
(
dxri

)∣∣
p
+ i
(
dyri

)∣∣
p

(3)(
dz̄ri

)∣∣
p

=
(
dxri

)∣∣
p
− i
(
dyri

)∣∣
p

then, it has respectively obtained by
{(

∂

∂zri

)∣∣∣∣
p

,

(
∂

∂z̄ri

)∣∣∣∣
p

}
and

{
(dzri)|p, (dz̄ri)|p

}

bases over complex number C of tangent space Tp(
kM) and cotan-

gent space T ∗

p (kM) of kM. Then endomorphism Jk with respect to

base over complex number C of tangent space Tp(
kM) of kM is de-

fined by

Jk(
∂

∂zri
) = i

∂

∂zri
, Jk(

∂

∂z̄ri
) = −i

∂

∂z̄ri
. (4)

If J∗

k is an endomorphism of the cotangent space T ∗

p (kM) such that

J∗2
k = −I on any point p of extended manifold kM, then it is defined

by
J∗

k (dzri) = idzri, J∗

k (dz̄ri) = −idz̄ri. (5)

Let M be a differentiable manifold and F(M) be the set of func-
tions of class C∞. A complex valuable function is the element of
complexification (F(M))C of F(M). Now, we shall define differen-
tial of function f defined on M. Let f be a complex valuable function
defined on any complex manifold M and (z0i, z̄0i), 1 ≤ i ≤ m be ex-
tended complex coordinates of M. Therefore; the differential of f is
complex 1-form given by equality

df =
∂f

∂z0i
dz0i +

∂f

∂z̄0i
dz̄0i. (6)



88 M. TEKKOYUN, Ş. CIVELEK AND A. GÖRGÜLÜ

Let M be a differentiable manifold and χ(M) be the set of vector
fields on M. A complex vector field is the element of complexification
(χ(M))C of χ(M). It is determined by

Z = Z0i ∂

∂z0i
+ Z̄0i ∂

∂z̄0i
(7)

complex vector field Z with respect to complex coordinate system
(z0i, z̄0i) such that Z0i ∈ (F(M))C . Let M be a differentiable mani-
fold and (χ(M))C be the set of complex vector fields on M. A com-
plex 1-form is the element of algebra dual (χ∗(M))C of (χ(M))C . It
is stated by

ω = ω0idz0i + ω̄0idz̄0i (8)

complex 1-form ω with respect to complex coordinate system (z0i, z̄0i)
such that ω0i ∈ (F(M))C .

Remark 2.3. Now then, in the other sections it will accept

F(kM), χ(kM), χ∗(kM),

instead of
(F(kM))C , (χ(kM))C , (χ∗(kM))C ,

respectively.

3. Higher Order Lifts of Complex Functions to ECM

In this section, we extend definitions and properties about vertical
and complete lifts of complex valuable functions defined on any com-
plex manifold M to extended complex manifold kM .

Definition 3.1. Let M be any complex manifold and k−1M its (k−
1) order extended complex manifold. Let f̃ be a complex valuable
function defined on k−1M. Let us denote by τk−1M : kM → k−1M

canonical projection and by

v : F(k−1M) −→ F(kM)

f̃ −→ v(f̃) = f̃ v

linear isomorphism. Then the vertical lift of function f̃ ∈ F(k−1M)
to kM is the function f̃ v ∈ F(kM) given by

f̃ v = f̃ ◦ τk−1M . (9)
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Now, let f vk−1
be vertical lift of a complex valuable function

f ∈ F(M) to k−1M. In (9), if f̃ = f vk−1
, the vertical lift of function

f ∈ F(M) to kM is the function f vk ∈ F(kM) given by equality

f vk

= f ◦ τM ◦ τ2M ◦ . . . ◦ τk−1M . (10)

Now, similarly the differential of function f ∈ F(M) we shall give the
following as the differential of f̃ ∈ F(k−1M). (zri, z̄ri), 0 ≤ r ≤ k− 1
be the extended complex coordinates of k−1M . Then the differential
of f̃ is the complex 1-form given by equality

df̃ =
∂f̃

∂zri
dzri +

∂f̃

∂z̄ri
dz̄ri. (11)

Definition 3.2. Let M be any complex manifold and k−1M its
(k − 1) order extended complex manifold. Consider the linear iso-
morphism given by

ιk : χ∗(k−1M) −→ F(kM) (12)

ιk(dzri) = żri

ιk(dz̄ri) = ˙̄zri

such that Sp
{
dzri, dz̄ri : 0 ≤ r ≤ k − 1, 1 ≤ i ≤ m

}
= χ∗(k−1M). Given

by (11) the differential of a complex valuable function f̃ ∈ F(k−1M).
Then the complete lift of function f̃ ∈ F(k−1M) to kM is the func-
tion f̃ c ∈ F(kM) determined by equality

f̃ c = ιk(df̃) = żri(
∂f̃

∂zri
)v + ˙̄zri(

∂f̃

∂z̄ri
)v. (13)

Now, let f ck−1
be complete lift of a complex valuable function

f ∈ F(M) to k−1M. In (13), if f̃ = f ck−1
, then the complete lift of

function f ∈ F(M) to kM is the function f ck ∈ F(kM) given by

f ck

= żri

(
∂f ck−1

∂zri

)v

+ ˙̄zri

(
∂f ck−1

∂z̄ri

)v

. (14)
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The general properties of higher order vertical and complete lifts
of complex valuable functions on complex manifold M are

i) (f + g)v
r

= f vr

+ gvr

ii) (f · g)v
r

= f vr · gvr

iii) (f + g)c
r

= f cr

+ gcr

iv) (f · g)c
r

=
∑r

j=0

(
r
j

)
f cr−jvj · gcjvr−j

v)
(

∂f
∂z0i

)vr

= ∂fcr

∂zri ,
(

∂f
∂z̄0i

)vr

= ∂fcr

∂z̄ri ,

vi)
(

∂f
∂z0i

)cr

= ∂fcr

∂z0i ,
(

∂f
∂z̄0i

)cr

= ∂fcr

∂z̄0i ,

for all f, g ∈ F(M).

4. Higher Order Lifts of Complex Vector Fields to
ECM

In this section, we derive definitions and propositions about vertical
and complete lifts of complex vector fields defined on any complex
manifold M to extended complex manifold kM .

Definition 4.1. Let M be any complex manifold and k−1M its (k−
1) order extended complex manifold. Denote by Z̃ a complex vector
field and by f̃ a complex valuable function defined on k−1M. Then
the vertical lift of Z̃ ∈ χ(k−1M) to kM is the complex vector field
Z̃v ∈ χ(kM) given by equality

Z̃v(f̃ c) = (Z̃f̃)v . (15)

Now, let f ck−1
and Zvk−1

be respectively complete and vertical
lifts of a complex valuable function f ∈ F(M) and a complex vector

field Z ∈ χ(M) to k−1M. In (15), if f̃ = f ck−1
and Z̃ = Zvk−1

,

then the vertical lift of Z ∈ χ(M) to kM is the complex vector field

Zvk ∈ χ(kM) given by

Zvk

(f ck

) = (Zf)v
k

. (16)

Proposition 4.2. Let M be any complex manifold and kM its k

order extended complex manifold. Given by (7) the complex vector
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field Z ∈ χ(M). Then the vertical lift of Z ∈ χ(M) to kM is

Zvk

:




0
.

.

.

0

(Z0i)v
k

(Z
0i

)v
k




, 1 ≤ i ≤ m. (17)

Proof. Let Zvk

= Zri ∂
∂zri +Z̄ri ∂

∂z̄ri be a vector field on kM such that

a complex coordinate system (zri, z̄ri) on a neighborhood kU of any

point p of kM. Let f ck

be complete lift of function f to extended
complex manifold kM. Then, from vertical lift properties it is

Zvk

(f ck

) = Zri∂f ck

∂zri
+ Z̄ri∂f ck

∂z̄ri

and

(Zf)v
k

=

(
Z0i ∂f

∂z0i
+ Z̄0i ∂f

∂z̄0i

)vk

= (Z0i)v
k ∂f ck

∂zki
+ (Z̄0i)v

k ∂f ck

∂z̄ki
.

If the above two equalities are equaled according to (16), we have

Zri = 0, Z̄ri = 0, 0 ≤ r ≤ k − 1

Zki = (Z0i)v
k

, Z̄ki = (Z̄0i)v
k

.

Hence, the proof is finish.

Definition 4.3. Let M be any complex manifold and k−1M its (k−
1) order extended complex manifold. Let us denote by Z̃ a complex
vector field and by f̃ a complex valuable function defined on k−1M.

Then the complete lift of Z̃ ∈ χ(k−1M) to kM is the complex vector
field Z̃c ∈ χ(kM) given by equality

Z̃c(f̃ c) = (Z̃f̃)c. (18)
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Now, let f ck−1
and Zck−1

be respectively complete lifts of a
complex valuable function f ∈ F(M) and a complex vector field

Z ∈ χ(M) to k−1M. In (18), if f̃ = f ck−1
and Z̃ = Zck−1

, then
the complete lift of Z ∈ χ(M) to kM is the complex vector field

Zck ∈ χ(kM) given by

Zck

(f ck

) = (Zf)c
k

. (19)

Proposition 4.4. Let M be any complex manifold and kM its k

order extended complex manifold. Given by (7) the complex vector
field Z ∈ χ(M). Then the complete lift of Z ∈ χ(M) to kM is

Zck

:




(
k
0

)
(Z0i)v

kc0

(
k
0

)
(Z

0i
)v

kc0

.

.

.(
k
k

)
(Z0i)v

0ck

(
k
k

)
(Z

0i
)v

0ck




, 1 ≤ i ≤ m. (20)

Proof. Similar to previous proposition. Shortly, let

Zck

=

(
k

r

)
Zri ∂

∂zri
+

(
k

r

)
Z̄ri ∂

∂z̄ri
.

If Zck

, (7), (14) and the function f ∈ F(M) is calculated with respect
to (19), the proof is end.

The higher order vertical and complete lifts of complex vector
fields on any complex manifold M obey the following generic prop-
erties

i) (Z + U)v
r

= Zvr

+ Uvr

,

(Z + U)c
r

= Zcr

+ U cr

,

ii) (fZ)v
r

= f vr

Zvr

,

(fZ)c
r

=
∑r

j=0

(
r
j

)
f cr−jvj

Zcjvr−j

,
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iii) Zvk

[f vk

] = 0, Zck

[f ck

] = (Zf)c
k

,

Zck

[f vk

] = (Zf)v
k

, Zvk

[f ck

] = (Zf)v
k

,

iv) [Zvk

, Uvk

] = 0, [Zck

, U ck

] = [Z,U ]c
k

,

[Zvk

, U ck

] = [Z,U ]v
k

, [Zck

, Uvk

] = [Z,U ]v
k

,

v)
(

∂
∂z0i

)vr

= ∂
∂zri ,

(
∂

∂z̄0i

)vr

= ∂
∂z̄ri ,

(
∂

∂z0i

)cr

= ∂
∂z0i ,

(
∂

∂z̄0i

)cr

= ∂
∂z̄0i ,

χ(M) = Sp
{

∂
∂z0i ,

∂
∂z̄0i

}
,

χ(kM) = Sp
{

∂
∂zri ,

∂
∂z̄ri

}
,

for all Z,U ∈ χ(M) and f ∈ F(M), 0 ≤ r ≤ k, 1 ≤ i ≤ m.

5. Higher Order Lifts of Complex 1-Forms to ECM

In this section, we extend definitions and propositions about verti-
cal and complete lifts of complex 1-forms defined on any complex
manifold M to extended complex manifold kM.

Definition 5.1. Let M be any complex manifold and k−1M its (k−
1) order extended complex manifold. Denote by ω̃ a complex 1-form
and by Z̃ be a complex vector field defined on k−1M. Then the vertical
lift of complex 1-form ω̃ ∈ χ∗(k−1M) to kM is complex 1-form ω̃v ∈
χ∗(kM) given by equality

ω̃v(Z̃c) = (ω̃Z̃)v. (21)

Now, let Zck−1
and ωvk−1

be respectively complete and vertical
lifts of a complex vector field Z ∈ χ(M) and a complex 1-form ω ∈
χ∗(M) to k−1M. In (21), if Z̃ = Zck−1

and ω̃ = ωvk−1
, then the

vertical lift of ω ∈ χ∗(M) to kM is the complex 1-form ωvk ∈ χ∗(kM)
given by

ωvk

(Zck

) = (ωZ)v
k

. (22)

Proposition 5.2. Let M be any complex manifold and kM its k

order extended complex manifold. Given by (8) the complex 1-form
ω ∈ χ∗(M). Then the vertical lift of ω ∈ χ∗(M) to kM is

ωvk

: ((ω0i)
vk

, (ω̄0i)
vk

, 0, . . . , 0), 1 ≤ i ≤ m. (23)
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Proof. Let ωvk

= ωridzri + ω̄ridz̄ri be a 1-form on kM such that a
complex coordinate system (zri, z̄ri) on a neighborhood kU of any

point p of kM. Let Zck

be complete lift of a vector field Z to extended
complex manifold kM. Then, from vertical lift properties it is

ωvk

(Zck

) = (ωridzri + ω̄ridz̄ri)(Zck

)

= ωri

(
k

r

)
(Z0i)v

k−rcr

+ ω̄ri

(
k

r

)
(Z̄0i)v

k−rcr

and

(ωZ)v
k

= (ω0iZ
0i + ω̄0iZ̄

0i)v
k

= (ω0i)
vk

(Z0i)v
k

+ (ω̄0i)
vk

(Z̄0i)v
k

.

If the above two equalities are equaled in respect of (22), we have

ωri = 0, ω̄ri = 0, 1 ≤ r ≤ k

ω0i = (ω0i)
vk

, ω̄0i = (ω̄0i)
vk

.

Hence, the proof is finish.

Definition 5.3. Let M be any complex manifold and k−1M its (k−
1) order extended complex manifold. Denote by ω̃ a complex 1-form
and by Z̃ a complex vector field defined on k−1M. Then the complete
lift of ω̃ ∈ χ∗(k−1M) to kM is the complex 1-form ω̃c ∈ χ∗(kM)
given by

ω̃c(Z̃c) = (ω̃Z̃)c. (24)

Now, let Zck−1
and ωck−1

be respectively complete lifts of a com-
plex vector field Z and a complex 1-form ω defined on M to k−1M. In
(24), if Z̃ = Zck−1

and ω̃ = ωck−1
, then the complete lift of ω ∈ χ∗(M)

to kM is the complex 1-form ωck ∈ χ∗(kM) given by

ωck

(Zck

) = (ωZ)c
k

. (25)

Proposition 5.4. Let M be any complex manifold and kM its k

order extended complex manifold. Given by (8) components structure
of a complex 1-form ω ∈ χ∗(M). Then the complete lift of ω ∈ χ∗(M)
to kM is

ωck

: ((ω0i)
ckv0

, (ω0i)
ckv0

, ..., (ω0i)
c0vk

, (ω0i)
c0vk

), 1 ≤ i ≤ m. (26)
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Proof. Similar to the previous proposition. Briefly, given

ωck

= Zridzri + Z̄ridz̄ri.

If ωck

, (7), (8) and (20) is equalized with respect to (25), the proof
is complete.

The properties of higher order vertical and complete lifts of com-
plex 1-forms on complex manifold M are

i) (ω + λ)v
r

= ωvr

+ λvr

,

(ω + λ)c
r

= ωcr

+ λcr

,

ii) (fω)v
r

= f vr

ωvr

,

(fω)c
r

=
∑r

j=0

(
r
j

)
f cr−jvj

ωcjvr−j

,

iii) (dz0i)c
r

= dzri, (dz̄0i)c
r

= dz̄ri

(dz0i)v
r

= dz0i, (dz̄0i)v
r

= dz̄0i

χ∗(M) = Sp
{
dz0i, dz̄0i

}
, χ∗(kM) = Sp

{
dzri, dz̄ri

}

for all ω, λ ∈ χ∗(M) and f ∈ F(M), 0 ≤ r ≤ k, 1 ≤ i ≤ m.
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