
Rend. Istit. Mat. Univ. Trieste
Vol. XXXVI, 17–26 (2004)

Banach’s Fixed Point Theorem for
Partial Metric Spaces

Sandra Oltra and Oscar Valero (∗)

Summary. - In 1994, S.G. Matthews introduced the notion of a par-
tial metric space and obtained, among other results, a Banach
contraction mapping for these spaces. Later on, S.J. O’Neill gen-
eralized Matthews’ notion of partial metric, in order to establish
connections between these structures and the topological aspects
of domain theory. Here, we obtain a Banach fixed point theorem
for complete partial metric spaces in the sense of O’Neill. Thus,
Matthews’ fixed point theorem follows as special case of our result.

1. Introduction and preliminaries

Throughout this paper the letters R, R+ and N will denote the set
of real numbers, the set of nonnegative real numbers and the set of
natural numbers, respectively.

The notion of a partial metric space was introduced by S.G.
Matthews in [4] as a part of the study of denotational semantics
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of dataflow networks. In particular, he established the precise rela-
tionship between partial metric spaces and the so-called weightable
quasi-metric spaces, and proved a partial metric generalization of
Banach’s contraction mapping theorem.

Le us recall that a partial metric on a (nonempty) set X is a
function p : X × X → R

+ such that for all x, y, z ∈ X :

i. x = y ⇔ p(x, x) = p(x, y) = p(y, y);

ii. p(x, x) ≤ p(x, y);

iii. p(x, y) = p(y, x);

iv. p(x, z) ≤ p(x, y) + p(y, z) − p(y, y).

A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X.

In [5], S.J. O’Neill proposed one significant change to Matthews’
definition of the partial metrics, and that was to extend their range
from R

+ to R.

In the following, partial metrics in the O’Neill sense will be called
dualistic partial metrics and a pair (X, p) such that X is a nonempty
set and p is a dualistic partial metric on X will be called a dualistic
partial metric space.

In this way, O’Neill developed several connections between partial
metrics and the topological aspects of domain theory. Moreover,
the pair (R, p), where p(x, y) = x ∨ y for all x, y ∈ R, provides a
paradigmatic example of a dualistic partial metric space that is not
a partial metric space. Other examples of dualistic partial metric (or
partial) metric spaces which are interesting from a computational
point of view may be found in [1], [4], [6], [8], etc.

Each dualistic partial metric p on X generates a T0 topology T (p)
on X which has as a base the family of open p-balls {Bp(x, ε) : x ∈
X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all
x ∈ X and ε > 0.

From this fact it immediately follows that a sequence (xn)n in a
dualistic partial metric space (X, p) converges to a point x ∈ X if
and only if p(x, x) = limn→∞p(x, xn).
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According to [5] (compare [4]), a sequence (xn)n∈N in a dualistic
partial metric space (X, p) is called a Cauchy sequence if there exists
limn,m→∞ p(xn, xm).

A dualistic partial metric space (X, p) is said to be complete if
every Cauchy sequence (xn)n∈N in X converges, with respect to T (p),
to a point x ∈ X such that p(x, x) = limn,m→∞ p(xn, xm).

As we indicated above, and motivated by applications in program
verification, Matthews obtained in [4] a Banach fixed point theorem
for complete partial metric spaces. Since (complete) dualistic partial
metrics provide a new approach to generalizing both the domain
theoretic and the metric approach to semantics (see [5], p. 314),
it seems interesting to obtain a Banach fixed point theorem in the
realm of dualistic partial metric spaces. In this paper we present a
theorem of this type. In particular, Matthews’ contraction mapping
theorem will be deduced as a special case of our result.

2. Banach’s fixed point theorem for complete dualistic

partial metric spaces

Before stating our main result we establish some (essentially known)
correspondences between dualistic partial metrics and quasi-metric
spaces.

Our basic references for quasi-metric spaces are [2] and [3].

In our context by a quasi-metric on a set X we mean a nonneg-
ative real-valued function d on X × X such that for all x, y, z ∈ X :

i. d(x, y) = d(y, x) = 0 ⇔ x = y,

ii. d(x, y) ≤ d(x, z) + d(z, y).

A quasi-metric space is a pair (X, d) such that X is a (nonempty)
set and d is a quasi-metric on X.

Each quasi-metric d on X generates a T0-topology T (d) on X

which has as a base the family of open d-balls {Bd(x, ε) : x ∈ X,

ε > 0}, where Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and
ε > 0.

If d is a quasi-metric on X, then the function ds defined on X×X

by ds(x, y) = max{d(x, y), d(y, x)}, is a metric on X.
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The proof of the following auxiliary results are analogous to the
proofs of [4], Theorems 4.1 and 4.2 and [5], Definition 2.6 and Lemma
2.7. However, we include such proofs in order to help to the reader.

Lemma 2.1. If (X, p) is a dualistic partial metric space, then the
function dp : X × X → R

+ defined by

dp(x, y) = p(x, y) − p(x, x),

is a quasi-metric on X such that T (p) = T (dp).

Proof. Consider x, y ∈ X. Then dp(x, y) = p(x, y)− p(x, x) is always
nonnegative because of p(x, x) ≤ p(x, y).

Now, we have to check that dp is actually a quasi-metric on X.

Let x, y, z ∈ X. It is obvious that x = y provides that dp(x, y) =
dp(y, x) = 0. Moreover, if dp(x, y) = dp(y, x) = 0 then p(x, y) −
p(x, x) = p(y, x) − p(y, y) = 0. Hence we obtain that x = y, since
p(x, y) = p(x, x) = p(y, y). Furthermore

dp(x, y) = p(x, y) − p(x, x)

≤ p(x, z) + p(z, y) − p(z, z) − p(x, x)

= dp(x, z) + dp(z, y).

Finally we show that T (d) = T (dp). Indeed, let x ∈ X and ε > 0
and consider y ∈ Bdp

(x, ε). Then dp(x, y) = p(x, y) − p(x, x) < ε

and, hence, p(x, y) < ε + p(x, x). Consequently y ∈ Bp(x, ε) and
T (dp) ⊆ T (d).

Conversely if y ∈ Bp(x, ε) we have that p(x, y) < ε + p(x, x).
Thus dp(x, y) = p(x, y) − p(x, x) < ε, y ∈ Bdp

(x, y) and

T (d) ⊆ T (dp).

Lemma 2.2. (compare [4], [5], [7]). A dualistic partial metric space
(X, p) is complete if and only if the metric space (X, (dp)

s) is com-
plete. Furthermore limn→∞(dp)

s(a, xn) = 0 if and only if p(a, a) =
limn→∞ p(a, xn) = limn,m→∞ p(xn, xm).
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Proof. First we show that every Cauchy sequence in (X, p) is a
Cauchy sequence in (X, (dp)

s). To this end let (xn)n be a Cauchy
sequence in (X, p). Then there exists α ∈ R such that, given ε > 0,
there is nε ∈ N with |p(xn, xm) − α| < ε

2 for all n,m ≥ nε. Hence

dp(xn, xm) = p(xn, xm) − p(xn, xn)

= |p(xn, xm) − α + α − p(xn, xn)|

≤ |p(xn, xm) − α| + |α − p(xn, xn)|

<
ε

2
+

ε

2
= ε

for all n,m ≥ nε. Similarly we show dp(xm, xn) < ε for all n,m ≥ nε.

We conclude that (xn)n is a Cauchy sequence in (X, (dp)
s).

Next we prove that completeness of (X, (dp)
s) implies complete-

ness of (X, p). Indeed, if (xn)n is a Cauchy sequence in (X, p) then
it is also a Cauchy sequence in (X, (dp)

s). Since the metric space
(X, (dp)

s) is complete we deduce that there exists y ∈ X such that
limn→∞(dp)

s(y, xn) = 0. By (2.1) we follow that (xn)n is a convergent
sequence in (X, p). Next we prove that limn,m→∞ p(xn, xm) = p(y, y).

Since (xn)n is a Cauchy sequence in (X, p) it is sufficient to see
that limn→∞ p(xn, xn) = p(y, y). Let ε > 0 then there exists n0 ∈ N

such that (dp)
s(y, xn) < ε

2 whenever n ≥ n0. Thus

|p(y, y) − p(xn, xn)| ≤ |p(y, y) − p(y, xn)| + |p(y, xn) − p(xn, xn)|

= dp(y, xn) + dp(xn, y)

< 2(dp)
s(y, xn) < ε,

whenever n ≥ n0. This shows that (X, p) is complete.
Now we prove that every Cauchy sequence (xn)n in (X, (dp)

s) is
a Cauchy sequence in (X, p). Let ε = 1

2 . Then there exists n0 ∈ N

such that dp(xn, xm) < 1
2 for all n,m ≥ n0. Since

dp(xn, xn0) + p(xn, xn) = dp(xn0 , xn) + p(xn0 , xn0),

then

|p(xn, xn)| = |dp(xn0 , xn) + p(xn0 , xn0) − dp(xn, xn0)|

≤ dp(xn0 , xn) + |p(xn0 , xn0)| + dp(xn, xn0)

≤ 2(dp)
s(xn, xn0) + |p(xn0 , xn0)|

< 1 + |p(xn0 , xn0)|.
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Consequently the sequence (p(xn, xn))n is bounded in R, and so there
exists a ∈ R such that a subsequence (p(xnk

, xnk
))k is convergent to

a, i.e. limk→∞ p(xnk
, xnk

) = a.

It remains to prove that (p(xn, xn))n is a Cauchy sequence in R.

Since (xn)n is a Cauchy sequence in (X, (dp)
s), given ε > 0, there

exists nε ∈ N such that (dp)
s(xn, xm) < ε

2 for all n,m ≥ nε. Thus,
for all n,m ≥ nε,

|p(xn, xn) − p(xm, xm)| = |dp(xm, xn) − dp(xn, xm)|

≤ 2(dp)
s(xm, xn) < ε

because of

p(xn, xn) = dp(xm, xn) + p(xm, xm) − dp(xn, xm).

Therefore limn→∞ p(xn, xn) = a.

On the other hand,

|p(xn, xm) − a| = |p(xn, xm) − p(xn, xn) + p(xn, xn) − a|

≤ dp(xn, xm) + |p(xn, xn) − a| < ε

for all n,m ≥ nε. Hence limn,m→∞ p(xn, xm) = a and (xn)n is a
Cauchy sequence in (X, p).

We shall have established the lemma if we prove that (X, (dp)
s) is

complete if so is (X, p). Let (xn)n be a Cauchy sequence in (X, (dp)
s).

Then (xn)n is a Cauchy seuqence in (X, p), and so it is convergent
to a point y ∈ X with

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(y, xn) = p(y, y).

Then, given ε > 0, there exists nε ∈ N such that

p(y, xn) − p(y, y) < ε and p(y, y) − p(xn, xn) < ε

whenever n ≥ nε. As a consequence we have

dp(y, xn) = p(y, xn) − p(y, y) < ε,

and

dp(xn, y) = p(y, xn) − p(xn, xn)

≤ |p(y, xn) − p(y, y)| + |p(y, y) − p(xn, xn)| < 2ε
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whenever n ≥ nε. Therefore (X, (dp)
s) is complete.

Finally, it is a simple matter to check that limn→∞(dp)
s(a, xn) =

0 if and only if p(a, a) = limn→∞ p(a, xn) = limn,m→∞ p(xn, xm).

Theorem 2.3. Let f be a mapping of a complete dualistic partial
metric space (X, p) into itself such that there is a real number c with
0 ≤ c < 1, satisfying

|p(f(x), f(y))| ≤ c |p(x, y)| , (1)

for all x, y ∈ X. Then f has a unique fixed point.

Proof. Fix x ∈ X. Then it is clear that for each n ∈ N we have

|p(fn(x), fn(x))| ≤ cn |p(x, x)|

and
∣

∣p(fn(x), fn+1(x))
∣

∣ ≤ cn |p(x, f(x))| .

Since, by (2.1),

dp(f
n(x), fn+1(x)) + p(fn(x), fn(x)) = p(fn(x), fn+1(x)),

we deduce that

dp(f
n(x), fn+1(x)) + p(fn(x), fn(x)) ≤ cn |p(x, f(x))| .

Hence

dp(f
n(x), fn+1(x)) ≤ cn |p(x, f(x))| − p(fn(x), fn(x))

≤ cn |p(x, f(x))| + |p(fn(x), fn(x))|

≤ cn(|p(x, f(x))| + |p(x, x)|).

Now let n, k ∈ N. Then

dp(f
n(x), fn+k(x)) ≤ dp(f

n(x), fn+1(x)) + . . . +

+dp(f
n+k−1(x), fn+k(x))

≤ (cn + . . . + cn+k−1)(|p(x, f(x))| + |p(x, x)|)

≤
cn

1 − c
(|p(x, f(x))| + |p(x, x)|).
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Similarly, we obtain that

dp(f
n+k(x), fn(x)) ≤

cn

1 − c
(|p(x, f(x))| + |p(x, x)|).

Consequently (fn(x))n is a Cauchy sequence in the metric space
(X, (dp)

s), which is complete by (2.2). So there is a ∈ X such that
limn→∞(dp)

s(a, xn) = 0. We want to show that a is the unique fixed
point of f. First note that, by (2.2), we obtain

p(a, a) = lim
n→∞

p(a, fn(x)) = lim
n,m→∞

p(fn(x), fm(x)).

Moreover, since

lim
n,m→∞

dp(f
n(x), fm(x)) = lim

n→∞

p(fn(x), fn(x)) = 0,

we deduce, from (2.1), that

lim
n,m→∞

p(fn(x), fm(x)) = 0.

Therefore p(a, a) = limn→∞ p(a, fn(x)) = 0. Now since

|p(f(a), f(a)| ≤ c |p(a, a)| = 0,

it follows that p(f(a), f(a)) = 0. On the other hand, since
∣

∣p(f(a), fn+1(a)
∣

∣ ≤ c |p(a, fn(x)| ,

it follows that
lim

n→∞

p(f(a), fn(x)) = 0.

Then (2.2) shows that f(a) is a limit point of (fn(x))n in (X, (dp)
s).

Consequently a = f(a). Finally let b ∈ X such that b = f(b). Then

|p(a, b)| = |p(f(a), f(b)| ≤ c |p(a, b)| ,

which implies that a = b. This concludes the proof.

Corollary 2.4. (Matthews) Let f be a mapping of a complete par-
tial metric space (X, p) into itself such that there is a real number c
with 0 ≤ c < 1, satisfying

p(f(x), f(y)) ≤ cp(x, y), (2)

for all x, y ∈ X. Then f has a unique fixed point.
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In the light of the preceding corollary one can ask if the contrac-
tive condition (1) in the statement of our theorem can be replaced
by the corresponding contraction condition (2) above. The following
easy example shows that it is not the case.

3. Example

Let X = (−∞, 2], and let p be the dualistic partial metric on X

given by

p(x, y) = x ∨ y.

for all x, y ∈ X. Since (X, (dp)
s) is a complete metric space, (X, p)

is a complete dualistic partial metric space.

Let f be the mapping from X into itself defined by f(x) = x−1,
for all x ∈ (−∞, 2]. It is immediate to see that p(f(x), f(y)) ≤
1
2p(x, y), for all x, y ∈ X. However f has no any fixed point, of course.

The authors are grateful to the referee for his valuable suggestions
which have permitted a substantial improvement of the first version
of the paper.
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