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Mathematical Study of a Parabolic

System Describing the Evolution of

the Solar Magnetic Field

Roberto Gianni and Paola Mannucci (∗)

Summary. - We study a system of two strongly coupled parabolic
equations describing a solar dynamo wave. We investigate the
existence and uniqueness of a classical solution and the existence
of a periodic in time solution. In the Appendix, an existence
result of periodic solutions for an auxiliary quasilinear parabolic
equation is provided, together with a C0 estimate of such solution.

1. Introduction

In this paper we deal with the mathematical study of a system of
two strongly coupled parabolic equations describing the evolution of
the magnetic field of a solar dynamo wave.

It is nowadays accepted that the origin of the solar magnetic field
could be ascribed to the existence of a dynamo mechanism operating
in the convective region of the Sun. The dynamo process basically
consists in the conversion of kinetic energy of plasma motions into
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magnetic field energy, as the result of the interplay between differ-
ential rotation and turbulent convective motions. Many different
models have been proposed [9, 3], but particular attention has been
payed to the so called α2ω dynamo model ([12, 2] and the references
therein). The properties of this model make it attractive to explain
some of the features of the solar and stellar magnetic activity.

Besides all these results, the mathematical properties of this
model remain still largely unexplored, with respect to the existence
and uniqueness of the solutions and in particular with respect to the
periodic solutions corresponding to periodic boundary data which is
of particular interest due to the well known periodic behavior of the
solar activity.

In this paper we want to study from the mathematical point of
view the evolution of the magnetic field B as described by an α2ω
dynamo model.

The magnetic field vector B is usually represented as the sum of
toroidal and poloidal components, B = BP + BT, where

BP = ∇× (0, 0, A), BT = (0, 0, B). (1)

We follow the model described by Meunier [14] which has been
developped by A. Bianchini and L. Zangrilli [1].

We adopt a system of spherical coordinates (r, θ, ϕ), which is
suitable to study a dynamo operating inside a star. Taking into
account the axisymmetry of the problem (so that the dependence on
the ϕ coordinate can be accordingly neglected), setting x = r, y = θ
the system to be studied is [12, 13]:

∂A

∂t
=

c1B

1 + µB2
+

1

λ2

∂2A

∂x2
+

∂2A

∂y2
, (2)

∂B

∂t
=

c2

1 + kB2

∂A

∂y
− c3

1 + µB2

∂2A

∂x2
+

1

λ2

∂2B

∂x2
+

+
∂2B

∂y2
− c4B

3, (3)

where λ, µ, c1, c2, c3, c4 are suitable constants depending on the
specific properties of the model.

The dissipation term −c4B
3 in equation (3) is motivated in [13]

and it is due to the bouyancy of magnetic flux tubes, which escape
from the region where the dynamo operates.



A PARABOLIC SYSTEM FOR THE EVOLUTION etc. 67

The system is studied in QT = Q × (0, T ), Q := {(x, y) : r0 <
x < rs, 0 < y < π}, where r0, rs correspond to the radius of
the convective zone and the total solar radius. Equations (2)-(3)
represent an uniformly nonlinear parabolic system whose equations
for A and B are strongly coupled because of the presence of the
term ∂2A/∂x2 in equation (3). For these reason we can not apply
the classical results on systems of uniformly parabolic equations. On
the parabolic boundary of QT we consider Dirichlet conditions [8].
This type of conditions are just the first case among some others
that can be considered. An other type of conditions which will be
studied in a next paper is a coupled system of equations for A and
B, satisfied on the parabolic boundary of QT .

In this paper we deal with a proof of the existence and uniqueness
of a classical solution for (2)-(3) with Dirichlet conditions on the
parabolic boundary. We also prove the existence of a periodic in
time classical solution, having prescribed periodic boundary data.
Our results remain true even if the constant c4 in equation (3) is
zero, i.e. also for the original model problem of Meunier [12], hence
our analysis can be applied to the simplified model described by
several authors.

The paper is organized as follows: in Section 2 the existence and
uniqueness of a global in time classical solution is proved. In Sec-
tion 3 we present a result about the existence of a periodic in time
solution. To obtain this result, we use an existence theorem for pe-
riodic solutions of an auxiliary quasilinear parabolic equation which
is proved in the Appendix. This is a general result on the existence
of periodic solutions for quasilinear equations in W 2,1

q which provide
also a C0 estimate for such solution. We remark that such existence
result can be obtained combining different methods presented in the
papers of [4], [5], [7] and [11].

2. Existence of solutions of α
2
ω dynamo equations

We will study the following system of parabolic equations, obtained
from system (2)-(3) by adding into the first and the second equa-
tion respectively the terms −cA and −cB, where c is a nonnegative
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constant:

∂A

∂t
=

c1 B

1 + µB2
+

1

λ2

∂2A

∂x2
+

∂2A

∂y2
− cA, (4)

∂B

∂t
=

c2

1 + kB2

∂A

∂y
− c3

1 + µB2

∂2A

∂x2
+

1

λ2

∂2B

∂x2
+

+
∂2B

∂y2
− c4B

3 − cB, (5)

with initial and boundary conditions:

A(x, y, 0) = A0(x, y), on Q,

B(x, y, 0) = B0(x, y), on Q, (6)

A(x, y, t) = AL(x, y, t), on ∂Q × (0,T),

B(x, y, t) = BL(x, y, t), on ∂Q × (0,T), (7)

where A0, B0, AL, BL are such that

A0(x, y), B0(x, y) ∈ C2,1(Q),

AL(x, y, t), BL(x, y, t) ∈ C2,1(Q × [0, T )),

the zero order compatibility conditions hold, (8)

equations (4, 5) are fulfilled on the hedges of Q × [0,T).

The following inequality holds for any B:

∣

∣

∣

∣

c1 B

1 + µB2

∣

∣

∣

∣

+

∣

∣

∣

∣

c2

1 + kB2

∣

∣

∣

∣

+

∣

∣

∣

∣

c3

1 + µB2

∣

∣

∣

∣

≤ c1

2
√

µ
+ c2 + c3 ≡: K. (9)

We give an existence and uniqueness result for a global in time so-
lution of system (4)-(7) using Schauder’s fixed point theorem.

Theorem 2.1. Under assumptions (8), taking ci, i = 1, ...4, k, c
nonnegative constants, µ > 0, λ 6= 0, the parabolic system (4)-(5),
with initial and boundary conditions (6), (7), has an unique classical
solution (A,B) ∈ C2,1(QT ).

Proof. Consider

Σ = {B(x, y, t) ∈ C0(QT ), |B|(0)QT
≤ N},
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where N will be determined below.
Clearly the set Σ is a closed convex set.
We define an operator T on Σ in the following: ∀B ∈ Σ, T B = B̃,
where (Ã, B̃) is the solution of the following system:

∂Ã

∂t
=

c1 B

1 + µB
2 +

1

λ2

∂2Ã

∂x2
+

∂2Ã

∂y2
− cÃ, (10)

∂B̃

∂t
=

c2

1 + kB
2

∂Ã

∂y
− c3

1 + µB
2

∂2Ã

∂x2
+

1

λ2

∂2B̃

∂x2
+

+
∂2B̃

∂y2
− c4B̃

3 − cB̃, (11)

Ã(x, y, 0) = A0(x, y), on Q,

B̃(x, y, 0) = B0(x, y), on Q, (12)

Ã(x, y, t) = AL(x, y, t), on ∂Q × (0,T),

B̃(x, y, t) = BL(x, y, t), on ∂Q × (0,T). (13)

The system (10)-(11) is no longer strongly coupled since equation
(10) does not depend on B̃.

From Theorem 9.1 p.341 of [10], taking into account (9), we ob-
tain that

Ã(x, y, t) ∈ W 2,1
q (QT ), ∀q > 1,

‖Ã‖(2)
q,QT

≤ C(q), ∀q > 1, (14)

with C(q) independent of N .
We want to remark that the regularity results in W 2,1

q are obtained
here and in the following even if ∂Q has corners. In fact, by subtract-
ing to the solution Ã the boundary data and by means of suitable
reflections, we can reduce to a case to which the results of Section IV
of [10] can be applied (see estimate 10.12 p.355), thus obtaining that
Theorem 9.1 p.341 of [10] still holds. In particular we take advantage
of the fact that the reflection technique allows us to get estimates
near the boundary ∂Q, using only interior estimates.

We now pass to equation (11). First of all we prove that

|B̃|(0)QT
≤ C(‖Ã‖(2)

q,QT
) ≤ C(q), (15)
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where C is independent of N .
In fact, let us consider the solution B̂ of the following problem

∂B̂

∂t
= K

∣

∣

∣

∣

∣

∂Ã

∂y

∣

∣

∣

∣

∣

+ K

∣

∣

∣

∣

∣

∂2Ã

∂x2

∣

∣

∣

∣

∣

+
1

λ2

∂2B̂

∂x2
+

+
∂2B̂

∂y2
− c4B̂

3 − cB̂, (16)

B̂(x, y, t)|∂pQT
= max

∂pQT

|B̃| =: M, (17)

where K in (16) is defined in (9).
Note that, from the maximum principle, B̂ > 0 and from the com-
parison principle B̂ ≥ B̃. At this point, we consider the solution B̆
of the linear problem

∂B̆

∂t
= K

∣

∣

∣

∣

∣

∂Ã

∂y

∣

∣

∣

∣

∣

+ K

∣

∣

∣

∣

∣

∂2Ã

∂x2

∣

∣

∣

∣

∣

+
1

λ2

∂2B̆

∂x2
+

∂2B̆

∂y2
, (18)

B̆(x, y, t)|∂pQT
= M. (19)

From Theorem 7.1 p.181 of [10] we obtain

|B̆|(0)QT
≤ C(‖Ã‖(2)

q,QT
) ≤ C(q), (20)

where C(q) is independent of N .
Moreover, from the comparison principle, we have

B̃ ≤ B̂ ≤ B̆,

thus we obtain an upper bound for B̃, independent of N .
Analogously we find a lower bound for B̃, independent of N , i.e.
estimate (15) is proved.

Regarding now −c4B̃
3 as a known bounded term because of (15),

taking into account estimate (14), we apply to equation (11), Theo-
rem 9.1 p. 341 and the Corollary at p.342 of [10]. Taking q > 4, we
obtain an Hölder estimate for B̃, i.e.:

|B̃|(1+α)
QT

≤ C(1 + ‖Ã‖(2)
q,QT

) ≤ C(α), α = 1 − 4

q
, (21)

with C is independent of N .
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If we take N , in the definition of Σ, such that N > C(α), (C(α)
as in (21)), we obtain that T maps Σ into itself.

Moreover, from (21), we also get that T Σ is a precompact subset
of Σ.

Next we show that T is a continuous mapping. Let be B̃1 =
T B1 and B̃2 = T B2, we denote by Ã1 and Ã2 the solutions of (10)
corresponding respectively to B1 and B2.
From Theorem 9.1 p.341 of [10], we have

‖Ã1 − Ã2‖(2)
q,QT

≤ C(N)(|B1 − B2|(0)QT
), ∀q > 1. (22)

The equation satisfied by B̃1 − B̃2 is

(

∂(B̃1 − B̃2)

∂t
− 1

λ2

∂2(B̃1 − B̃2)

∂x2
− ∂2(B̃1 − B̃2)

∂y2
+

a1(B̃1, B̃2)(B̃1 − B̃2)

)

=

(

a2(B1, B2)
∂(Ã1 − Ã2)

∂y
+

a3(B1, B2)
∂2(Ã1 − Ã2)

∂x2
+

a4(B1, B2, Ã2y , Ã2xx)(B1 − B2)

)

. (23)

The coefficients ai, i = 1, . . . 4, in (23), are not explicitely written,
for the sake of brevity and are, however, bounded in Lq, for any q > 1,
because of (14)-(15). Regarding the terms inside the square brackets
as known we can apply Theorem 9.1 p. 341 of [10], thus obtaining

‖B̃1 − B̃2‖(2)
q,QT

≤ C(N)
(

|B1 − B2|(0)QT
+ ‖Ã1 − Ã2‖(2)

q,QT

)

≤ C(N)
(

|B1 − B2|(0)QT

)

, ∀q > 1, (24)

where the last inequality is obtained from (22).
From Corollary at p.342 of [10] and applying Schauder’s fixed point
theorem we conclude the existence of a function B in Σ for which
T B = B; (A,B) ∈ C0(QT ).
At this point with a standard bootstrap argument we obtain further
regularity for the solution (A,B) of problem (4), (7), more precisely
we prove that (A,B) ∈ C2,1(QT ).
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Moreover, from (24), we obtain that

|B̃1 − B̃2|(0)QT
≤ tγ C(N)

(

|B1 − B2|(0)QT

)

, γ < 1. (25)

Hence, taking t ∈ [0, T̃ ], with T̃ sufficiently small, we get that the
operator T is contractive and then in [0, T̃ ] we also get uniqueness
of the solution. Iterating step by step this procedure we obtain the
uniqueness of the solution in whole QT .

3. Periodic solutions

In this section we investigate the existence of a periodic solution for
our problem when periodic boundary data are assigned.

More precisely, we look for an existence theorem of a τ -periodic
solution of system (4)-(5), with boundary data

A(x, y, t) = AL(x, y, t), B(x, y, t) = BL(x, y, t), on ∂Q × R. (26)

under the following assumptions

AL(x, y, t), BL(x, y, t) ∈ C2,1(Q × R), (27)

AL(x, y, t + τ) = AL(x, y, t),

BL(x, y, t + τ) = BL(x, y, t), τ > 0. (28)

As a first step we study problem (4)-(5) in the case in which c > 0.

We prove the following:

Theorem 3.1. Under assumptions (27), (28), if ci, i = 1, ...4, k
nonnegative constants, c > 0, µ > 0, λ 6= 0, the parabolic system (4)-
(5), with boundary conditions (26), has at least a τ -periodic solution
(A,B) ∈ C2,1(Q ×R).

Proof. Consider

Σ = {B ∈ C0(Q × R), |B|(0)
Q×[0,τ ] ≤ N, B(x, y, t + τ) = B(x, y, t)},

where N will be determined below.



A PARABOLIC SYSTEM FOR THE EVOLUTION etc. 73

We consider the operator T defined in the following way: if B ∈
Σ, T B = B̃, where (Ã, B̃) is the solution of the following system in
Q ×R:

∂Ã

∂t
=

c1

1 + µB
2 B +

1

λ2

∂2Ã

∂x2
+

∂2Ã

∂y2
− cÃ, (29)

∂B̃

∂t
=

c2

1 + kB
2

∂Ã

∂y
− c3

1 + µB
2

∂2Ã

∂x2
+

1

λ2

∂2B̃

∂x2
+

+
∂2B̃

∂y2
− c4B̃

3 − cB̃, (30)

Ã(x, y, t) = AL(x, y, t), on ∂Q × R, (31)

B̃(x, y, t) = BL(x, y, t), on ∂Q × R. (32)

Applying Theorem 4.1 of the Appendix to equation (29), we get that

a τ -periodic solution of (29), (31), Ã ∈ H1+β,
1+β

2 (Q×R) exists such
that

|Ã|(1+β)
Q×R

≤ M(β), ∀β ∈ (0, 1), (33)

‖Ã‖(2)
p,Ω×[0,τ ] ≤ M(p), ∀p > 1. (34)

The quantity M(p) in (34) is independent of N because of (9).

Regarding the term c2

1+kB
2

∂Ã
∂y

− c3

1+µB
2

∂2Ã
∂x2 as a known source

term belonging to Lp, problem (30), (32) satisfies assumptions of
Theorem 4.1 of the Appendix, hence a periodic solution B̃ exists,

B̃(x, t) ∈ H1+β,
1+β

2 (Q ×R).
Following a procedure similar to the one employed in the previous

section, taking into account estimates (34) and (68), (67) of the
Appendix, we obtain:

‖B̃‖(2)
p,Q×[0,τ ] ≤ M(p), (35)

|B̃|(1+β)
Q×R

≤ M(β), (36)

where M(p) and M(β) are independent of N .
Taking N > M(β) we obtain that T maps Σ into itself.

Finally, working as in Section 3, we prove the continuity of the opera-
tor T , which implies, by means of the Schauder fixed point Theorem,
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the existence of a fixed point for T and then a periodic solution of
problem (4), (5), (26), (A,B) ∈ C2,1(Q × R).

Note that estimates (34) and (35) hold on Q × [0, τ ], where τ is
the period of the boundary data, hence we can not prove uniqueness
as done in Section 3.

We now treat the case in which c = 0. We obtain an existence
result of a periodic solution via a compactness argument, passing to
the limit when c tends to zero, making also use of (70).

Theorem 3.2. Under assumptions (27) (28), if c = 0 and ci, i =
1, ...4, k nonnegative constants, µ > 0, λ 6= 0, the parabolic system
(4)-(5), with boundary data (26), has at least a τ -periodic solution
(A,B) ∈ C2,1(Q ×R).

Proof. From Theorem 4.1, there exists a periodic solution (An, Bn)
of the system (4)-(5) with c = 1

n
, n ∈ N and boundary data (26).

From estimate (70), taking into account (9), we have

|An|(0)Q×R
≤ C(K), (37)

where C is independent of n. Using estimate (10.12) p.355 of [10]
and (37), we get that

‖An‖(2)
q,Q×[t,t+τ ] ≤ C(K, q), ∀t ∈ R, q > 1, (38)

where C is independent of n.
At this point, applying estimate (70) to equation (5) and taking

into account (38) which allows us to consider the terms containing
An as known terms, we get that

|Bn|(0)Q×R
≤ C(K), (39)

and then, as done in (38):

‖Bn‖(2)
q,Q×[t,t+τ ] ≤ C(K, q),∀t ∈ R, q > 1. (40)

where C is independent of n.
By means of an embedding theorem we obtain:

|An|(1+β)
Q×R

+ |Bn|(1+β)
Q×R

≤ C(K,β), β ∈ (0, 1), (41)
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where C, as usual, is independent of n.
We can now extract a subsequence, which we still denote (An, Bn),
converging, if n → ∞, to a solution (A,B) of system (4)-(5) with
c = 0 and boundary data (26). The functions A and B are τ -periodic
functions such that

|A|(1+β)
Q×R

≤ C(K,β), β ∈ (0, 1), (42)

|B|(1+β)
Q×R

≤ C(K,β), β ∈ (0, 1). (43)

Finally, a bootstrap argument proves that A,B ∈ C2,1, Theorem 3.2
is thus proved.

4. Appendix

In this Appendix, we consider the following parabolic equation

∂u

∂t
= aij(x, t)

∂2u

∂xi∂xj
+ bi(x, t)

∂u

∂xi
− bu3 +

−c(x, t)u + f(x, t) ≡ L(u), on Ω × R, (44)

u(x, t) = h(x, t), on ∂Ω × R, (45)

where

Ω ⊂ RN ,

Ω is a bounded smooth domain or

a cartesian product of intervals,

aij, bi, c ∈ Hα, α
2 (Ω × R), α ∈ (0, 1),

|aij|(α)
Ω×R

+ |bi|(α)
Ω×R

+ |c|(α)
Ω×R

≤ H,

f ∈ Lq,loc(Ω × R), q > N + 2, (46)

h ∈ C2,1(Ω × R),

aij(x, t) ≥ δ > 0, c(x, t) ≥ δ > 0, b ≥ 0,

ai,j, bi, c, f, h are τ − periodic.

We can make more general assumptions on Ω but the previous ones
are sufficient to our purpose.
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Theorem 4.1. Under assumptions (46), the parabolic problem (44)-
(45) has one and only one τ -periodic solution u(x, t) such that u ∈
H1+β,

1+β

2 (Ω × R) ∩ W 2,1
q (Ω ×R), ∀q > N + 2, β = 1 − N+2

q
.

Proof. We introduce a suitable initial datum u0(x) satisfying the
zero order compatibility conditions and the estimate

|u0|(2)Ω ≤ M |h|(2)∂Ω×R
. (47)

We now consider the problem (44)-(45) for x ∈ Ω, t ∈ [0,+∞) with
the initial condition

u(x, 0) = u0(x), x ∈ Ω. (48)

Clearly this problem admits an unique solution u∗(x, t).

Let us consider the following problem

∂u

∂t
= aij

∂2u

∂xi∂xj
+ bi

∂u

∂xi
− bu3 − cu + |f(x, t)|, (49)

on Ω × (0,+∞)

u(x, t) = max{max
Ω×R

|h|,max
Ω

|u0|}

≡: B, on ∂p(Ω × (0,+∞)) (50)

We denote by ũ the solution of problem (49), (50). We have that

ũ(x, t) ≥ 0, in Ω × (0,+∞)

and ũ ≥ u∗.

Since the term −bũ3 is nonpositive, denoted by û the solution of
the following problem:

∂u

∂t
= aij

∂2u

∂xi∂xj
+ bi

∂u

∂xi
− cu + |f(x, t)|,

on Ω × (0,+∞), (51)

u(x, t) = B, on ∂p(Ω × (0,+∞)), (52)

we have that û ≥ ũ. Applying Theorem 9.1 p.341 of [10] to problem
(51), (52) and the embedding theorem of p.342 with q > 1 + N

2 , we
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obtain a C0 estimate for û, hence a upper bound for u∗. Analogously
we can find a lower bound for u∗, hence we have that

|u∗|(0)ΩT
≤ C(T,H, ‖f‖q,Ω×(0,τ), |h|(2)Ω×R

), (53)

where T ∈ (0,+∞) is fixed.
We now prove an estimate for u∗(x, t) which will be crucial in

the following:

|u∗|(0)Ω×[0,+∞) ≤ C(H, δ, ‖f‖q,Ω×(0,τ), |h|(2)Ω×R
). (54)

Let us consider the sequence un(x, t) :≡ u∗(x, t+nτ), n ∈ N, x ∈ Ω,
t ≥ 0.
We define Vn,m :≡ un−um = u∗(x, t+nτ)−u∗(x, t+mτ). Recalling
that ai,j , c, f , h are τ - periodic, Vn,m satisfies:

LVn,m :≡ ∂Vn,m

∂t
− aij

∂2Vn,m

∂xi∂xj
− bi

∂Vn,m

∂xi
+

+[c + b(u2
n + u2

m + unum)]Vn,m

= 0, on Ω × (0,+∞), (55)

Vn,m(x, t) = 0, on ∂Ω × [0,+∞), (56)

Vn,m(x, 0) = un(x, 0) − um(x, 0), x ∈ Ω. (57)

As a first step, let us concentrate ourselves on V1,0(x, t) = u∗(x, t +
τ) − u∗(x, t), t ∈ [0, τ ].

From (47) and (53), the initial datum V1,0(x, 0) = u∗(x, τ)−u0(x)
is bounded:

|V1,0(x, 0)|(0)Ω ≤ C + M |h|(2)∂Ω×R
≡: C1. (58)

The function z(x, t) :≡ C1e
−δt is a supersolution of V1,0(x, t): in fact

from (58), z(x, 0) ≥ V1,0(x, 0), for any x ∈ Ω and z(x, t) ≥ V1,0(x, t),
for any (x, t) ∈ ∂Ω × (0,+∞). Moreover from the definition (55) of

L, Lz =

(

b(u2
1 + u2

0 + u1u0) + (c − δ)

)

z. From assumptions (46),

we have that Lz > 0 = LV1,0 hence z(x, t) = C1e
−δt ≥ V1,0(x, t).

Analogously we can show that −C1e
−δt is a subsolution of V1,0(x, t),

then

max
Ω

|V1,0(x, t)| ≡ max
Ω

|u(x, t + τ) − u(x, t)|

≤ C1e
−δt, ∀t > 0. (59)
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At this point we observe that, for any t > 0, there exists an n and a
t′ ∈ [0, τ ] such that t = t′ + nτ . Hence

|u∗(x, t)| ≤ |u∗(x, t′ + nτ) − u∗(x, t′ + (n − 1)τ)| +
+|u∗(x, t′ + (n − 1)τ)|

≤ C1 exp (−δ(t′ + (n − 1)τ)) +

+|u∗(x, t′ + (n − 1)τ)|, (60)

where the last inequality has been obtained from (59). Applying the
previous procedure to u∗(x, t′ + (n− 1)τ) and iterating step by step,
we get

|u∗(x, t)| ≤ C1 exp (−δt′)[exp (−δ(n − 1)τ) +

+ exp (−δ(n − 2)τ) + · · · + 1] + |u∗(x, t′)|. (61)

Since t′ ∈ [0, τ ], the term u∗(x, t′) is bounded because of (53), hence

|u∗(x, t)| ≤ C1S + C ≡ K1,

where S is the sum of the geometrical series of ratio exp(−δτ) and
K1 is independent of t. Thus (54) is proved.

Now we prove that {un} is a Cauchy sequence.
From (54), we get that

|Vn,m(x, 0)|(0)Ω ≤ 2K1,

hence, proceeding as done to get (59), we obtain that ±2K1e
−δt are

super and sub solutions of Vn,m, i.e. :

max
Ω

|Vn,m(x, t)| = |u(x, t + nτ) − u(x, t + mτ)| ≤ 2K1e
−δt, ∀t > 0.

(62)
From estimate (62), we have that, for every n, m ∈ N:

|un(x, t) − um(x, t)| ≤ 2K1e
−δt. (63)

Hence, for any ǫ > 0, it is possible to choose a T such that, for any t >
T , |un(x, t) − um(x, t)| ≤ ǫ. Consequently if n′, m′ ≥ max(n,m) + k
(where k is such that kτ > T ) we have

|un′(x, t) − um′(x, t)| ≤ ǫ , in Ω × (0,+∞)
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and then it is proved that {un} is a Cauchy sequence, which implies
that

lim
n

un = u. (64)

Moreover

u(x, t + τ) = lim
n

un(x, t + τ)

= lim
n

u(x, t + (n + 1)τ)

= lim
n

un+1(x, t)

= u(x, t).

We now find some estimates for u∗(x, t) that hold in the whole Ω ×
(0,+∞).
We regard the term −b(u∗)3 as a known equibounded term because
of estimate (54). Applying estimate (10.12) p.355 of [10] to problem
(44), (45), (48), we obtain

supt≥0‖u∗‖(2)
q,Ω×[t,t+τ ] ≤ M(q,H, δ, ‖f‖q,Ω×(0,τ), |h|(2)Ω×R

), (65)

where q > 1 + N
2 .

At this point, by means of an embedding theorem, see Corollary
at p.342 of [10], taking q > N + 2 we find

|u∗|(1+β)
Ω×[0,+∞) ≤ M(β,H, δ, ‖f‖q,Ω×(0,τ), |h|(2)Ω×R

),

where β = 1 − N + 2

q
. (66)

Obviously the previous estimates hold also for un(x, t). Hence, pass-
ing to the limit, we obtain that estimates (65)-(66) hold also for
u(x, t) and then u is a solution of (44)-(45) in Ω × (0,+∞).

The function u(x, t) can be extended to negative t, thus obtaining
a τ -periodic solution of (44), (45) in Ω × R such that

‖u‖(2)
q,Ω×[t,t+τ ] ≤ M(q,H, δ, ‖f‖q,Ω×(0,τ), |h|(2)Ω×R

),

∀t ∈ R, ∀q > N + 2, (67)

|u|(1+β)
Ω×R

≤ M(β,H, δ, ‖f‖q,Ω×(0,τ), |h|(2)Ω×R
),

where β = 1 − N + 2

q
, (68)
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As far as uniqueness is concerned it suffices to remark that if u1(x, t)
and u2(x, t) are two periodic solutions of (44)-(45), then v(x, t) :=
u1(x, t)−u2(x, t) is τ -periodic. On the other hand v(x, t) satisfies an
equation similar to equation (55) hence an estimate like (59) holds,
i.e.

|v| ≤ 2Ce−δt,

which contradicts the periodicity of v.
Theorem 4.1 is thus completely proved.

We now prove an a priori estimate similar to (54) which is inde-
pendent of δ.

The difficulty of this estimate lies in the fact that f belongs to
Lq,loc. If this assumption is replaced by f bounded, the C0 estimate
can be straightforwardly obtained by means of explicit sub and super
solutions of the problem (44)-(45) of the following form: Sup(x, t) =
−γx2

1+β, sub(x, t) = γx2
1−β, where x1 is an arbitrary space direction,

and γ and β are suitable constants.

Proposition 4.2. Assume that

Ω ⊂ RN ,

Ω is a bounded smooth domain or

a cartesian product of intervals,

aij , bi are constant with aij > 0, (69)

c ∈ Hα, α
2 (Ω × R), α ∈ (0, 1), |c|(α)

Ω×R
≤ H,

f ∈ Lq,loc(Ω × R), q > N + 2, h ∈ C2,1(Ω ×R),

c(x, t) ≥ δ > 0, b ≥ 0,

c, f, h are τ − periodic with respect to the time variable.

Then the periodic solution u of problem (44)-(45) is such that

|u|(0)Ω×R
≤ C(H1, |h|(2)Ω×R

, ‖f‖q,Ω×(0,τ)), (70)

where C is independent of δ.

Proof. Let u∗ be the solution of problem (44), (45), (48).
Let û the solution of problem (51), (52) defined in the proof of

Theorem 4.1.
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We know that û ≥ u∗, û ≥ 0 in Ω × (0,+∞). Moreover −û is
subsolution of u∗, hence:

−û(x, t) ≤ u∗(x, t) ≤ û(x, t), in Ω × (0,+∞). (71)

We define now the following sequence:

ûn(x, t) :≡ û(x, t + nτ), n ∈ N, x ∈ Ω, t ≥ 0.

Following the same procedure as in the proof of Theorem 4.1, we
can show that ûn is a Cauchy sequence converging to a τ -periodic
function û defined in Ω × R

lim
n

ûn = û.

Recalling the definition (64) of u, from (71) we have that

−û(x, t) ≤ u(x, t) ≤ û(x, t), in Ω × (0,+∞). (72)

The periodic function v ≡ û(x, t) − B (B is defined in (52)) solves

∂v

∂t
= aij

∂2v

∂xi∂xj
+ bi

∂v

∂xi
+

−c(v + B) + |f |, on Ω × R, (73)

v(x, t) = 0 on ∂Ω ×R. (74)

We now find an L2 estimate for v in Ω × (0, τ) independent of δ.
We multiply by v equation (73) and we integrate in Ω. Taking

into account that v = 0 on ∂Ω × R, we obtain:

1

2

∫

Ω

∂(v2)

∂t
dx + aij

∫

Ω
|∇v|2 dx =

= −
∫

Ω
c(v + B) v dx +

∫

Ω
|f | v dx (75)

≤
∫

Ω
(|f | − cB) v dx

≤ ǫ

∫

Ω
v2 dx + C(ǫ)

∫

Ω
(|f | − cB)2 dx.

The last inequality is obtained by Young’s inequality where ǫ and
C(ǫ) are positive constants.
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At this point we integrate with respect to the time variable in the
interval [0, τ ], taking into account the τ -periodicity of v, we obtain:

aij

∫ τ

0

∫

Ω
|∇v|2 dxdt ≤ ǫ

∫ τ

0

∫

Ω
v2 dxdt +

+C(ǫ)

∫ τ

0

∫

Ω
(|f | − cB)2 dxdt (76)

≤ ǫC1

∫ τ

0

∫

Ω
|∇v|2 dxdt + C2,

the last inequality is obtained by Poincaré inequality, from assump-
tion f(x, t) ∈ L2,loc(Ω×R) and the boundedness of cB in Ω× [0, τ ].
At this point, taking ǫ suitably small, we obtain

∫ τ

0

∫

Ω
|∇v(x, t)|2 dxdt =

∫ τ

0

∫

Ω
|∇û(x, t)|2 dxdt ≤ C. (77)

Note that the constant C in (77) is independent of δ.
From Poincaré inequality, we have

∫ τ

0

∫

Ω
û

2
(x, t) dxdt ≤ C, (78)

where C is independent of δ.
Since û is τ -periodic, from (78), we have that

‖û‖2,Ω×[−τ,2τ ] ≤ 3C.

At this point we can use estimate (10.12) p.355 of [10], thus obtaining

‖û‖(2)
q,Ω×[0,τ ] ≤ C, q ≥ 2, (79)

where C is independent of δ.
Hence, by the embedding theorem at p.342 of [10], we have

|û|(0)Ω×R
≤ C, (80)

where C is independent of δ. From (72) and (80), (70) follows.
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