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Propagation versus Constancy of

Support in the Degenerate Parabolic

Equation ut = f(u)∆u

Michael Winkler (∗)

Summary. - A weak solution concept for the Dirichlet problem in

bounded domains for the degenerate parabolic equation

ut = f(u)∆u

is presented. It is shown that if
∫ 1
0

ds
f(s) <∞ then each nontrivial

nonnegative weak solution eventually becomes positive, while if
∫ 1
0

ds
f(s) = ∞ then all weak solutions have their support constant

in time.

1. Introduction

For parabolic problems of the form

ut = f(u)∆u in Ω × (0, T ),

u|∂Ω = 0,

u|t=0 = u0, (1.1)

with Ω ⊂ R
n a smoothly bounded domain, 0 6≡ u0 nonnegative and

continuous in Ω̄ and 0 ≤ f ∈ C0([0,∞)) ∩ C1((0,∞)), it is well
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known that if infs>0 f(s) > 0 then any solution becomes positive

instantaneously, i.e. u(t) > 0 in Ω for all t > 0. Thus, a diffusion

model of type (1.1) which aims at describing the propagation of

the support of u(t) correctly should be degenerate at s = 0, that

is, f(0) = 0. Among these, the one probably best understood is

obtained when f(s) = sp for some 0 < p < 1; in this case, namely, the

substitution v := (1−p)
1−p

p u1−p transfers (1.1) to the corresponding

Dirichlet problem for the porous medium equation

vt = ∆vm, m =
1

1 − p
> 1.

According to results given e.g. in [7] and in [2], solutions to the

porous medium equation have support propagating with finite speed

and eventually reaching all of Ω̄. In Theorem 5 in [4] it is shown

that if merely f ′(s) ≥ 0 for small positive s and
∫ 1
0

ds
f(s) < ∞ then

u(t) > 0 in Ω for t sufficiently large. However, the question is left

open whether the same is true if f is not necessarily monotonic near

s = 0.

On the other hand, an analysis of the asymptotic behavior of

solutions to the porous medium equation ([7], p.634) reveals that

suppu(t) ⊂ Br(t)(0) where r(t) = ct
1

2+(m−1)n . Taking m ր ∞ or,

equivalently, pր 1, one is led to the conjecture that suppu(t) grows

very slowly or even remains constant if f(s) = s. Indeed, constancy

of the support has been proved in [5] and in [9] for all “weak solu-

tions” to (1.1) with f(s) = s. We do not see, however, an obvious

way how to extend the weak solution concept used there to “arbi-

trary” – e.g. non-monotonic – f .

The present paper thus aims at

• presenting a unified concept of weak solutions fo (1.1) which in

the porous medium case coincides with the “traditional” one

(Section 2), and

• finding a necessary and sufficient condition on f distinguish-

ing between eventual positivity on the one hand and constant
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support on the other.

More precisely, we shall see in Section 3 that

• if f is weakly degenerate at s = 0 in the sense that

∫ 1

0

ds

f(s)
<∞,

then there is T0 > 0 such that

suppu(t) = Ω̄ ∀ t ≥ T0,

while

• if f is strongly degenerate at s = 0, that is,

∫ 1

0

ds

f(s)
= ∞,

then

suppu(t) = suppu0 ∀ t ≥ 0.

2. Existence and uniqueness of weak solutions

For the sake of convenient notation, let us define H : [0,∞) →

[−∞,∞) by

Hs :=







∫ s

0
dσ
f(σ) if

∫ 1
0

dσ
f(σ) <∞,

∫ s

1
dσ
f(σ) if

∫ 1
0

dσ
f(σ) = ∞.

Then via v = Hu the first in (1.1) formally transforms into vt =

∆H−1v. In the weakly degenerate case
∫ 1
0

ds
f(s) < ∞, the data are

translated into v|∂Ω = 0 and v|t=0 = Hu0. For this type of problem,

a successful weak solution concept has been used for a long time

and was described in [1], for example. It is obtained in a rather

natural way by multiplying the equation for v by a smooth function

ϕ(x, t) and integrating. Due to the positivity of f for s > 0, H−1
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is strictly increasing, which implies uniqueness of weak solutions in

this situation ([1], Thm.12). If
∫ 1
0

ds
f(s) = ∞, however, (1.1) cannot be

transformed into a “nice” parabolic problem of the same type since

e.g. v would attain the boundary values H(0) = −∞. Thus, a term

like
∫ t

0

∫

ΩHu · ϕt in general is meaningless since it seems unnatural

to make assumptions on the sign of ϕt.

On the other hand, testing the original equation (1.1) directly

by ϕ will involve the squared gradient term
∫ t

0

∫

Ω f
′(u)|∇u|2ϕ which

turns out to produce serious difficulties in the corresponding exis-

tence theory unless f(s) = s or, a bit more generally, lim inf
s→0

sf ′(s)
f(s) >

0 (see [9] for f(s) = s). Furthermore, even in the particular case

f(s) = s it is shown in [9] that weak solutions obtained in this way

are never unique.

To avoid all these problems, we test the equation ∂tHu = ∆u

with a function ψ ≥ 0 depending on x only, and integrate on Ω ×

(t1, t2), so that all resulting integrals exist at least if we admit them

to have values in [−∞,∞).

Definition 2.1. A nonnegative function u from the space

V := L∞(Ω × (0, T )) ∩ C0([0, T ];L1(Ω)) ∩ L2((0, T );W 1,2
0 (Ω))

is called a weak solution of (1.1) in Ω × (0, T ) if u|t=0 = u0 and for

all 0 ≤ t1 < t2 < T and all 0 ≤ ψ ∈W
1,2
0 (Ω), the identity

∫

Ω
Hu(t2) · ψ +

∫ t2

t1

∫

Ω
∇u · ∇ψ =

∫

Ω
Hu(t1) · ψ (2.1)

holds in [−∞,∞).

A global weak solution is a nonnegative function u defined in

Ω × [0,∞) which is a weak solution in Ω × (0, T ) for all T > 0.

We now prove existence of solutions by a standard regulariza-

tion procedure. It turns out that in the weakly degenerate situation
∫ 1
0

ds
f(s) < ∞ our concept coincides with the familiar one in [1] and

thus solutions are unique. In the delicate case
∫ 1
0

ds
f(s) = ∞, how-

ever, we gain uniqueness only for “nicely supported” u0, but within

a smaller solution class.
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In the sequel, let us assume that

(H1) Ω ⊂ R
n is a bounded domain of class C3,

(H2) u0 ∈ C0(Ω̄) ∩W 1,2
0 (Ω) is nonnegative, and

(H3) f ∈ C0([0,∞)) ∩ C1((0,∞)) fulfils f(0) = 0 and f(s) > 0 for

s > 0.

Theorem 2.1. i) Under conditions (H1)-(H3), (1.1) has a global

weak solution.

ii) If
∫ 1
0

ds
f(s) <∞ then the solution is unique.

iii) If
∫ 1
0

ds
f(s) = ∞ and

(H4) each component of {u0 > 0} has Lipschitz boundary

then (1.1) has a weak solution u ∈ V ∩ C0(Ω̄ × [0,∞)) which

is unique within this class.

Proof. i) For a sequence ε = εj ց 0, let u0,ε ∈ C3(Ω̄) satisfy u0,ε ≥ ε,

u0 + ε
2 ≤ u0,ε ≤ u0 +2ε, u0,ε ≡ ε in a neighborhood of ∂Ω, u0,ε ց u0

in Ω as ε = εj ց 0 and u0,ε → u0 in W 1,2(Ω). Then the problems

uεt = f(uε)∆uε in Ω × (0,∞),

uε|∂Ω = ε,

uε|t=0 = u0,ε, (2.2)

are actually nondegenerate and thus ([8]) have (unique) classical so-

lutions uε ∈ C2,1(Ω̄ × [0,∞)) which by comparison fulfil ε ≤ uε ≤

‖u0‖L∞(Ω) + 2ε and uε ≥ uη for ε > η. Multiplying (2.2) by ψ(x)
f(uε)

and uεt

f(uε) , respectively, we obtain for 0 ≤ t1 < t2 and t > 0

∫

Ω
Huε(t2)·ψ+

∫ t2

t1

∫

Ω
∇uε·∇ψ =

∫

Ω
Huε(t1)·ψ ∀0 ≤ ψ ∈W

1,2
0 (Ω)

(2.3)
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and

∫ t

0

∫

Ω

u2
εt

f(uε)
+

1

2

∫

Ω
|∇uε(t)|

2 =
1

2

∫

Ω
|∇u0,ε|

2.

Thus, as ε = εj ց 0, uε ց u in Ω × [0,∞) as well as

uε − ε ⇀ u in L2
loc([0,∞);W 1,2

0 (Ω)),

uεt ⇀ ut in L2
loc(Ω̄ × [0,∞)),

uε → u in L∞
loc([0,∞);Lp(Ω)) ∀ p ∈ [1,∞).

Since by the Beppo-Levi theorem

∫

Ω
Huε(t) · ψ ց

∫

Ω
Hu(t) · ψ ∈ [−∞,∞)

for all 0 ≤ ψ ∈ W
1,2
0 (Ω) and all t ≥ 0, it follows that u is a global

weak solution of (1.1).

ii) In order to prove uniqueness in the case
∫ 1
0

ds
f(s) < ∞, we

claim that if u is a weak solution of (1.1) in Ω × (0, T ) then for all

0 ≤ ϕ ∈W 1,∞(Ω × (0, T )) with ϕ|∂Ω = 0, we have

∫

Ω
Hu(t) · ϕ(t) −

∫ t

0

∫

Ω
Hu · ϕt +

∫ t

0

∫

Ω
∇u · ∇ϕ =

=

∫

Ω
Hu0 · ϕ(0) ∀ t ∈ (0, T ).

It then follows from [1], Sects. 3 and 4, that u must be unique.

Indeed, inserting ψ := ϕ(s) in (2.1) for t1 := s, t2 := s+ h, h > 0

small, we obtain

0 =

∫ t

0

∫

Ω

Hu(s+ h) −Hu(s)

h
ϕ(s)dxds

+

∫ t

0

∫

Ω

1

h

∫ s+h

s

∇u(σ) · ∇ϕ(s)dσdxds

=: I1 + I2.
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By [6], Lemma I.3.2 on Steklov averages,

1

h

∫ s+h

s

∇u(σ)dσ → ∇u(s) in L2(Ω × (0, t))

as h→ 0, while

I1 =

∫ t

0

∫

Ω

Hu(s+ h)ϕ(s + h) −Hu(s)ϕ(s)

h
dxds

−

∫ t

0

∫

Ω
Hu(s+ h)

ϕ(s + h) − ϕ(s)

h
dxds

=: I11 + I12.

As s 7→
∫

ΩHu(s)ϕ(s) is continuous in [0, t], we have I11 →
∫

ΩHu(t)·

ϕ(t)−
∫

ΩHu0·ϕ(0) as h→ 0. Again by [6], Lemma I.3.2, ϕ(·+h)−ϕ(·)
h

→

ϕt in L2(Ω×(0, t)), whence I1,2 →
∫ t

0

∫

ΩHu·ϕt, from which the claim

follows.

iii) For the – rather involved – proof of existence and uniqueness

of a continuous weak solution under condition (H4), we refer to [10],

Thm.1.2.4.

Remark 2.1. i) It is an open question whether in the strongly

degenerate case weak solutions in the sense of Definition 2.1

continue to be unique in V for general u0.

ii) In [5] it is demonstrated that indeed the regularity of the bound-

ary of {u0 > 0} is in close relation to the equicontinuity prop-

erties of the sequence (uεj
)j∈N. It is not clear whether (1.1)

possesses a continuous weak solution if e.g. {u0 = 0} contains

isolated points.

3. Positivity versus localization

Evidently, if existing at all, conditions on f ensuring either prop-

agation or constancy of suppu(t) should reflect in some sense the

growth of f near zero since an f that is very small near s = 0 should
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be able to inhibit diffusion very effectively near the boundary of the

support. Fortunately, our choice of measure of degeneracy distin-

guishing between weak and strong degeneracies (that is, the value
∫ 1
0

ds
f(s)) turns out to be the appropriate one for this purpose.

As a technical premise, let us define the support of an a.e. defined

function v : Ω → R by

supp v :=
⋂

N⊂Ω, |N |=0

{x ∈ Ω \N | v(x) 6= 0}.

3.1. Eventual positivity in presence of weak

degeneracies

As already mentioned before, eventual positivity of u was proved

in [4] under the additional assumption that f ′ be nonnegative near

s = 0 (which is equivalent to H−1 being convex there). The authors

in this reference essentially make use of a semi-convexity estimate

∆u(t) ≥ −C for t large which holds for such f in case of suitable

initial data. From this, the main part of their result follows upon

an elliptic comparison argument. Being similar in spirit through

large passages, our proof, as compared to theirs, does not involve an

estimate for ∆u and hence relies on no monotonicity hypothesis on

f .

The most important step is done in

Lemma 3.1. Suppose
∫ 1
0

ds
f(s) <∞ and u is the weak solution to (1.1).

Then for all R ∈ (0, 1) and ν > 0 there are constants T1 = T1(R, ν)

and c = c(R, ν) such that

u(t0) ≥ ν a.e. in BR
4
(x0) for some (x0, t0) ∈ Ω × (0,∞)

⇒ u(x, t0 + T1) ≥ c(dist (x, ∂BR(x0)))
2 ∀x ∈ BR(x0) and

u(t) > 0 in BR(x0) ∀t ≥ t0 + T1.

Proof. We may assume without loss of generality that (x0, t0) =

(0, 0) and abbreviate Bρ := B̺(0). Fix 0 ≤ ϕ ∈ C∞
0 ([0, R4 )) with

ϕ′ ≤ 0 and ϕ ≡ ν in [0, R8 ]. Let φ(x) := ϕ(|x|) for x ∈ BR and
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c1 :=

∫

BR
4

Hφ. (3.1)

By a standard comparison argument, it suffices to prove the claim

for the case Ω = BR and u0 = φ, in which the solution clearly will be

radially symmetric and decreasing w.r. to |x| for all t. In this case,

dividing (2.2) by f(uε) and integrating, for T > 0 and r ∈ (R2 , R) we

find
∫

Br

Huε(T ) −

∫

Br

Hu0,ε =

∫ T

0

∫

∂Br

∂Nuε. (3.2)

Now fix ε0 ∈ (0, 1) such that |BR| · H(3ε0) <
c1
2 and let v(x, t) :=

ε+ε0+y(t)e(x), where e is the solution of −∆e = 1 in BR, e|∂BR
= 1,

and y(t) := ‖φ‖L∞(BR)e
−αt with α := ‖e‖−1

L∞(BR) · min{f(s) |s ∈

[ε0, 2 + ‖φ‖L∞(BR) · ‖e‖L∞(BR)]}. Then v ≥ uε at t = 0 and on ∂BR
and

vt − f(v)∆v = y′e+ f(ε+ ε0 + ye)v

≥ ‖e‖L∞(BR) · [y
′ + αy] = 0 in BR × (0, T ),

whence

uε ≤ ε+ ε0 + c2e
−αt in BR × (0, T ).

Thus, if we choose T1 large such that c2e
−αT1 < ε0, we have

uε(T1) < 3ε0 in BR ∀ ε < ε0,

so that, by (3.2) and (3.1),

∫ T1

0

∫

∂Br

∂Nuε ≤ |Br| ·H(3ε0) − c1 ≤ −
c1

2
∀ ε < ε0.

Writing z(r) :=
∫ T1

0

∫

∂Br
uε, we infer from the radial symmetry of uε

that

z′(r) =

∫ T1

0

∫

∂Br

∂Nuε +
n− 1

r
z(r)

≤ −
c1

2
+ c3z(r) ∀ r ∈ (

R

2
, R).
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As z(R) ≥ 0, this implies by ODE comparison

z(r) ≥
c1

2c3
(1 − e−c3(R−r))

≥ c4(R− r) ∀ r ∈ (
R

2
, R).

Hence, for any r ∈ (R2 , R) there exists tr ∈ (0, T1) such that

∫

∂Br

uε(Tr) ≥
c4(R − r)

T1
,

so that, since uε decreases in |x|,

uε(tr) ≥
c4

T1|∂BR|
(R− r) =: c5(R − r) in Br.

To see that u remains positive in Br, let Θr(x) denote the principal

eigenfunction of −∆ in Br with max Θr = 1, corresponding to the

first eigenvalue λr which decreases from λR
2

to λR as r increases from
R
2 to R. Set w(x, t) := y1(t)Θr(x) with y1(t) := c5(R − r)e−β(t−tr),

where β := λR
2
· max{f(s) | s ∈ [0, c5(R − r)]}. Then uε ≥ w at

t = tr and on ∂Br and as

wt − f(w)∆w = y′1Θr + f(y1Θr)yλrΘr

≤ [y′1 + βy1]Θr = 0 in Br × (tr,∞),

we find uε ≥ w and thus, letting ε ց 0, that u > 0 in Br × (T1,∞)

and

u(T1) ≥ c6(R− r)Θr in Br

with c6 = c5e
−βT1 . To conclude, fix x ∈ BR and choose r := R+|x|

2 .

As Θr(x) ≥ c7(r − |x|) for all x ∈ Br (with c7 independent of r ∈

(R2 , R)), we obtain

u(x, T1) ≥ c6
R− |x|

2
· c7

R− |x|

2
≥ c(dist (x, ∂BR))2,

which proves the claim, since all constants depend on R and ν only.
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Remark 3.2. If f ′ ≥ 0 near s = 0, Lemma4 in [4] gives the stronger

estimate u(x, t0 +T1) ≥ cdist (x, ∂BR(x0)); we do not know, whether

this holds true in the general situation. For the relevance of this

question concerning large time behavior of solutions, see [2].

Although the proof of the following theorem is a rather straight-

forward iterated application of Lemma 3.1 as performed in [2], we

include a short proof for the sake of completeness.

Theorem 3.1. Suppose

∫ 1

0

ds

f(s)
<∞.

Then there is T0 > 0 such that the weak solution of (1.1) satisfies

u(x, t) > 0 ∀x ∈ Ω, ∀ t ≥ T0.

In particular,

suppu(t) = Ω̄ ∀ t ≥ T0.

Proof. Let us fix δ ∈ (0, 1
4) small enough such that

(i) ∃x0 ∈ Ω with dist (x0, ∂Ω) > 4δ and u0 > 0 in B̄δ(x0);

(ii) Ωδ := {x ∈ Ω | dist (x, ∂Ω) > δ} is connected (see [2], Sect. 1);

(iii) ∀ y ∈ ∂Ω there is xy ∈ Ω such that B̄4δ(xy) ∩ ∂Ω = {y}.

By compactness, there exist x1, ..., xN ∈ Ω̄δ such that

Ω̄δ ⊂
N
⋃

i=0

Bδ(xi) ⊂ Ω,

where due to (ii) we may assume that xi ∈
i−1
⋃

j=1
Bδ(xj) for all i =

1, ..., N . From (i) we obtain u0 ≥ ν0 in Bδ(x0) for some ν0 > 0 and

thus Lemma 3.1 provides t1 > 0 and ν1 ∈ (0, ν0) such that u(t1) ≥ ν1
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in the ball B3δ(x0) which contains Bδ(x1), so that induction over

i = 1, ..., N finally yields tN > 0 and νN > 0 such that

u(tN ) ≥ νN in Ωδ (3.3)

and

u(t) > 0 in Ωδ ∀ t ≥ tN . (3.4)

Next, let us take T1 = T1(4δ, νN ) from Lemma 3.1. Then for any

y ∈ ∂Ω, (3.3) implies u(tN ) ≥ νN in Bδ(xy) ⊂ Ωδ, whence u(t) > 0 in

B4δ(xy) for all t ≥ tN +T1 by Lemma 3.1. As Ω\Ωδ ⊂
⋃

y∈∂Ω

B4δ(xy),

this gives together with (3.4)

u(t) > 0 in Ω ∀ t ≥ tN + T1

and thereby proves the theorem.

Remark 3.3. The proof shows that actually u is a classical positive

solution of (1.1) in Ω × (T0,∞).

3.2. Constant support in the case of strong

degeneracies

In the special case f(s) = s, the very detailed studies of the positivity

properties of u = lim uε in [3] and in [5] show that such solutions in

fact have their support constant in time, while, roughly speaking, the

set {u(t) > 0} may increase with t if e.g. u0 has an isolated zero at

x0 ∈ Ω at which u eventually becomes positive. Some of the proofs

given there employ a further semi-convexity estimate ∆u(t) ≥ − c
t
.

Such a type of estimate, however, seems to be available only for

certain f (satisfying lim inf
s→0

sf ′(s)
f(s) > 0) and in addition only for limits

u of positive solutions to (1.1) (cf. [11], Lemma 2.2).

For general f being strongly degenerate at s = 0, we do not

know whether weak solutions are unique in general and thus find it

desirable not to rely on any kind of approximation.
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Theorem 3.2. Suppose

∫ 1

0

ds

f(s)
= ∞.

Then any weak solution of (1.1) has constant support:

suppu(t) = suppu0 ∀ t > 0. (3.5)

Proof. i) Fix t > 0 and assume first that u(t) ∈ W
1,2
0 (Ω). Then

for any δ > 0, the function ψ(x) := (u(x, t) − δ)+ is in W
1,2
0 (Ω).

Inserting ψ into (2.1) yields

∫

Ω
Hu(t) · (u(t) − δ)+ +

∫ t

0

∫

Ω
∇u(s) · ∇(u(t) − δ)+ =

=

∫

Ω
Hu0 · (u(t) − δ)+.

In particular, it follows that the term on the right is finite, so that

|{u(t) > δ} ∩ {u0 = 0}| = 0 ∀ δ > 0,

hence also

|{u(t) > 0} ∩ {u0 = 0}| = 0,

that is,

u(t) = 0 in {u0 = 0} \N(t), (3.6)

where N(t) ⊂ Ω has measure zero.

We claim that (3.6) is in fact valid for all t > 0. Indeed, any

such t is the limit of a sequence of times tk > 0 for which u(tk) ∈

W
1,2
0 (Ω). As u is continuous as an L1(Ω)-valued function, it follows

that u(tk) → u(t) in Ω\N0 for a subsequence and some N0 ⊂ Ω with

|N0| = 0, so that (3.6) will be proved if we let N(t) := N0∪
⋃

k∈N

N(tk).

To see that (3.6) implies

suppu(t) ⊂ suppu0, (3.7)
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fix N ⊂ Ω with |N | = 0. Then, by complementing (3.6),

{u(t) > 0} \ (N(t) ∪N) ⊂ {u0 > 0} \N,

and we arrive at (3.7) upon taking closures and intersecting over all

such N .

ii) Conversely, if 0 ≤ ψ ∈ C∞
0 ({u0 > 0}) then (2.1) implies for

all t > 0

∫

Ω
Hu(t) · ψ =

∫

Ω
Hu0 · ψ +

∫ t

0

∫

Ω
∇u · ∇ψ > −∞,

so that u(t) > 0 a.e. in {ψ > 0} and hence, due to continuity of u0,

a.e. in {u0 > 0}, which gives, in much the same manner as in part

i),

suppu0 ⊂ suppu(t),

and the proof is complete.

Remark 3.4. By comparison with ce−γtΘB for eigenfunctions ΘB

of −∆ in balls B ⊂⊂ {u0 > 0} and suitable positive constants c

and γ, it can easily be checked (cf. the proof of Lemma 3.1) that the

particular solution u = lim uε fulfils (like that in [5] for f(s) = s)

{u0 > 0} ⊂ {u(t) > 0} ⊂ suppu0 ∀ t > 0,

which is in fact sharper than (3.5) and asserts that such u cannot

develop singularities of dead core type.

It remains an open question whether u = limuε is continuous

in Ω̄ × [0,∞)) at least for compactly supported initial data with nice

positivity set; in the case that e.g. {u0 > 0} is a smooth subdomain

of Ω, continuity would yield the sharp result {u(t) > 0} = {u0 > 0}

for all t > 0. An affirmative answer to this in space dimension one

was given in [3], Proposition 2.2.
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