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Quantum Connections and

Quantum Fields

Daniel Canarutto (∗)

Summary. - Recent developments in the geometry of distributional
bundles yield a natural way of describing quantum fields on a
curved spacetime background.

1. Introduction

This work is addressed mainly to mathematicians and mathematical
physicists having a background in differential geometry, who wish to
understand fundamental notions of quantum field theory on curved
spacetime in a rigorous geometric framework. The attention here
is focused on the general notion of a quantum field rather than on
particular instances, though in the last section a basic example is
given of how the described ideas can be put to work in practice.
Note, however, that other pieces need to be added in order to obtain
a complete geometrical QFT framework; above all, the still open
question of the description of particle interactions is left untouched
here. I plan to address at least some of the remaining pieces in
forthcoming papers.

Basically, quantum fields are certain geometric structures nat-
urally arising on quantum bundles; these, on turn, are functional
bundles derived from the ‘classical’ finite-dimensional bundles where
the corresponding classical field theory is formulated. The method
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used for studying the geometry of functional bundles is based on
the notion of smoothness introduced by Frölicher (or F-smoothness)
and studied by him and several authors [6, 7, 9, 10]. This method
was enlarged by myself [3, 4] to include a treatment of distributional
bundles, namely bundles over classical (i.e. finite-dimensional, Haus-
dorff) manifolds, whose fibres are distributional spaces.

In order to recover the usual notion of a quantum field, namely
that of a distribution (on configuration or phase space) valued into
a space of operators and obeying a classical field equation, one has
to introduce the notion of a quantum connection. One already finds
a notion of quantum connection in geometric formulations of Quan-
tum Mechanics, in particular in the standard geometric quantization
approach [12], as well as in developments such as the ‘covariant quan-
tization’ approach [5, 8]. There, the term under consideration refers
to a connection, on a finite dimensional (‘classical’) bundle, related
to the PDE obeyed by wave functions. This equation, however, can
be reinterpreted as the equation of motion for ‘quantum histories’,
sections of a ‘Hilbert functional bundle’ over time describing the
evolution of a quantum state; on turn, one can view such sections
as covariantly constant relatively to a connection on the functional
bundle.

Now the method of F-smoothness allows to introduce and study,
in the context of functional bundles, several usual notions of dif-
ferential geometry. In the distributional case, a connection in the
underlying finite-dimensional structure determines a distributional
connection, while other interesting distributional connections do not
arise from classical ones. In this context, a quantum connection on
a distributional bundle V → M (where M is the classical spacetime
manifold) is defined to be an F-smooth linear connection such that
horizontal transport along any timelike curve determines continuous
isomorphisms among the fibres. Then, a geometric formulation of
the basic notions of quantum field theory can be achieved by start-
ing from certain classical structures, which naturally yield quantum
bundles and various connections on them. The usual notion of a
quantum field, in the form of a section of the quantum state bundle
valued into a space of operators, can be recovered from the above
said quantum structures through certain bundle splittings; so called
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free fields and interpolating fields are also recovered.

The plan of the paper can be summarized as follows: after a short
review of the F-smooth geometry of distributional bundles, I intro-
duce quantum bundles, quantum connections and briefly discuss the
traditional quantum ‘pictures’ from this point of view. Next, the ge-
ometrical structures corresponding to the objects traditionally called
‘quantum fields’ are introduced, and their main properties discussed.
Finally, I describe a possible practical implementation of the above
ideas on a curved spacetime, by using the notion of ‘detector’; a new
characterization of the connections naturally induced on quantum
phase bundles is also provided.

2. F-smooth geometry on distributional bundles

For details about the ideas reviewed in this section, see [1, 3, 4].

Let p : Y → Y be a real or complex classical vector bun-
dle, namely a finite-dimensional vector bundle over the Hausdorff
paracompact smooth real manifold Y . Moreover assume that Y

is oriented, let n := dim Y , and consider the positive component
V∗Y := (∧nT∗Y )+ → Y , called the bundle of positive densities on
Y .

Let Y◦ ≡ D◦(Y ,V∗Y ⊗Y Y
∗) be the vector space of all ‘test sec-

tions’, namely smooth sections Y → V∗Y ⊗Y Y
∗ which have com-

pact support. A topology on this space can be introduced by a
standard procedure [11]; its topological dual will be denoted as Y ≡
D(Y ,Y ) and called the space of generalized sections, or distribution-
sections of the given classical bundle. Some particular cases of gen-
eralized sections are that of r-currents (Y ≡ ∧rT∗Y , r ∈ N) and
that of half-densities (Y ≡ (V∗Y )1/2 ≡ V−1/2Y ).

A curve α : R → Y is said to be F-smooth if the map

〈α, u〉 : R → C : t 7→ 〈α(t), u〉

is smooth for every u ∈ Y◦ . Accordingly, a function φ : Y → C is
called F-smooth if φ ◦ α : R → C is smooth for all F-smooth curve
α . The general notion of F-smoothness, for any mapping involving
distributional spaces, is introduced in terms of the standard smooth-
ness of all maps, between finite-dimensional manifolds, which can be
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defined through compositions with F-smooth curves and functions.
Moreover, it can be proved that a function f : M → R , where M is
a classical manifold, is smooth (in the standard sense) iff the compo-
sition f ◦ c is a smooth function of one variable for any smooth curve
c : R → M . Thus one has a unique notion of smoothness based on
smooth curves, including both classical manifolds and distributional
spaces.

In the basic classical geometric setting underlying distributional
bundles one considers a classical 2-fibred bundle

V
q−−−−→ E

q
−−−−→ B ,

where q : V → E is a vector bundle, and the fibres of the bundle
E → B are smoothly oriented. Moreover, one assumes that q ◦ q :
V → B is also a bundle, and that for any sufficiently small open
subset X ⊂ B there are bundle trivializations

(q , y) : EX → X × Y , (q ◦ q , y) : VX → X × Y

with the following projectability property: there exists a surjective
submersion p : Y → Y such that the diagram

VX

(q ◦ q , y)
−−−−−−−→ X × Y

q




y





y
11X × p

EX −−−−→
(q, y)

X × Y

commutes; this implies that Y → Y is a vector bundle, not trivial
in general.

The above conditions are easily checked to hold in many cases
which are relevant for physical applications, and in particular when
V = E ×B W where W → B is a vector bundle, when V = VE

(the vertical bundle of E → B) and when V is any component of
the tensor algebra of VE → E .

For each x ∈ B one considers the distributional space Vx :=
D(Ex , Vx), and obtains the fibred set

℘ : V ≡ DB(E,V ) :=
⊔

x∈B

Vx → B .
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An isomorphism of vector bundles yields an isomorphism of the cor-
responding spaces of generalized sections; hence, a local trivialization
of the underlying classical 2-bundle, as above, yields a local bundle
trivialization

(℘,Y) : VX → X × Y , Y ≡ D(Y ,Y )

of V → B . Moreover, a smooth atlas of 2-bundle trivializations de-
termines a linear F-smooth bundle atlas on V → B , which is said to
be an F-smooth distributional bundle. In general, the F-smoothness
of any map from or to V is equivalent to the F-smoothness of its
local trivialized expression.

One defines the tangent space of any F-smooth space through
equivalence classes of F-smooth curves; tangent prolongations of any
F-smooth mappings can also be shown to exist. Thus one gets, in
particular, the tangent space TV, which has local trivializations as
TX ×TY, its vertical subspace and the first jet bundle JV → V . A
connection is defined to be an F-smooth section G : V → JV.

With some care, many of the usual chart expressions of finite-
dimensional differential geometry can be extended to the distribu-
tional case. In particular, let σ : B → V be an F-smooth section
and σY := Y ◦ σ : B → Y its ‘chart expression’. Then its covariant
derivative has the chart expression

(∇σ)Y = ẋa (∂aσ
Y − G Y

a Y
σY) ,

where (xa) is a chart on X ⊂ B and G Y

a Y
: X → End(Y).

The notions of curvature and of adjoint connection can also be
introduced. Furthermore, it can be shown that a projectable connec-
tion on the underlying classical 2-bundle determines a distributional
connection; however, not all distributional connections arise from
classical ones.

3. Quantum bundles

The formulation of quantum field theory, in a standard sense, re-
quires time (though eventually the scattering matrix in flat space-
time turns out to be an invariant quantity). On a curved spacetime
M one could fix a time map, namely a fibration t : M → T , where
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T is a 1-dimensional manifold, such that the fibres Mt ⊂ M , t ∈ T ,
are spacelike submanifolds. Then one gets a distributional bundle
V → T by taking the fibre Vt to be a space of distributions on Mt .
The classical structure yields a connection on this bundle.

Another approach considers a ‘detector’, represented by a 1-
dimensional timelike submanifold T ⊂ M . The fibre of the quantum
bundle over any t ∈ T can be taken to be a space of distributions over
the phase-space, at t, of the considered particle. The phase-bundle
of a particle is the subbundle P ⊂ T∗M over M whose fibres are the
hyperboloids constituted of future-pointing covectors of given length,
determined by the particle’s mass; for a particle of vanishing mass,
the phase-bundle is the bundle of celestial spheres, whose fibres are
the projective spaces of the null cones in T∗M . It can be shown [4]
that the classical structures naturally determine a connection on the
distributional bundle P := DM (P ,V ), where V → M is the bun-
dle describing the particle’s internal structure. On turn, this yield a
connection on the restricted bundle over T , PT = DT (P ,V ).

I’ll discuss the detector approach further in §8. In the next sec-
tions, however, we won’t be strictly concerned with a particular
quantum bundle, but rather with a general argument, which will
enable us to recover a notion of quantum field in a precise geomet-
rical setting. So, we’ll consider a distributional bundle V → T ; it
is convenient to assume that this is a bundle of V -valued general-
ized half-densities, V = DT (E,V−1/2E ⊗V ), which implies that the
topological dual bundle V◦ → T of test elements is a subbundle of
the ‘adjoint’ bundle V⋆ = DT (E,V−1/2E ⊗V ⋆). One also has the
conjugate bundle V̄ = DT (E,V ); usually, a Hermitian structure on
V is also assumed, yielding an isomorphism V̄ ↔ V⋆.

Next, one considers the corresponding Fock bundle to be

W =

∞
⊕

r=0

Vr = V0 ⊕
T

V1 ⊕
T

V2 ⊕
T

· · · ,

where either Vr = ∨rV (bosons) or Vr = ∧rV (fermions). If ψ ∈
Vr and u ∈ V◦ are in the fibres over the same t ∈ T , then their
contraction u|ψ is in Vr−1 over t . Then one has a morphism over T

a : V◦ → End(W) : u 7→ a[u] , a[u]ψ := u|ψ .
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Its Hermitian adjoint is an antilinear morphsim a
† : V◦ → End(W),

given by

a
†[u]ψ =

{

u† ∨ ψ (bosons) ,

u† ∧ ψ (fermions) .

The combination

Ψ := a + a
†

is a real linear morphism V◦ → End(W), called the quantum field of
the considered distributional bundle.

Let u, v ∈ V◦ be in the same fibre. Then, by elementary tensor
algebra, one finds the boson case commutators

a[u]a†[v] − a
†[v] ◦ a[u] = 〈u|v†〉 11 ,

a[u] ◦ a[v] − a[v] ◦ a[u] = 0 ,

a
†[u] ◦ a†[v] − a

†[v] ◦ a†[u] = 0 ,

Ψ[u] ◦ Ψ[v] − Ψ[v] ◦ Ψ[u] = 2 iℑ〈u|v†〉 11 .

Note that a[u] and a
†[v] commute iff 〈u|v†〉 = 0 ; in particular, this is

true if u and v are different from 0 only in non-intersecting domains.

In the Fermion case one has the anticommutators

a[u] ◦ a†[v] + a
†[v] ◦ a[u] = 〈u|v†〉 11 ,

a[u] ◦ a[v] + a[v] ◦ a[u] = 0 ,

a
†[u] ◦ a†[v] + a

†[v] ◦ a†[u] = 0 ,

Ψ[u] ◦ Ψ[v] + Ψ[v] ◦ Ψ[u] = 2ℜ〈u|v†〉 11 .

Note that a[u] and a
†[v] anticommute iff 〈u|v†〉 = 0 .

4. Quantum connections

Let G be an F-smooth linear connection on the Fock bundle W  T .
Since the base is 1-dimensional, the curvature of G vanishes. The
corresponding covariant derivative will be denoted by ð[G] , or simply
by ð if no confusion arises. Possibly, G may arise from a linear
connection on V  T .
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Given an F-smooth linear trivialization (t,Y) : W → T × Y ,
for any F-smooth section ψ : T → W one has the trivialization
expression

(ðψ)Y = ∂(ψY) − GY

Y
ψY ,

where ψY := Y ◦ ψ : T → Y and the like, and

GY

Y
: TT → End(Y)

is the Y-expression of G : W → JW . If (t,Y′) : V → T × Y ′ is
another trivialization, then I denote the transition map by

AY
′

Y
:= (t,Y′) ◦ (t,Y)−1 : T × Y → T × Y ′ ,

or AY
′

Y
(t) = Y′ ◦ Y−1

t : Y → Y ′ .

In particular the connection G itself, being flat, determines a bun-
dle trivialization (t,G) : V → T × G , characterized by GG

G
= 0 ∈

End(G) . Thus

GY

Y
= (∂AY

G
)AG

Y
= −AY

G
∂AG

Y
.

Definition 4.1. A quantum connection is an F-smooth linear con-
nection on a Fock bundle W  T , such that parallel transport along
T determines continuous isomorphisms among the fibres.

Namely, if G is a quantum connection, then for each t, t′ ∈ T one
has an isomorphism

G(t′,t) : Wt → Wt′ ;

this family of isomorphisms fulfils the natural group properties

(G(t′,t))
−1 = G(t,t′) , G(t′′,t′) ◦ G(t′,t) = G(t′′,t) , G(t,t) = 11 ,

and a section ψ : T → W is parallely transported, namely ψ(t′) =
G(t′,t) ψ(t) , if and only if it is covariantly constant, that is ðψ = 0 .
With regard to the trivialization of W  T determined by G ,
observe that the space of covariantly constant states can be identified
with any fibre Wt , t ∈ T ; but there is no distinguished choice of
such reference fibre.
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A quantum connection yields a dual connection on the bundle
W◦ → T of test elements, generated by V◦ : a covariantly constant
section u : T → W◦ fulfills u(t′) = u(t) ◦ G(t,t′) , namely the contrac-
tion between covariantly constant sections is constant. Possibly, this
may extend to an adjoint connection on W⋆.

The two basic ingredients of a quantum field theory are the free
particle states and the interactions. Free particle states are described
as sections T → W which are covariantly constant relatively to a
free-field connection G induced by a connection G1 on W1 ≡ V .
Then, the free-field connection transport preserves the particle num-
ber.

Interactions are described by a section

I : T → T∗
T ⊗

T

End(V) ,

namely one has an interaction connection G := G + I which de-
scribes the full dynamics of the particle system under consideration.
Typically, I changes the particle number and mixes different types
of particles. Its nature and existence pose complex questions, which
won’t be addressed in detail in this paper.

In a typical QFT setting one has, besides the free-field and the
interaction connections, a further linear connection Y on W  T .
In the time-map t : M → T scheme, for example, this is related
to the flux associated with the vector field orthogonal to the fixed
time hypersurfaces; for an inertial observer in flat spacetime, this
is just the distinguished family of isomorphisms among space slices
at different times. In general, it can be thought of as associated
with the choice of some suitable charts on the underlying classical
bundles.

Consider the parallel transports, among the fibres of W  T ,
determined by the above connections Y, G and G . These will be
respectively indicated by Y, G , G . Namely, for each t, t′ ∈ T one
has linear maps

Y(t′,t) , G(t′,t) , G(t′,t) : Wt → Wt′ ,

fulfilling the natural group properties. The maps G(t′,t) and G(t′,t) ,
restricted to the appropriate Hilbert subspaces, will turn out to be
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unitary (i.e. isometries). In general, this is not true for Y , but for
the flat inertial case.

The three quantum connections Y , G and G respectively deter-
mine trivializations

(t,Y) : W → T ×Y , (t,G) : W → T ×G , (t,G) : W → T ×G .

In order to recover the traditional quantum mechanical pictures in
the curved spacetime case, it is convenient to fix an element t0 ∈
T . Then, using Y ≡ Wt0 as the fibre type, one obtains bundle
trivializations

(t,Y), (t,G), (t,G) : W → T × Y ,

where
Y(ψt) := Y(t0,t)(ψt) , ψt ∈ Vt , t ∈ T ,

and the like. Moreover, some notations can be simplified by setting

Yt := Y(t,t0) i.e. Yt = (Yt)
−1 = Y(t0,t)

and the like, where Yt denotes the restriction of Y to Wt .

5. Quantum pictures

A section ψ : T → V is said to represent a ‘quantum history’ if it is
G-constant, namely if G ◦ ψ = constant, or, still equivalently, if it is
parallely transported through Gt , that is

ψ(t) = Gt ψ0 , ψ0 := ψ(t0) ∈ Vt0 .

A G-constant ψ can be characterized by the map

ψS : T → Y : t 7→ ψS(t) := Y
(

ψ(t)
)

= Y−1
t ◦ Gt(ψ0) .

This ‘time dependent state vector’ describes the quantum history
in the Schrödinger picture. In this picture, a physical observable is
represented by some operator AS ≡ A0 ∈ End(W t0) ; a measurement
made at time t ∈ T is represented by ASψS(t) . One says that state
vectors are time-dependent, while operators representing observables
are time-independent.
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The converse is true in the Heisenberg picture: now the state
vector is the time-independent object ψH ≡ ψ0 := G

(

ψ(t)
)

(in other
terms, quantum histories are represented by their value at t0). One
introduces the ‘time-dependent operator’

AH : T → End(Y) : t 7→ AH(t) := G−1
t ◦ Yt ◦A0 ◦ Y−1

t ◦ Gt .

Let u0 ∈ (W◦)t0 ≡ Y◦ and set uS : T →: t 7→ uS(t) := u0◦G−1
t ◦Yt ;

then
〈uH | AH(t)ψH〉 = 〈uS(t) | ASψS(t)〉 .

One can consider other pictures, such as for example an inter-
action picture, where both state vectors and operators are time-
dependent:

ψI : T → Y : t 7→ ψI(t) := G−1
t

◦ Gt(ψ0) ,

AI : T → End(Y) : t 7→ AI(t) := G−1
t

◦ Yt ◦ A0 ◦ Y−1
t ◦ Gt ,

with ψ0 ∈ Wt0 ≡ Y , A0 ∈ End(Y) .

Here, one could say that state vectors carry the time-dependency
generated by interactions, while the time-dependency of operators
comes from the free-field transport.

The Schrödinger and Heisenberg pictures arise from intertwining
the transports G and Y. Similar pictures are obtained by replacing
Y with G : time dependence now comes from comparing the full
interaction transport G with the free-field transport G . Consider the
map

U : T → End(Y) : t 7→ Ut := G−1
t

◦ Gt ≡ G ◦ Gt ≡ AG

G(t) .

Then one has the modified Schrödinger and Heisenberg pictures

ψS : T → Y : t 7→ ψS(t) := Ut(ψ0) , AS = A0 ∈ End(Y) ,

ψH := ψ0 ∈ Y , AH : T → End(Y) : t 7→ AH(t) := U−1
t ◦ A0 ◦ Ut .

On the other hand, consider a section Z : T → End(W) . Define
maps Zt0 , Zt0 : T → End(Y) by

Zt0(t) := G−1
t

◦ Z(t) ◦ Gt , Zt0(t) := G−1
t ◦ Z(t) ◦ Gt ,
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so that Zt0(t) = U−1
t ◦ Zt0(t) ◦ Ut (if Zt0 is constant in time, then

it can be seen as a “Schrödinger picture” operator, and Zt0 is its
corresponding “Heisenberg picture” operator). Moreover

Zt0(t)ψ0 = G(t0 ,t) ◦ Z(t) ◦ G(t,t0)ψ0 = G(t0 ,t)

(

Z(t)ψt

)

.

Proposition 5.1. The map U : T → End(Y) : t 7→ Ut := G ◦ Gt

fulfils

∂U − I
G

G
◦ U = 0 .

Proof. For ψ0 ∈ Y the section ψ : T → W given by ψ(t) := Gt(ψ0)
fulfils ðψ = 0 and ψG = Uψ0 . Thus 0 = (ðψ)G = ∂(ψG) − I

G

G ψ
G =

(∂U)ψ0 − I
G

G Uψ0 = (∂U − I
G

G
◦ U)ψ0 .

Besides the ‘reference time’ t0 , fix any two other times t1 , t2 ∈ T ,
t1 < t2 , to be regarded as ‘initial’ and ‘final’ times, respectively;
namely, one considers the system’s evolution from an ‘initial’ to a
‘final’ state (usually, one takes the limits t1 → −∞ and t2 → ∞).
Let ζ : T → W be constant relatively to the free-field connection
G , namely ζ(t′) = G(t′,t)ζ(t) , t, t′ ∈ T . Set

|ζ〉in ≡ ζ in ≡ ζt1 := G(t0 ,t1)ζ(t1) ∈ Y ,

|ζ〉out ≡ ζout ≡ ζt2 := G(t0 ,t2)ζ(t2) ∈ Y .

The idea behind this definition is that e.g. ζ in represents, in the
reference space Y, the state of a system which, at time t1 , was in the
same state as ζ(t1) ; namely, ζ in is the element in Y corresponding to
the section t 7→ G(t,t1)ζ(t1) , which is parallely transported relatively
to the full interaction connection. Similarly, if Z : T → End(W) is
G-constant, then one defines Z in and Zout by Z in ≡ Zt1 := G(t0,t1) ◦

Z(t1) ◦ G(t1,t0) ∈ Ot0 and the like.
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6. Quantum free fields

The fibred morphims a,a†,Ψ : V◦ → End(W) introduced in §3 can
be seen as sections

a : T → V ⊗
T

End(W) ,

a
† : T → V̄ ⊗

T

End(W) ,

Ψ := a + a
† : T → (V ⊕

T

V̄) tenT End(W) .

The usual notion of quantum field1 is rather that of a distribution
valued into the operators of a fixed configuration space, and can be
recovered by chosing some t0 ∈ T as a reference time, and using the
same fibre type Y ≡ Wt0 for all trivializations.

Definition 6.1. Let t1 ∈ T ; the free fields relative to t1 are the
sections

at1 , a
†
t1 , Ψt1 : T → (V ⊕

T

V̄)⊗ End(Y)

given by

at1 [ut] := G(t0,t1)
◦ a

[

ut ◦ G(t,t1)

]

◦ G(t1,t0) , ut ∈ V◦
1 ,

and the like.

One may say that at1 [ut] (resp. a†t1 [ut]) annihilates (resp. creates)
a particle at time t1 , the particle’s state being specified at time t
and transported to time t1 through the free-field connection. So if
ψ0 ∈ Wt0 ≡ Y then

at1 [ut]ψ0 = G(t0,t1)(ut1 |ψt1) ,

with ut1 := ut ◦ G(t,t1) , ψt1 := G(t1,t0)ψ0 ,

is the element in Y which represents the Heisenberg-picture state
ψ0 with a particle annihilated at time t1 . In particular one writes
a ≡ at0 and the like, getting

a[ut] ≡ at0 [ut] := a[G∗
(t,t0)ut] = G(t0,t)

◦ a[ut] ◦ G(t,t0) ∈ End(Y)

1Note that these objects are actually fixed structures, rather than ‘fields’ in
the standard sense.
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and the like. If u : T → V◦ is a section then, provided that the
integral converges,

at1 [u] :=

∫

T

at1 [ut] dt ∈ End(Y)

and the like.
Viewing at1 as a section of W → T valued in the vector space

End(Y) , one sees that it is covariantly transported through the free-
field connection (this explains the term ‘free field’). In fact, setting
ut1 := ut ◦ G(t,t1) , one may write (for example)

at1 [ut] ≡
〈

ut |at1(t)
〉

=
〈

ut1 |at1(t1)
〉

=
〈

ut G(t,t1) |at1(t1)
〉

=

=
〈

ut | G(t,t1)at1(t1)
〉

,

or
at1(t) = G(t,t1)at1(t1) ,

namely at1 is a G-horizontal section. A similar observation holds for
a
†
t1 and ulΨt1 . When t1 , t2 ∈ T are chosen, acting as initial and

final times for a scattering problem, then Ψt1 and Ψt2 correspond to
the free fields which are usually denoted as Ψin and Ψout .

Proposition 6.2. If t, t′ ∈ T , ut ∈ (V◦)t , vt′ ∈ (V◦)t′ , then one
has the boson case commutators

at1[ut] ◦ a
†
t1[vt′ ] − a

†
t1[vt′ ] ◦ at1 ![ut] =

〈

ut G(t,t1) , (vt′ G(t′,t1)
)†

〉

11 ,

Ψt1[ut] ◦ Ψt1[vt′ ] − Ψt1[vt′ ] ◦ Ψt1[ut] = 2 iℑ
〈

ut G(t,t1) , (vt′ G(t′,t1)
)†

〉

11 ,

and the fermion case anticommutators

at1[ut] ◦ a
†
t1[vt′ ] + a

†
t1[vt′ ] ◦ at1 ![ut] =

〈

ut G(t,t1) , (vt′ G(t′,t1)
)†

〉

11 ,

Ψt1[ut] ◦ Ψt1[vt′ ] + Ψt1[vt′ ] ◦ Ψt1[ut] = 2ℜ
〈

ut G(t,t1) , (vt′ G(t′,t1))
†
〉

11 ,

where 11 ≡ 11t0 is the identity of Vt0 .

Proof. It follows from the commuting and anticommuting formulas
of §3, after working out the various compositions involved.
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Remark 6.3. In particular, the above commutators (resp. anticom-
mutators) vanish if the supports of the free-field transports of ut and
vt′ at any given time do not intersect.

One may consider the ‘chart expressions’2

ΨY ,ΨG ,ΨG : T → (Y ⊕ Ȳ)⊗ End(Y)

of the free field Ψ, and the like for a and a
†. Namely, one has

ΨY(t)[u0] ≡ 〈u0 | ΨY(t)〉 = Ψ[u0Y(t0,t)] , t ∈ T , u0 ∈ Y

and the like (replace Y with G or G in the above formula), and finds

ΨY(t)[u0] = Ψ[u0 Y(t0,t)] = G(t0,t)
◦ Y(t,t0) ◦ Ψ[u0] ◦ Y(t0,t) ◦ G(t,t0) ,

ΨG(t)[u0] = Ψ[u0 G(t0,t) G(t,t0)] = Ψ[u0] = constant ,

ΨG(t)[u0] = Ψ[u0 G(t0,t) G(t,t0)] = Ψ[u0 Ucal−1
t ] ,

and the like. Of course, the fact that ΨG is constant is just another
way of saying that Ψ is covariantly constant relatively to the free
field connection G .

Proposition 6.4. In the boson case one has
[

ΨY(t)[u0] , ΨY(t′)[v0]
]

= 2 iℑ
〈

u0 AY

G
(t) ,

(

v0 AY

G
(t′)

)

†
〉

11 ,

[

∂
∂x0 ΨY(t)[u0] , ΨY(t′)[v0]

]

= 2 iℑ
〈

u0
∂

∂x0AY

G
(t) ,

(

v0 AY

G
(t′)

)

†
〉

11 ,

where t, t′ ∈ T , u0, v0 ∈ Y◦ .
In the fermion case one has

{

ΨY(t)[u0] , ΨY(t′)[v0]
}

= 2ℜ
〈

u0 AY

G
(t) ,

(

v0 AY
G(t′)

)

†
〉

11 ,

{

∂
∂x0 ΨY(t)[u0] , ΨY(t′)[v0]

}

= 2ℜ
〈

u0
∂

∂x0AY

G
(t) ,

(

v0 AY

G
(t′)

)

†
〉

11 ,

Proof. The first boson relation follows from ΨY(t)[u0] = Ψ[u0]AY

G
(t)

and from the commutation relation for Ψ ; the second follows by
keeping t′ fixed and deriving with respect to time at t . The argument
is similar in the Fermion case.

2Note that the free fields themselves are already defined through G and G ;
these are further compositions with the considered bundle trivializations.
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7. Interpolating fields

Next, one may recover the usual notion of interpolating quantum
field. This object is the morphism

∼
Ψ : V◦ → End(Vt0) over T given

by

∼
Ψ[ut] := G(t0,t) ◦ Ψ[ut] ◦ G(t,t0) = (Ψ[ut])

G .

Similarly, one has the interpolating fields
∼
a and

∼
a
†.

The ‘interpolating’ qualification refers to the fact that, for any
t1 ∈ T , one has

∼
Ψ[ut1 ] = G(t0,t1) ◦ Ψ[ut1 ] ◦ G(t1,t0) = Ψt1 [ut1 ] ,

namely
∼
Ψ takes the value Ψt1 ∈ End(Y) at time t1 . Moreover one

finds

∼
Ψ[ut] = G(t0,t) ◦ Ψ[ut] ◦ G(t,t0) = (Ut)

−1 ◦ Ψ[ut] ◦ Ut

and the like.

As for the free-fields, one can consider the ‘chart expressions’

∼
ΨY ,

∼
ΨG ,

∼
ΨG : T → (Y ⊕ Ȳ)⊗ End(Y)

of the interpolating fields seen as sections T → V ⊗ End(Vt0) , where
End(Vt0) ≡ End(Y) is a fixed vector space. One finds

∼
ΨY(t)[u0] =

∼
Ψ[u0 Y(t0,t)] = U−1

t ◦ ΨY(t)[u0] ◦ Ut ,

∼
ΨG(t)[u0] =

∼
Ψ[u0 G(t0,t)] = U−1

t ◦ Ψ[u0] ◦ Ut ,

∼
ΨG(t)[u0] =

∼
Ψ[u0 G(t0,t)] = G(t0,t) ◦ Ψ[u0 G(t0,t)] ◦ G(t,t0) ,

and the like for
∼
a and

∼
a
†.

Seeing interpolating field as sections T → (V ⊕T V̄)⊗ End(Y)
one may take their covariant derivatives relatively to the various
connections. These derivatives can be studied through contractions
of the fields with covariantly constant sections T → W◦ . In partic-
ular, the above formula for

∼
ΨG(t) shows how the interpolating field

∼
Ψ behaves relatively to the free-field connection.
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Proposition 7.1. One has

ð[G]
∼
ΨG = U−1 ◦ [Ψ,I

G

G] ◦ U .

Proof. Since ð[G∗](u0 G(t0,t)) = 0 one has

ð[G]
∼
ΨG(t)[u0] ≡

〈

ð[G]
∼
Ψ(t), u0 G(t0,t)

〉

= ∂
〈

∼
Ψ(t), u0 G(t0,t)

〉

=

= ∂
(

U−1
t ◦ Ψ[u0] ◦ Ut

)

= ∂U−1
t ◦ Ψ[u0] ◦ Ut + U−1

t ◦ Ψ[u0] ◦ ∂Ut =

= −(U−1
t ◦ ∂Ut ◦ U−1

t ) ◦ Ψ[u0] ◦ Ut + U−1
t ◦ Ψ[u0] ◦ ∂Ut =

= −U−1
t ◦ (I

G

G
◦ Ut) ◦ U−1

t ◦ Ψ[u0] ◦ Ut + U−1
t ◦ Ψ[u0] ◦ I

G

G
◦ Ut =

= U−1
t ◦

(

−I
G

G
◦ Ψ[u0] + Ψ[u0] ◦ I

G

G

)

◦ Ut ,

where the identities ∂U = I
G

G
◦U and ∂U = −U−1◦∂U ◦U−1 (following

from ∂(U−1 ◦ U) = 0) were used.

8. In practice...

Let {Bαi} , α ∈ A , 1 ≤ i ≤ n be a family of F-smooth sections
T → V such that, for each t ∈ T , {Bαi(t)} constitutes a general-
ized orthonormal complete set (the index i is relative to the fibres of
V → E, while A is a further index set). The assignment of such a
‘generalized frame’ determines an F-smooth connection on V → T ,
characterized by the requirement that each of its elements is covari-
antly constant. An arbitrary section φ : T → V can be written
as

φ = φαi Bαi ≡
n

∑

i=1

∫

A

φαi Bαi dα ,

where the integral is to be intended in a generalized sense and the
‘components’ φαi are sections T → DT (E,C⊗V−1/2E) . Usually, a
free-field connection will be assigned exactly through the choice of a
generalized frame.

The definitions of the operators a[u] and a
†[u] , which were given

for any test element u , can be extended by continuity to the case
when u is a more general object, such as a distribution, provided that
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the operators’ domains are restricted accordingly. In particular, one
considers the sets of annihilation and creation operators defined by

a
αi := a[Bαi] , a

†
αi := a

†[Bαi] ,

where {Bαi} is the generalized dual frame: 〈Bαi,Bβj〉 = δα
β δ

i
j . Thus

one writes

Ψ[u] = uαA a
αA + (u†)αA

a
†
αA ≡

n
∑

A=1

∫

A

(

uαA a
αA + (u†)αA

a
†
αA

)

dα .

In a typical QFT, particles must be of at least two kinds, classically
described by double bundles F → P → M and B → C → M .
Here, P and C are the ‘phase bundles’ of the particles (a ‘dual’ ap-
proach is also possible, replacing these with ‘spatial position bundles’
over T ). The one-particle state bundles are

F1 := DT (P ,V−1/2
P ⊗F )  T ,

B1 := DT (C,V−1/2
C ⊗B)  T .

One then has the Fock bundles

F :=

∞
⊕

p=0

Fp , B :=

∞
⊕

p=0

Bp ,

and, correspondingly, one has two kinds of annihilation and creation
operators. The total Fock bundle of the theory is defined to be

V = F ⊗
T

F ⊗
T

B⊗
T

B .

Next, I’ll describe a (non-completely standard) way in which the
ideas described in this paper can be implemented, in practice, on a
curved spacetime. This approach is based on the notion of ‘detec-
tor’, which is basically just a time-like submanifold T ⊂ M . On an
open neighbourhood of T , one has a time+spacedecomposition de-
termined through the exponential mapping (T⊥M)T → M , where
(T⊥M)T ⊂ (TM)T is the subbundle over T orthogonal to T . If this
decomposition turns out to be global (which is certainly the case
on flat spacetime), then one can implement a QFT approach where
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particle states, at any time, can be described as generalised sections
on a position space; the corresponding implementation on (T⊥M)T

can be seen as a ‘linearized’ version, but is also well-defined when no
global spacetime decomposition can be obtained.

A modification of the above scheme can be formulated by replac-
ing (T⊥M)T with a more interesting phase bundle; I’ll need to set
this somewhat more precisely than anticipated in §3.

Let L be the semi-vector space of length units (see [5, 2] for
a review of unit spaces). The spacetime metric g has ‘conformal
weight’ L2 ∼= L⊗L , i.e. it is a bilinear map TM ×M TM → L2,
while its inverse g# has conformal weight L−2 ∼= L∗ ⊗L∗. For µ ∈
L−1 ∼= L∗ let P ∼= K

+
µ ⊂ T∗M be the subbundle over M of all

future-pointing p ∈ T∗M such that3 g#(p, p) = µ2 . This is the
classical phase bundle for a particle of mass m = µ ~ ∈ M , where M

is the unit space of masses and ~ ∈ M⊗L (here the speed of light
is taken equal to 1, namely proper time is measured in L-units as
the g-length of a timelike curve). The phase bundle for a massless
particle is the bundle C → M of celestial spheres, whose fibres are
the projective spaces of the null cones K0 ⊂ T∗M .

The distributional bundles of generalized half-densities

P := DM

(

P ,C⊗V
−1/2

P
)

 M ,

C := DM

(

C,C⊗V
−1/2

C
)

 M ,

will be called the quantum phase-bundles of the two kinds of parti-
cles. It was proved [4] that the spacetime connection yields quantum
connections on each of these bundles; a new, equivalent characteri-
zation of those connections is the following.

Consider the massive case first. There is a canonical section
M → L−1 ⊗P , which at each spacetime point is the square root of
the naturally induced volume form ω on the fibres of P . If p ∈ P ,
then the Dirac density δp is an element in DM (P ,C⊗V∗P ) over
the same spacetime point, and ω−1/2 ⊗ δp ∈ L⊗P . Next, for any 1-
dimensional submanifold I ⊂ M consider the family of all horizontal
sections p : I → PI , relatively to the spacetime connection (which

3The signature of the metric is assumed to be (1, 3).
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can be actually proved to be reducible to P ). Then, a connection on
P → M is defined by the condition that all sections

Ap := l−1 ⊗ω−1/2 ⊗ δp : I → PI

be horizontal (where l ∈ L is any chosen length unit) for all 1-
submanifolds I ⊂ M .

The massless case is slightly more complicated. One has the
canonical Leray form on the fibres of K0 → M , but this does not
‘pass to the quotient’ to yield a distinguished volume form ξ on the
fibres of C → M . One natural way to fixing such a form is by chosing
a unit future-pointing vector field—namely an ‘observer’, according
to a certain meaning of the word; spherical coordinates associated
with the observer yield coordinates on the fibres of C, and one has
ξ = sinϑ dϑ∧dϕ . If one is only interested to the restriction of C

over a detector T , then one can simply take the construction induced
by the unit vector field tangent to T ; hence

√
ξ : T → C .

It easy to show that the spacetime connection is reducible to
a connection on K0 → M , which on turn yields a connection on
C → M . Then, for each horizontal section c : I → CI one considers

Bc := ξ−1/2 ⊗ δc : I → CI ,

and the argument proceeds as before. Note that a few, still natural
variations of this procedure can also be devised.

If (ai) is a classical frame in the fibres of F → P , then one gets
a generalized frame {Api} := {Ap ⊗ ai} in F1. In the practical cases,
a projectable connection on F → P → M is given (a horizontal
curve in F projects over a horizontal curve in P ), and one can find a
classical frame horizontally transported along any given curve; thus
the free-field quantum connection can be viewed as defined by the
condition that such generalized frames are horizontally transported.

A similar argument holds in the massless case.

Finally, one can take horizontal transport of these generalized
frames along a given detector T in order to implement quantum
fields according to the procedure described in the previous sections.
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