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Concentration of Local Energy for
Two-dimensional Wave Maps

Vladimir Georgiev and Angel Ivanov (∗)

Summary. - We construct some particular kind of solution to the
two - dimensional equivariant wave map problem with inhomoge-
neous source term in space-time domain of type

Ωα(t) = {x ∈ R
2 : |x|α < t},

where α ∈ (0, 1]. More precisely,we take the initial data (u0, u1)
at time T in the space H1+ε × Hε with some ε > 0. The source
term is in L1((0, T );Hε (Ωα(t))) and we show that the H1+ε -
norm of the solution blows-up, when t → 0+ and α ∈ (0, 1 − ε).

1. Introduction

The wave maps arise in various problems of mathematical physics
(see Higgs field model in [4], relativity models in [1]). To be more
precise, let (N, g) be n - dimensional manifold endowed with Rie-
mannian metric structure, i.e. positive definite bilinear form g in
every point of N . We call N target manifold. Let M = Rm+1 be the
Minkowski space-time equipped with the metric h = (−1, 1, ..., 1).
The wave map is a map that satisfies the equation

Dα∂αu = 0, (1)
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where

∂α =
∂

∂xα
, (xα) = (t, x) ∈ R

1+m, α = 0, 1, · · · ,m.

Moreover, Dα is the covariant pull - back derivative in the bundle
u∗TN. As usual, the Greek indices α, β run from 0 to m. We use
summation convention over repeated indices.

By the Nash embedding theorem, we may assume that the target
N is embedded in some R

d for d large enough. So, our u is given by
d - dimensional vector u = (u1, ..., ud). Then the intrinsic equation
(1) can be rewritten in extrinsic form

utt − ∆u − B(u)(∂αu, ∂αu) = 0, (2)

where
B(p) : TpN × TpN → TpN

⊥

is the second fundamental form on N ⊂ Rd.
Given any function

F : (t, x) ∈ R
m+1 → F (t, x) ∈ Tu(t,x)N

we can consider the following inhomogeneous version of (2)

utt − ∆u − B(u)(∂αu, ∂αu) = F. (3)

In this work we study the Cauchy problem for (3) subject to the
initial conditions

u(0, x) = u0(x) ∈ Hs(Rm;N),

∂tu(0, x) = u1(x) ∈ Hs−1(Rm;TN) (4)

More precisely, we identify Hs = Hs(Rm;N), s ≥ 0 with the
space of functions

u(x) ∈ Hs(Rm; Rd),

satisfying u(x) ∈ N for almost every x ∈ Rm (here we use the em-
bedding N →֒ R

d).
If U ⊂ Rm is an open set, then Hs(U) = Hs(U ;N), s ≥ 0 is the

space of functions
u(x) ∈ Hs(U ; Rd),
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satisfying u(x) ∈ N for almost every x ∈ U.
From the results in [7], [8], [15] it follows that given any s > m/2,

any data
(u0, u1) ∈ Hs × Hs−1

and any source term

F ∈ L1((0, T0);H
s−1),

one can find a finite time interval [0, T ], 0 < T < T0 so that there
exists a unique solution

u ∈ C([0, T ];Hs)

to the Cauchy problem (2), (4).
It is well - known from the result of Shatah [12] that the classical

C∞ solutions to the homogeneous wave map problem (2) might blow
- up if m = n ≥ 3 and N = Sn.

On the other hand, Tao [14] have shown that the Cauchy prob-
lem for (2) is ill - posed, when n = 1,m ≥ 2 and N = S1. The
corresponding inhomogeneous problem (3) is treated in [2], where
the blow-up result (in H1 norm) is established, when

F ∈ LpLq,
1

p
+

2

q
> 2.

In [3] the case n = m = 2 is considered and it is shown that the
solution map for the wave map problem is not uniformly continuous.

If the target is hyperboloid (or manifold with negative curvature)
results due to Grillakis, Struwe (see [5] and [10]), show that C∞-
large initial data admit the existence of a global C∞-solution. The
key point in this approach is the following property, called the non-
concentration of energy :

∫

Ω(t)
|∇t,xu(t, x)|2 dx → 0, (5)

as t → 0 and Ω(t) = {x ∈ R
2 : |x| < t}. The property (5) plays

crucial role in the work [10].
In this work we study the property (5) for more general domains:

Ωα(t) = {x ∈ R
2 : |x|α < t}, where α ∈ (0, 1] and the target is S2.
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We shall consider the inhomogeneous problem (3), assuming u is an
equivariant wave map. We shall compare the following local norms:
‖u(t, .)‖H1+ε(Ωα(t)) and

∫ t
0 ‖F (s, .)‖Hε(Ωα(s)) ds, where ε ≥ 0. These

norms, when ε = 0, α = 1, are closely connected with the energy
estimate:

‖u(t, .)‖H1(Ω(t)) ≤ C
1∑

k=0

∥∥∥∂k
t u(T, .)

∥∥∥
H1−k(Ω(T ))

+

+ C

∫ T

t
‖F (s, .)‖H0(Ω(s)) ds, (6)

where 0 < t < T. This energy estimate combined with the conformal
energy estimate (see [10]) lead to (5).

If one tries to improve the regularity in (6) by ε > 0 , then a
natural question arises: can we establish an estimate of type

‖u(t, .)‖H1+ε(Ωα(t)) ≤ C
1∑

k=0

∥∥∥∂k
t u(T, .)

∥∥∥
H1−k+ε(Ωα(T ))

+

+ C

∫ T

t
‖F (s, .)‖Hε(Ωα(s)) ds ? (7)

This question of course is particularly interesting in the case of di-
mension n = 2, when the energy space H1 coincides with the critical
space with respect to scaling and local existence; the behavior of (7)
as ε → 0 can be regarded as a measure of the instability of H1 from
the point of view of local existence. We aim at showing that (7) is
not true and even more, we shall see that

lim
t→0+

‖u(t, .)‖H1+ε(Ωα(t)) = ∞,

while the expression

1∑

k=0

∥∥∥∂k
t u(T, .)

∥∥∥
H1+ε(Ωα(T ))

+

∫ T

0
‖F (s, .)‖Hε(Ωα(s)) ds

is bounded for 0 < α < 1 and ε < min
(

1
2 , 1 − α

)
.

More precisely, we have the following.
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Theorem 1.1. Let n = m = 2 and N = S
2. One can find positive

numbers ε > 0, T > 0 initial data

(u0, u1) ∈ H1+ε × Hε

and a source term

F ∈ L1((0, T );Hε (Ωα(t)))

so that the Cauchy problem for (3) with initial data

u(T, x) = u0(x), ∂tu(T, x) = u1(x) (8)

has a solution in the domain Kα(T ) = {(t, x); t ∈ (0, T ], x ∈ Ωα(t)},
where α ∈ (0, 1 − ε), such that

u ∈ C((0, T ];H1+ε (Ωα(t)))

and
lim

t→0+

‖u(t)‖H1+ε(Ωα(t)) = ∞.

Remark 1.1. The condition u ∈ C((0, T ];H1+ε(Ωα(t))) means that
the function defined as v(t) = ‖u(t, .)‖H1+ε(Ωα(t)), belongs to C((0, T ]).

The above Theorem shows that the naive intuitive argument
based on approximation of (weak) H1 solutions in the light cone
K(T ) = {(t, x); t ∈ (0, T ], x ∈ Ω(t)} by means of more regular se-
quences of H1+ε solutions in the slightly distorted ”cones”

Kα(T ) = {(t, x); t ∈ (0, T ], x ∈ Ωα(t)},
might have a concentration of local energy effect manifested by the
relation

lim
t→0+

‖u(t)‖H1+ε(Ωα(t)) = ∞.

The plan of the work is the following. In section 2 we consider
a special type of wave maps: so called equivariant wave maps. In
section 3 we construct special equivariant solutions to the inhomo-
geneous problem and estimate the H1 norm of the solution and
L1((0, T );L2(Ωα(t))) of the source terms. Higher regularity esti-
mates for the concrete solution are discussed in section 4, where the
complete proof of the main Theorem is presented. In the Appendix
some technical lemmas are established.

The authors are grateful to Piero D’Ancona for discussions during
the preparation of the work.
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2. Harmonic maps and special harmonic maps on the

sphere

The harmonic maps correspond to the case, when the manifold M is
m− dimensional Riemannian manifold equipped with metric σ. The
target is (N, g) and as before it is n - dimensional manifold endowed
with Riemannian metric g. The harmonic map is a map that satisfies
the equation

m∑

j=1

Dj∂ju = 0, (9)

where

∂j =
∂

∂xj

and xj, j = 1, · · · ,m are the local coordinates on M. Moreover, Dj

is the covariant pull - back derivative in the bundle u∗TN.
To introduce the energy functional we suppose that y1, · · · , yn

are local coordinates on N provided

y1, · · · , yn ∈ Y

with Y being a small neighborhood of 0 ∈ R
n. Given any small

neighborhood X of 0 ∈ Rm and any map

U : x = (x1, · · · , xm) ∈ X → y = (y1, · · · , yn) ∈ Y

we can define locally the energy functional

E(U) =

∫

X

n∑

a,b=1

m∑

j,k=1

σjk(x)gab(y)∂jy
a(x)∂kyb(x)

√
σ dx.

To simplify further the calculations we use the summation convention
for repeated indices so

E(U) =

∫

X
σjk(x)gab(y)∂jy

a(x)∂ky
b(x)

√
σ dx. (10)

The Euler-Lagrange equation associated with this functional has
the form

− 2gab∂k(σ
jk√σ∂jy

b) − 2∂cgab∂ky
cσjk√σ∂jy

b+

+ (∂agbc∂jy
cσjk√σ∂ky

b) = 0. (11)
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Since the Laplace-Beltrami operator ∆M has local representation

∆M =
m∑

j,k=1

1√
σ

∂j

√
σσjk∂k, (12)

where
σ = det (σjk) ,

we may write :

gab∆M yb + ∂cgab∂ky
cσjk∂jy

b − 1

2
(∂agbc∂jy

cσjk∂ky
b) = 0, (13)

The Christoffel symbols are given by the following expression:

γc;ab =
1

2
(∂agbc + ∂bgac − ∂cgab). (14)

If we write

∂cgab∂ky
cσkj∂jy

b =
1

2
(∂cgba∂ky

cσkj∂jy
b + ∂bgac∂ky

cσkj∂jy
b)

and use the expression of Christoffel symbols, then we arrive at the
following equation

gab∆M yb + γa;bc∂ku
bσjk(x)∂ju

c = 0.

Raising the index a, we obtain

∆M ya + γa
bc∂ky

bσjk(x)∂jy
c = 0. (15)

By the Nash embedding theorem, we may assume that the target
N is embedded in some R

d for d large enough. So, our u is given
by d - dimensional vector u = (u1, ..., ud) and the local coordinates
y1, · · · , yn on N enables one to parameterize locally the manifold N
as follows

u = u(y), y ∈ Y.

To simplify the further calculations we shall assume that d =
n + 1, i.e. N is a surface in Rd. The Riemannian metric g on N is
induced by the Euclidean metric on R

d i.e.

gab = 〈∂yau, ∂ybu〉Rd , (16)
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where 〈·, ·〉Rd is the scalar product in R
d.

Then the intrinsic equation (15) can be rewritten in extrinsic
form

∆M u +
m∑

j,k=1

σjkB(u)(∂ju, ∂ku) = 0, (17)

where

B(p) : TpN × TpN → TpN
⊥

is the second fundamental form on N ⊂ Rd and ∆M is the Laplace-
Beltrami operator on the manifold M. Recall that the second funda-
mental form is defined by

B(u)(v,w) =
n∑

a,c=1

bac(u)vawcν(u) (18)

for any two vectors v,w ∈ TpN with coefficients bac defined as follows
(see [9], Chapter 7, section 3, example 3.3)

bac = −〈∂ya∂ycu(y), ν(u(y))〉Rd , a, c = 1, · · · , n, (19)

where ν(u) is the unit normal at u ∈ N. In the above local represen-
tation we have used a local basis dy1, · · · , dyn in TpN, which is dual
to the basis of vector fields ∂y1 , · · · , ∂yn so that

v =

n∑

j=1

vjdyj , w =

n∑

j=1

wjdyj .

To verify the above assertion it is sufficient to rewrite the energy
functional in (10) as follows

E(U) =

∫

X
σjk(x)〈∂ju(y(x))∂ku(y(x))〉Rd

√
σ dx. (20)

Taking the extremum of this integral over u ∈ H1, such that u(y) ∈
N we obtain the Euler - Lagrange equation with Lagrange multiplier

∆M u = −µν(u), (21)
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where the Lagrange multiplier µ can be obtained by scalar multipli-
cation with u, i.e.

µ = − 1√
σ
〈∂j

√
σ σjk∂ku, ν〉Rd .

Using the property

∂ku ∈ Tu(N), ν(u) ∈ Tu(N)⊥,

we get
µ = −〈σjk∂ya∂ycu, ν〉Rd∂jy

a∂ky
c.

Now the definition (19) of the second fundamental form leads to (17).
From now on we restrict our attention to the simplest case when

M = S
m−1 = N. Then we can assume that the standard metric on

M = N are induced by the embedding

S
m−1 ⊂ R

m.

If ω ∈ S
m−1, then ω = (ω1, · · · , ωm) ∈ R

m and |ω| = 1. We shall
denote by κ = (κ1, · · · , κm−1) any local coordinates on S

m−1 and by
x = (x1, · · · , xm) the coordinates on Rm. The standard metric on
S

m−1 is induced by the embedding and has the form

m−1∑

j,k=1

σjk(κ)dκjdκk

with respect to local coordinates κ1, · · · , κm−1. Introducing spherical
coordinates

r = |x|, ω =
x

|x| ∈ S
m−1,

we have the following decomposition of the Laplace operator in Rm

∆x = ∂2
r +

m − 1

r
∂r +

1

r2
∆Sm−1 . (22)

Then the intrinsic form of harmonic map equation in (15) implies
that a local map

κ = (κ1, · · · , κm−1) −→ λ = λ(κ) = (λ1, · · · , λm−1)
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is (locally) a harmonic map if

∆M λa +
m−1∑

j,k=1

m−1∑

b,c=1

γa
bc(λ)σjk(κ)∂κk

λb∂κj
λc = 0, (23)

where a = 1, · · · ,m − 1.
The embedding

S
m−1 ⊂ R

m

enables us to consider the corresponding diffeomorphism

λ ∈ R
m−1 −→ θ = θ(λ) ∈ S

m−1 (24)

that maps a small neighborhood of the origin in Rm−1 onto small
neighborhood on the sphere S

m−1. Then the equation (21) shows
that a map

κ = (κ1, · · · , κm−1) −→ θ = θ(κ) = (θ1, · · · , θm) ∈ S
m−1

is (locally) a harmonic map if

∆Sm−1 θ = −Kθ, (25)

where K > 0 is a constant.

Lemma 2.1. Let

κ = (κ1, · · · , κm−1) −→ θ = θ(κ) = (θ1, · · · , θm) ∈ S
m−1

be a local C2 solution to

∆Sm−1 θ = −Kθ, (26)

where K > 0 is a constant. Then

K =
m−1∑

j,k=1

σjk(κ)〈∂κj
θ, ∂κk

θ〉Rm (27)

and

K =

m−1∑

b,c=1

m−1∑

j,k=1

σbc(λ)σjk(κ)∂κj
λb∂κk

λc, (28)

where
λ(κ) = θ−1θ(κ) (29)

and θ−1 is the diffeomorphism inverse to (24).
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Remark 2.1. The map (29) in the above Lemma can be extended as
a map

ω ∈ S
m−1 −→ λ(ω) = (λ1(ω), · · · λm−1(ω)), (30)

since κ = (κ1, · · · , κm−1) are local coordinates on S
m−1.

Proof. Multiplying the equation (26) by θ, we get

K = −〈∆Sm θ, θ〉Rm,

where (see (12))

∆M =

m−1∑

j,k=1

1√
σ

∂κj

√
σ σjk ∂κk

. (31)

From the relation

〈θ(κ), θ(κ)〉Rm = 1

we obtain

〈∂κk
θ(κ), θ(κ)〉Rm = 0

so

K = −
m−1∑

j,k=1

σjk 〈∂κj
∂κk

θ, θ〉Rm =

m−1∑

j,k=1

σjk 〈∂κj
θ, ∂κk

θ〉Rm

and this proves the first relation (27). The second relation (28)
follows from

σbc(λ) = 〈∂λbθ(λ), ∂λcθ(λ)〉Rm

and the chain rule

∂κj
θ =

m−1∑

b=1

∂λbθ∂κj
λb.

This completes the proof of the Lemma.

To find solution to the equation (25) we follow the idea from [6]
and shall look for polynomial functions

x = (x1, · · · , xm) ∈ R
m −→ P (x) = y = (y1, · · · , yn) ∈ R

n, (32)
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such that P (x) = (P1(x), · · · , Pn(x)) and Pj(x) are harmonic poly-
nomial in x homogeneous of order L ≥ 1, i.e.

∆RmPj(x) = 0 (33)

and such that

(x1)
2 + · · · (xm)2 = 1 ⇒ (P1(x))2 + · · · (Pn(x))2 = 1. (34)

The homogeneity argument shows that (34) is consequence of

(P1(x))2 + · · · (Pn(x))2 =
(
(x1)

2 + · · · (xm)2
)L

. (35)

Once the above problem (33) and (35) is solved, we can introduce
polar coordinates

r = |x|, ω =
x

|x|
and set

u(ω) = P (ω).

Using the decomposition of the Laplace operator together with (33)
and the relation

Pj(x) = rLPj(ω)

and rewrite (33) as

rL−2 (L(L − 1) + (m − 1)L + ∆Sm−1)Pj(ω) = 0

so u(ω) = P (ω) satisfies

∆Sm−1u = −L(L + m − 2)u (36)

so the equation (25) is valid with µ = L(L + m − 2).
First, we consider the case n = m = 2. Then κ ∈ [0, 2π) can be

considered as a local coordinate on M = S
1 while λ ∈ [0, 2π) is the

local coordinate on N = S
1. Then ∆S1 = ∂κκ and setting

u(κ) = (cos λ, sin λ), λ = λ(κ),

the equation (36) becomes

− sinλ∂κκλ − cos λ (∂κλ)2 = −L2 cos λ,

cos λ∂κκλ − sin λ (∂κλ)2 = −L2 sinλ.
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An obvious solution is

λ = Lκ.

An alternative approach based on solution of the system (33) and
(35) can be found using the embeddings

S
1 ⊂ R

1+1 = C.

If x1, x2 are the coordinates on R
2 and we can define the polynomial

vector valued function

z = x1 + ix2 −→ P (z) = zL.

Since ∆C = 4∂z∂z̄, we see that P (z) are harmonic polynomials of
order L so (33) is satisfied. The property (35) follows from the
obvious relation

|zL|2 = |z|2L.

For L = 2 we obtain in particular

P1(x) = (x1)
2 − (x2)

2,

P2(x) = 2x1x2. (37)

Next, we consider the case m = n = 3. For L = 1 we can take
Pj(x) = xj and see that (33) and (35) are satisfied. For L = 2 we
use the argument of the previous case m = n = 2 and see that all
polynomials (see (37))

(x2)
2 − (x3)

2, (x3)
2 − (x1)

2, (x1)
2 − (x2)

2

as well

x1x2, x2x3, x3x1

are harmonic ones. For this we choose

P1(x) = a
(
(x2)

2 − (x3)
2
)

+ b (x1x2 + x2x3 + x3x1) ,

P2(x) = a
(
(x3)

2 − (x1)
2
)

+ b (x1x2 + x2x3 + x3x1) ,

P3(x) = a
(
(x1)

2 − (x2)
2
)

+ b (x1x2 + x2x3 + x3x1) ,
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where a, b are suitable constants chosen so that (35) is fulfilled. Note
that

(P1(x))2 + (P2(x))2 + (P3(x))2 =

2a2((x1)
4 + (x2)

4 + (x3)
4)+

+ (3b2 − 2a2)
(
(x1x2)

2 + (x2x3)
2 + (x3x1)

2
)
.

Comparing this relation with

(
(x1)

2 + (x2)
2 + (x3)

2
)2

=

((x1)
4 + (x2)

4 + (x3)
4) + 2

(
(x1x2)

2 + (x2x3)
2 + (x3x1)

2
)

we see that it is sufficient to take

2a2 = 1, 3b2 − 2a2 = 2,

i.e.

a =
1√
2
, b = 1.

With this choice we have

(P1(x))2 + (P2(x))2 + (P3(x))2 =
(
(x1)

2 + (x2)
2 + (x3)

2
)2

so (35) is satisfied with L = 2. For higher dimensional case L ≥ 3 or
for n ≥ m ≥ 3 the existence of harmonic polynomial maps satisfying
(33) and (35) is discussed in [6]. For our considerations concerning
the concentration of local energy for two dimensional wave maps only
the case n = m = 2 is sufficient.

3. Equivariant wave maps and construction of special

solutions

In this section we shall derive briefly the wave map equation and
shall construct a special class of equivariant wave maps that solve
the inhomogeneous problem (3).

The equation (1) is the Euler-Lagrange equation related to the
density

〈∂αu, ∂αu〉g(u) (38)
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that in small neighborhood of a fixed u0 ∈ N has the form

〈∂αu, ∂αu〉g(u) = hαβgab∂αua∂βub.

Here and below the Greek indices α, β vary from 0 to m, while
the Latin indices a, b, c, d vary from 1 to n. A summation convention
for repeated indices is also assumed.

The corresponding Lagrangian is given by:

L[u] =

∫

M

hαβgab∂αua∂βub. (39)

Since we assumed M to be the Minkowski space R1+m with the
standard metric

h = diag(−1, 1, ..., 1),

we can simplify the Lagrangian :

L[u] =

∫

R1+m

gab∂
αua∂αub. (40)

Then the Euler - Lagrange equations become:

−2∂α(gab∂
αub) + ∂αuc∂αub∂agbc = 0, (41)

or equivalently:

−gab∂α∂αub − ∂cgab∂αuc∂αub +
1

2
(∂agbc∂αuc∂αub) = 0.

In terms of D’Alembertian we may write :

gab2ub + ∂cgab∂αuc∂αub − 1

2
(∂agbc∂αuc∂αub) = 0, (42)

where 2 = −∂α∂α = ∂2
0 − ∂2

1 − ... − ∂2
n. The Christoffel symbols are

given by the following expression:

Γc;ab =
1

2
(∂agbc + ∂bgac − ∂cgab). (43)

If we write

∂cgab∂αuc∂αub =
1

2
(∂cgba∂αuc∂αub + ∂bgac∂αuc∂αub)
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and use the expression of Christoffel symbols, then we arrive at the
following equation

gab2ub + Γa;bc∂αub∂αuc = 0.

Raising the index a, we obtain

2ua + Γa
bc∂αub∂αuc = 0. (44)

In order to handle the inhomogeneous case, a minor modification
of the density (38) is sufficient:

〈∂αu, ∂αu〉g(u) + 〈F, u〉g(u), (45)

where

F : x = (x0, x1, · · · , xm) ∈ R
1+m → F (x) ∈ Tu(x)N

is the given source term. The corresponding inhomogeneous problem
has the form

2ua + Γa
bc∂αub∂αuc = F a. (46)

As in the previous section we can rewrite these equations in ex-
trinsic form. To this purpose assume that N is a n− dimensional
surface in R

n+1 with metric induced by the Euclidean metric on
Rn+1. Thus u is a d = n + 1-dimensional vector u = (u1, ..., ud); on
the other hand, on N we can take local coordinates y1, · · · , yn so
that N is described locally by a chart

u = u(y), y ∈ Y ⊂ R
n.

The Riemannian metric g on N is induced by the Euclidean met-
ric on R

d (see (16) of the previous section)

gab = 〈∂yau, ∂ybu〉Rd , (47)

where 〈·, ·〉Rd is the scalar product in R
d.

Then the wave map (locally) is a function

x = (x0, x1, · · · , xm) ∈ X ⊂ R
m+1 −→ y = y(x) ∈ R

n
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defined in a small neighborhood X of the origin in R
n+1, satisfying

the intrinsic equation (46), i.e.

2ya + Γa
bc∂αyb∂αyc = F a. (48)

It is easy to verify that the wave map

v(x) := u(y(x)), x ∈ X

satisfies the extrinsic equation

2 v +

m∑

α,β=0

hαβB(v)(∂αv, ∂βv) = 0, (49)

where
B(p) : TpN × TpN → TpN

⊥

is the second fundamental form of N ⊂ R
d. We recall the explicit

form (18) of the second fundamental form from the previous section:

B(u)(v,w) =
n∑

a,c=1

bac(u)vawcν(u) (50)

for any two vectors v,w ∈ TpN , and with coefficients bac defined as
follows (see (19))

bac = −〈∂ya∂ycu(y), ν(u(y))〉Rd , a, c = 1, · · · , n; (51)

ν(u) denotes as usual the unit normal at u ∈ N.
To verify the above claim it is sufficient to rewrite the energy

functional in (39) as follows

L[u] =

∫

X
hαβ〈∂αu(y(x))∂βu(y(x))〉Rd dx. (52)

Taking the extremum of this integral over u ∈ H1, under the con-
straint u(y) ∈ N we obtain the Euler-Lagrange equation with La-
grange multiplier

2u = −µν(u), (53)
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where the Lagrange multiplier µ can be obtained by scalar multipli-
cation with u:

µ = hαβ〈∂α∂βu, ν〉Rd .

Using the property

∂yku ∈ Tu(N), ν(u) ∈ Tu(N)⊥,

we get
µ = hαβ〈 ∂ya∂ycu, ν〉Rd∂αya∂βyc.

Now the definition (19) of the second fundamental form leads to (17).
In the case when N = S

n, we have ν(u) = u, and equation (49)
simplifies to

2 u −
m∑

α,β=0

hαβ〈∂αu, ∂β〉Rn+1 u = 0. (54)

To recall the equivariant wave map ansatz, we shall assume that
N is a smooth n−dimensional rotationally symmetric, wrapped prod-
uct manifold defined as N = {(φ, λ);φ ∈ (0, φ∗), λ ∈ S

n−1} with
metric

dφ2 + g(φ)2dσ2, (55)

where dσ2 is the standard metric on S
n−1, i.e.

dσ2 = σjk(λ)dλjdλk,

while (λ1, . . . , λn−1) are the local coordinates on S
n−1. In these local

coordinates we have

gφλj
= 0,

gφφ = 1,

gλiλj
= g2(φ)σij(λ). (56)

If at least two of indices a,b,c are φ, then (56) implies that Γa;bc = 0.
If only one of indices a, b, c is φ, then Γφ,λiλj

= −g′(φ)g(φ)σij and
Γλi,λjφ = g′(φ)g(φ)σij . Finally, Γλi,λjλk

= g2(φ)γi,jk where

γi,jk =
1

2

(
∂λj

σik + ∂λk
σij − ∂λi

σjk
)
,
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are the Christoffel symbols for the metric σ. The equivariant wave
map satisfy the following ansatz

uφ(t, x) = φ(t, r), uλj
= λj(ω), (57)

where
ω ∈ S

m−1 7→ λj(ω) ∈ R, j = 1, · · · , n − 1

is the map of (29).
Recall that this map in the local coordinates

κ = (κ1, · · · , κm−1)

on Sm−1 defines a solution to the equation

∆Sm−1λj + Kλj = 0,

where K = L(L + m − 2), L ≥ 1 is an integer and

K = σbc(λ)σjk(κ)∂κj
λb∂κk

λc, (58)

due to (28) of Lemma 2.1
Choosing a = φ in (44) we obtain

2φ + Γφ
λbλc(u)∂αλb∂αλc = 0,

where
Γφ

λbλc(u) = −g′(φ)g(φ)σbc(λ).

Note that

∂αλb∂αλc = σjk(κ)
∂κj

λb∂κk
λc

r2
,

so from (58) we find

2φ +
Kg′(φ)g(φ)

r2
= 0. (59)

The corresponding inhomogeneous problem is

2φ +
Kg′(φ)g(φ)

r2
= f. (60)

In the special case, when the target is the two - dimensional
sphere S

2, the metric on S
2 has the form dφ2 + sin2 φdλ2. Let u :
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R × R
2 → S

2 be an equivariant wave map. Then u = (u1, u2, u3)
with

u1 = cos(φ)cos(λ), u2 = cos(φ) sin(λ), u3 = sin(φ). (61)

Introducing polar coordinates (r, κ) in R
2, we have x1 = r cos κ,

x2 = r sin κ; so the equivariant ansatz (57) shows that φ = φ(t, r)
satisfies (59) and λ = λ(κ) is a harmonic map between S

1 and S
1.

For the simplest case of identity map, i.e. λ(κ) = κ the equation
(60) becomes

2φ +
sin(2φ)

2r2
= f, (62)

where 2φ = (∂2
t −∂2

r − 1
r∂r)φ. The vector - valued function u in (61)

solves the equation

utt − ∆u +
(
|ut|2 − |∇xu|2

)
u = F, (63)

provided φ solves the inhomogeneous equation (62). Indeed, we have
the relations

ut = ∂tφ∂φu,

ur = ∂rφ∂φu,

utt = −φ2
t u + φtt∂φu,

∂2
r u = − (∂rφ)2 u + ∂rrφ∂φu

and the representation formula

2 = ∂2
t − ∂2

r − 1

r
∂r −

1

r2
∂2

κ. (64)

From
|∇xu|2 = |∂ru|2 + r−2|∂κu|2

and (61) we get

|∇xu|2 = |∂rφ|2 +
cos2 φ

r2
|∂tu|2 = |∂tφ|2,

so

|∂tu|2 − |∇xu|2 = φ2
t − φ2

r −
cos2 φ

r2
. (65)



CONCENTRATION OF LOCAL ENERGY etc. 215

Further, from (64) and (64) we find

2u = −φ2
t u + φtt ∂φu + φ2

r u − φrr ∂φu − φr

r
∂φu − 1

r2
∂κκu. (66)

Next, we need the following.

Lemma 3.1. We have the relation

∂κκu = − (cos φ)2 u +
sin(2φ)

2
∂φu. (67)

Proof. Consider the vectors e = (cos λ, sin λ, 0) and e3 = (0, 0, 1).
Then

u = e cos φ + e3 sin φ, ∂φu = −e sin φ + e3 cos φ

and from these relations we get immediately

e = u cos φ − ∂φu sinφ.

This relation and the identity ∂κκu = −e cos φ imply (67). This
completes the proof.

Combining the above Lemma and (65), we obtain

Corollary 3.1. If u is defined by (61), then the following relation

2u +
(
|ut|2 − |∇xu|2

)
u =

(
2φ +

sin(2φ)

2r2

)
∂φu (68)

holds.

We conclude this section by a final remark. If φ solves the inho-
mogeneous Cauchy problem for (60), i.e.

2φ +
sin(2φ)

2r2
= f, (69)

φ(0, x) = φ0(|x|), ∂tφ0(0, x) = φ1(|x|)

then we get immediately a solution of the corresponding extrinsic
problem

utt − ∆u +
(
|ut|2 − |∇xu|2

)
u = F, (70)

u(0, x) = u0(x)

∂tu0(0, x) = u1(x),
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where

u0 = u(φ0), u1 = u(φ1), F = f∂φu (71)

with u = u(φ), defined according to (61). An analogous connection
exists between the Sobolev spaces associated with these two problems
(see Lemmas 5.1 and 5.2 in the Appendix).

4. Solution to the Cauchy problem

From now on we will use the following notation: if f and g are two
function we write f . g, if there exists a constant C, such that
f ≤ Cg and f ∼ g, if there exist constants A and B, such that
Ag ≤ f ≤ Bg. Consider the equation (69) for equivariant wave
maps with initial data

φ(1, r) = φ0(r), φt(1, r) = φ1(r), (72)

where φ = φ(t, r) depends only on t and r. We shall construct a
solution of the following special form:

φ(t, r) = Q

(
v(r)

t

)
; (73)

the function Q must satisfy a suitable ordinary differential equation,
which we derive now. The definition of φ implies:

∂tφ = −v(r)

t2
Q′

(
v(r)

t

)
,

∂2
t φ =

(v(r))2

t4
Q′′

(
v(r)

t

)
+

2v(r)

t3
Q′

(
v(r)

t

)
,

∂rφ =
v′(r)

t
Q′

(
v(r)

t

)
,

∂2
rφ =

(v′(r))2

t2
Q′′

(
v(r)

t

)
+

v′′(r)

t
Q′

(
v(r)

t

)
.
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Plugging these quantities into (69) we see that φ satisfies the identity:

(
∂2

t − ∆
)
φ(t, x) +

sin 2φ

2r2
=

(v(r))2

t4
Q′′

(
v(r)

t

)
+

+
2v(r)

t3
Q′

(
v(r)

t

)
− (v′(r))2

t2
Q′′

(
v(r)

t

)
+

− v′′(r)

t
Q′

(
v(r)

t

)
− v′(r)

rt
Q′

(
v(r)

t

)
+

sin 2Q

2r2
. (74)

Our main idea is to regard all the terms involving the time derivatives
as a source term, i.e., to choose

f = ∂2
t u =

(v(r))2

t4
Q′′

(
v(r)

t

)
+

2v(r)

t3
Q′

(
v(r)

t

)
; (75)

then the equation (74)

(∂2
t − ∆)φ(t, x) +

sin 2φ

2r2
= f

simplifies to

−∆φ(t, x) +
sin 2φ

2r2
= 0,

and, recalling our choice of φ, this leads to the following equation for
Q:

(v′(r))2

t2
Q′′ +

v(r)

t

v′(r) + rv′′(r)

rv(r)
Q′ − sin 2Q

2r2
= 0. (76)

As v = v(r) we may choose a solution of the following ordinary
differential equation:

v′(r) + rv′′(r)

rv(r)
=

c

r2
, (77)

where the positive constant c is a parameter to be chosen. This is
an equation of Euler-type:

r2v′′(r) + rv′(r) − cv(r) = 0.

A special solution to (77) is v = rα, provided we take c = α2. With
these choices, the equation for Q becomes

α2 1

r2

r2α

t2
Q′′ + α2 1

r2

rα

t
Q′ − sin 2Q

2r2
= 0. (78)
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Setting for brevity

z =
rα

t
,

we can rewrite (78) as follows:

α2z2Q′′ + α2zQ′ − sin 2Q

2
= 0. (79)

Now, making change of the variable

s =
1

α
ln z,

we get

Q′′(s) − sin 2Q(s)

2
= 0. (80)

We have not yet chosen the initial data for Q. Multiplying the equa-
tion by Q′ we obtain

(Q′)2 +
1 + cos 2Q

2
= const (81)

and this means that the quantity

I(s) = (Q′)2 +
1 + cos 2Q

2
≡ (Q′)2 + (cos Q)2

is constant on the integral curves of (80) or, in other words, is a first
integral of the equation. Now we may choose the initial data for Q
such that I(s) is equal to 1: indeed, it is sufficient to take

Q(0) =
π

2
, Q′(0) = 1 =⇒ I(s) = (Q′)2 + (cos Q)2 = 1.

The last equation has the two solutions

tan

(
Q

2

)
= c0e

±s ,

and our choice of the initial data for Q implies c0 = 1. Discarding
the solution with sign − we finally obtain

Q(z) = 2 arctan
(
z

1
α

)
. (82)



CONCENTRATION OF LOCAL ENERGY etc. 219

Our next step is to study the regularity properties of the remainder
f(t, r) defined by

f(t, r) =
r2α

t4
Q′′

(
rα

t

)
+ 2

rα

t3
Q′

(
rα

t

)
(83)

for rα < t. In fact, we shall prove the following.

Lemma 4.1. For any α ∈ [α0, 1) with some fixed α0, 0 < α0 < 1, and
for any T > 0 we have

f ∈ L1((0, T );H0
rad(Ωα(t))).

Proof. As before set

z =
ra

t
.

From the equations (83) and (79) for Q we have:

f =
1

t2

(
zQ′ +

sin 2Q

2α2

)
. (84)

So, the norm of f in H0
rad(Ωα(t)) = L2

rad(Ωα(t)) for fixed t ∈ (0, T )
is:

‖f(t, .)‖2
L2

rad(Ωα(t)) =
1

t4

∫ t
1
α

0

(
zQ′(z) +

sin 2Q

2α2

)2

r dr, (85)

where in terms of z we have

Q′(z) =
2

α

z
1
α
−1

1 + z
2
α

so we get

‖f(t, .)‖2
L2

rad(Ωα(t)) ≤ C

t4

∫ t
1
α

0

(
z

2
α

(1 + z
2
α )2

+ (sin 2Q)2

)
r dr

≤ C

t4

∫ t
1
α

0

z
2
α

(1 + z
2
α )2

r dr +

+
C

t4

∫ t
1
α

0
(sin 2Q)2 r dr

≤ C

t4



∫ t

1
α

0

r3

t
2
α

dr + t
2
α


 =

C

t4−
2
α
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where we have used the inequality 1

1+z
2
α

≤ 1 and C = C(α0, T ) > 0

is a constant, independent of α, t. Finally, we have the following
inequality:

‖f(t, ·)‖L2
rad(Ωα(t)) ≤ C

t2−
1
α

. (86)

Now it is obvious that the function t−2+1/α is in L1(0, T ), if α < 1.
This completes the proof.

The next lemma shows that φ(t, .) belongs to the energy space
H1.

Lemma 4.2. The solution φ(t, r) of (69), defined according to (73)
belongs to H1

rad(Ωα(t)) for every fixed t > 0.

Proof. For any fixed t > 0 we have

‖φ(t, .)‖2
Ḣ1

rad

=

∫ t
1
α

0
|∂rφ|2r dr

≤ C

∫ t
1
α

0

(
z

2
α

(1 + z
2
α )2

)
1

r
dr

≤ C

∫ t
1
α

0

r

t
2
α

dr = Const. (87)

Note that the reverse inequality also holds. Indeed, we have

‖φ(t, .)‖2
Ḣ1

rad(loc)
(Ωα(t))

=

∫

Ωα(t)
|∂rφ|2r dr

= C

∫ t
1
α

0

(
z

2
α

(1 + z
2
α )2

)
1

r
dr

≥ C

∫ t
1
α

0

r

t
2
α

dr = Const (88)

where we used inequalities

1

2
≤ 1

1 + z
2
α

≤ 1, ∀z ∈ [0, 1].
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The solution of the equation has the form

φ = 2 arctan
(
z

1
α

)
. z

1
α ≡ w

so we have the bound

‖u(t, .)‖2
L2

rad(Ωα(t)) . ‖w(t, .)‖2
L2

rad(Ωα(t)) .

Then we get

‖φ(t, .)‖L2
rad(Ωα(t)) ≤ C ‖w(t, .)‖2

L2
rad(Ωα(t)) =

∫ t
1
α

0

r2

t
2
α

r d r = Ct
1
α .

So our lemma is proved.

In the next section we will improve the regularity estimates of
the solution and the source term.

5. Higher regularity of the solution

To study higher regularity properties of the solution, constructed in
the previous section, we will need the definition of the Sobolev spaces
Hs for fractional s > 0.

Definition 5.1. (see for instance[Triebel 2.5.1]) We say that the
function f ∈ Hs(R2), s > 0, if the following condition holds:

‖f‖Hs(R2) = ‖f‖L2(R2) +

+

(∫

R2

|h|−(1+2s)
∥∥∥∆[s]+1

hf(x)
∥∥∥

2

L2(R2)
dh

)1/2

< C. (89)

Here ∆k
hf(x) is the difference of order k defined inductively as

follows: the difference of order 0 and 1 of the function f are given by
∆0

hf(x) = f(x) , ∆1
hf(x) = f(x + h) − f(x). Then the difference

of order k is defined inductively: ∆k
hf(x) = ∆1

h(∆k−1
hf(x)).

To define Sobolev spaces in domain Ω ⊂ R
2 we recall that the

function f̃ ( defined in R2) is an extension of the function f (defined
in Ω), if f̃↾Ω = f . Then the definition of the Sobolev space Hs(Ω) is
the following:
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Definition 5.2. We say that the function f ∈ Hs(Ω), s > 0, if the
following condition holds:

‖f‖Hs(Ω) = inf
f̃

‖f̃‖Hs(R2) < ∞, (90)

where the inf is taken over all extensions f̃ ∈ Hs(R2).

In our case we will need some refined version of this definition, i.e.
we want to understand what happens when the function is radially
symmetric and s ∈ (0, 2) . First we start with the case s ∈ (0, 1).

Definition 5.3. Let 0 < s < 1. We say that f = f(r) belongs to the
space Hs

rad(R
2), if the following condition holds:

‖f‖Hs
rad(R2) = ‖f‖L2

rad(R2) +

+

(∫ 1

0
|h|−(1+2s)

∫ ∞

0

∣∣∆1
hf(r)

∣∣2r dr dh

)1/2

< C. (91)

The definition of the Sobolev spaces in a bounded domain in this
case is analogous to the previous one. Next we have to study the
case s ∈ (1, 2).

Definition 5.4. Let s = 1+ε ∈ (1, 2). We say that f = f(r) belongs
to the space H1+ε

rad (R2), if f ∈ H1
rad(R

2) and the following condition
holds:

‖f‖H1+ε
rad(R2) = ‖f‖H1

rad(R2) +

+

(∫ 1

0
|h|−(1+2ε)

∫ ∞

0

∣∣∆1
h∂rf(r)

∣∣2r dr dh

)1/2

< C. (92)

In the special case, when the domain Ω is a sphere with center
at the origin and of radius R > 0 and the function f(x) = f(|x|) is
radially symmetric, we have the following obvious inequality

‖f‖Hs(|x|<R) ≥ ‖f‖L2(|x|<R) +

+

(∫

|h|<R/2
|h|−(1+2s)

∫ R/2

0

∣∣∣∆[s]+1
hf(r)

∣∣∣
2
r dr dh

)1/2

. (93)
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On the other hand, for R = 1 and for any integer k the norm
‖f‖Hk(|x|<1) is equivalent to the norm

∑

|α|≤k

‖∂α
x f̃‖L2(|x|<2).

Here

f̃(r) =

{
f(r), if 0 ≤ r < 1;
f(2 − r)ϕ(r − 1), if 1 < r < 2.

(94)

Here ϕ(s) is the standard cut – off function, such that ϕ(s) = 1
for |s| ≤ 1/2 and ϕ(s) = 0 for |s| ≥ 1.

Using this fact and an interpolation argument, we see that for
any real s > 0

‖f‖Hs(|x|<1) ∼ ‖f̃‖Hs(R2). (95)

To prove Theorem 1.1 we can use the equivalence of the Hs norms
of the solutions u and φ obtained in Lemma 5.1 (the corresponding
relation between the source terms are given in Lemma 5.2) and re-
duce the proof to the analysis of the solution φ = φ(t, r) to the
Cauchy problem (69). Making a shift in time we can impose initial
data conditions of type (72).

Then the key point to prove our main result is to improve the
regularity result of the previous section. In fact, we shall show
that the source term f = f(t, r), defined in (83), is in the class
L1((0, T );Hε

rad(Ωα(t))), while the solution φ = φ(t, r) defined in (73)
belongs to

C((0, T ];H1+ε
rad (Ωα(t)))

for 0 < ε < 1 − α. In this way the proof of Theorem 1.1 can be
reduced to the proof of the following.

Theorem 5.1. Let α ∈ (0, 1) and T > 0. For any ε > 0 such that

ε < min

(
1

2
, 1 − α

)

we have the properties:

f ∈ L1((0, T );Hε
rad(Ωα(t))); (96)

φ ∈ C((0, T ];H1+ε
rad (Ωα(t))); (97)

lim
t→0+

‖φ(t, ·)‖H1+ε
rad

(Ωα(t)) = ∞. (98)
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Proof. There is no loss of generality if we assume T = 1. First of
all, we will estimate the Hε

rad(Ωα(t))-norm of f = f(t, r) for fixed
t ∈ (0, 1); recall that in the previous section we have estimated the
L2

rad(Ωα(t))-norm of f = f(t, r). Applying Definition (90), we see
that it is sufficient to estimate the quantity

∫ 1

0

1

h1+2ε

∫ 2θ

0
|∆1

hf̃(t, r)|2r dr dh, (99)

where θ = t1/α, the extension f̃ is constructed as follows:

f̃(t, r) =

{
f(t, r), if 0 < r < θ;
f(t, r)ϕ((r − θ)/θ)), if r > θ,

(100)

and ϕ(s) is a standard cut-off function, such that ϕ(s) = 1 for |s| ≤
1/2 and ϕ(s) = 0 for |s| ≥ 1. Note that

|∆1
hϕθ(r)| ≤ C

h

θ
(101)

with ϕθ(r) = ϕ((r − θ)/θ)) and C is a constant, independent of
θ ∈ (0, 1).

In the quantity (99) we can split the integral in r in the two
pieces 0 < r < θ and θ < r < 2θ; we shall estimate only the first
piece, i.e.,

I(t) =

∫ 1

0

1

h1+2ε

∫ θ

0
|∆1

hf̃(t, r)|2r dr dh, (102)

since the estimate of the second piece

∫ 1

0

1

h1+2ε

∫ 2θ

θ
|∆1

hf̃(t, r)|2r dr dh,

is completely similar and uses only (101) in addition to the argument
presented below.

Recalling (84), we know that the function f is given by the fol-
lowing expression:

f(t, r) =
1

t2

(
2rθ

α(r2 + θ2)
+

1

2α2
sin 2Q

)
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where θ = t1/α. Now change the order of integration in I(t), first
with respect to h, then with respect to r, and divide the integral in
two parts:

I1 =

∫ θ

0

∫ θ−r

0

1

h1+2ε

∣∣∆1
hf(t, r)

∣∣2 r dh dr, (103)

I2 =

∫ θ

0

∫ 1

θ−r

1

h1+2ε

∣∣∣∆1
hf̃(t, r)

∣∣∣
2
r dh dr. (104)

This allows to simplify the estimate for the function f = f(t, r). In-
deed, writing explicitly the integral I1 and using the trivial estimate
(a + b)2 ≤ 2(a2 + b2), we arrive at the following expression:

I1 ≤ C

∫ θ

0

r

t4

∫ θ−r

0

1

h(1+2ε)

∣∣∣∣
(r + h)θ

(r + h)2 + θ2
− rθ

r2 + θ2

∣∣∣∣
2

+
1

h(1+2ε)
|(sin 2Q(r + h) − sin 2Q(r))|2 dh dr .

.

∫ θ

0

r

t4

∫ θ−r

0

θ2

h(1+2ε)

∣∣∣∣
h(θ2 − r2 − rh)

((r + h)2 + θ2)(r2 + θ2)

∣∣∣∣
2

+
1

h(1+2ε)

1

2α2
|sin 2Q(r + h) − sin 2Q(r)|2 dh dr. (105)

The function θ2 − (r2 + rh) ≥ 0 for h ∈ [0, θ − r] has a maximum at
h = 0, so we have

∣∣θ2 − (r2 + rh)
∣∣ ≤ (θ2 − r2).

On the other hand, we know that

1

((r + h)2 + θ2)(r2 + θ2)
≤ 1

(r2 + θ2)2

and

|sin 2Q(r + h) − sin 2Q(r)| ≤ |2Q(r + h) − 2Q(r)| ≤ 2
∣∣Q′(r + ωh)h

∣∣
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for some 0 < ω < 1. Note that

Q′(r + ωh) =
2θ

(r + ωh)2 + θ2
,

so we see that the following inequality is true:

2θ

(r + ωh)2 + θ2
≤ 2θ

(r2 + θ2)
.

Hence, the integral I1 can be estimated by the following chain of
inequalities:

I1 .

∫ θ

0

r

t4

(∫ θ−r

0
h(1−2ε) (θ

2 − r2)2

(r2 + θ2)4
θ2 +

h(1−2ε)

2α2

4θ2

(r2 + θ2)2
dh

)
dr

.
θ2

t4

∫ θ

0
r(θ − r)(2−2ε) θ4

(r2 + θ2)4
dr +

+
1

t4

∫ 2θ

0
r(θ − r)(2−2ε) 4θ2

(r2 + θ2)2
dr

.
1

θ2t4

∫ θ

0
r(θ − r)(2−2ε) dr +

+
1

θ2t4

∫ θ

0
r(θ − r)(2−2ε) dr. (106)

The function (θ − r)2−2ε is decreasing in the interval [0, θ], so we
have that (θ − r)2−2ε ≤ θ2−2ε . This remark gives the estimate

I1 .
θ2−2ε

t4
(107)

and recalling that θ = t1/α we obtain

I1 .
1

t4−
2(1−ε)

α

. (108)

Consider now the second integral:

I2 =

∫ θ

0

∫ 1

θ−r

1

h1+2ε

∣∣∣∆1
hf̃(t, r)

∣∣∣
2
r dh dr. (109)
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The obvious estimate

|a − b|2 ≤ 2(a2 + b2)

implies that

∣∣∣∆1
hf̃(t, r)

∣∣∣
2
≤ 2

∣∣∣f̃(t, r)
∣∣∣
2
+ 2

∣∣∣f̃(t, r + h)
∣∣∣
2
.

Further, we have the estimates

|f̃(t, r)| ≤ C

t2

(
rθ

r2 + θ2
+ 1

)
,

|f̃(t, r + h)| ≤ C

t2

(
rθ

(r + h)2 + θ2
+ 1

)
+

C

t2
hθ

(r + h)2 + θ2
,

and using the inequalities

rθ

(r + h)2 + θ2
≤ rθ

r2 + θ2
≤ 1

2
,

rh

(r + h)2 + θ2
≤ rh

h2 + θ2
≤ 1

2

we obtain ∣∣∣∆1
hf̃(t, r)

∣∣∣
2
≤ C

t2
.

Then I2 can be estimated as follows:

I2 ≤ C

t4

∫ θ

0
r

∫ 1

θ−r

1

h1+2ε
dh dr

≤ C

∫ θ

0

r

t4

(
1

(θ − r)2ε
− 1

)
dr

.
1

t4

(∫ θ

0

r

(θ − r)2ε
dr

)

.
1

t4
θ2−2ε

.
1

t4−
2−2ε

α

. (110)
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Now, Definition 5.3 shows that

‖f‖2
Hε

rad(Ωα(t)) ≤
∥∥∥f̃
∥∥∥

2

L2
rad(|x|<2θ)

+

+

∫ 1

0
h−(1+2ε)

∫ 2θ

0

∣∣∣∆1
hf̃(r)

∣∣∣
2
r dr dh. (111)

The estimate for the first term on the right-hand side (see(86)) is

‖f(t, ·)‖L2
rad(|x|<2θ) ≤ C

t2−
1
α

. (112)

On the other hand, we have just established the following estimate
of the second term:

∫ 1

0

1

h1+2ε

∫ 2θ

0
|∆1

hf̃(t, r)|2r dr dh .
1

t4−
2−2ε

α

. (113)

Summing up we obtain

‖f‖Hε
rad(Ωα(t)) .

1

t2−
1−ε

α

. (114)

With this estimate we have that if ε < 1 − α, then the function
f = f(t, r) lies in the desired space, i.e. f ∈ L1((0, 1);Hε

rad(Ωα(t))).
Our next step is to show that the solution φ = φ(t, r), defined in

(73), belongs to H1+ε
rad (Ωα(t)). To this purpose, we need an estimate

for the function φ = φ(t, r) similar to the one just proved for f . We
proceed in a similar way: first of all, we extend φ as it was done
in (100) and consider the corresponding extension φ̃. The estimate
of the H1

rad(Ωα(t))-norm of φ = φ(t, r) at a fixed time t > 0 was
obtained in Lemma 4.2. Now we will estimate from above and from
below the integral

J =

∫ 1

0
h−(1+2ε)

∫ 2θ

0

∣∣∣∆1
h∂rφ̃(t, r)

∣∣∣
2
r dr dh.

Thus, in particular, we shall prove that the solution is in the desired
space for strictly positive t.

As above, it is sufficient to consider the integral

J0 =

∫ 1

0
h−(1+2ε)

∫ θ

0

∣∣∣∆1
h∂rφ̃(t, r)

∣∣∣
2
r dr dh,
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and again, we can split the integral J0 as follows:

J0 = J1 + J2,

where

J1 =

∫ θ

0
h−(1+2ε)

∫ θ−r

0

∣∣∣∆1
h∂rφ̃(t, r)

∣∣∣
2
r dr dh,

while

J2 =

∫ θ

0
h−(1+2ε)

∫ 1

θ−r

∣∣∣∆1
h∂rφ̃(t, r)

∣∣∣
2
r dr dh.

We have the following upper bound for J1:

J1 =

∫ θ

0
2θ2r

∫ θ−r

0

1

h(1+2ε)

∣∣∣∣
1

(r + h)2 + θ2
− 1

r2 + θ2

∣∣∣∣
2

dh dr

.

∫ θ

0
2θ2r

∫ θ−r

0

(2r + h)2h2

h(1+2ε)(r2 + θ2)4
dh dr

.

∫ θ

0
2θ2r

∫ θ−r

0

(r + θ)2h1−2ε

θ8
dh dr

.
1

θ6

∫ θ

0
r(θ − r)2−2ε(θ + r)2 dr

.
1

θ2ε
. (115)

In a similar way we obtain the lower bound for J1

J1 &

∫ θ

0
θ2r

∫ θ−r

0

(2r + h)2h2

h(1+2ε)(r2 + θ2)4
dr dh

&

∫ θ

0
θ2r

∫ θ−r

0

h4

h(1+2ε)θ8
dh dr.

Taking the smaller domain of integration

{r ∈ [0, θ/2], h ∈ [θ/4, θ/2]}

we get

J1 & θ−3−2ε

∫ θ/2

0
r

∫ θ/2

θ/4
dh dr ∼ C

θ2ε
. (116)
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Concerning the second integral J2, we shall establish only an
upper bound, since 0 is a sufficient lower bound. We proceed in a
way similar to the study of I2 and find

J2 .

∫ θ

0
θ2r

∫ 1

θ−r

1

h(1+2ε)

∣∣∣∣
1

(r + h)2 + θ2
+

1

r2 + θ2

∣∣∣∣
2

dhdr

.

∫ θ

0
θ2r

∫ 1

θ−r

1

h(1+2ε)

1

(r2 + θ2)2
dh dr

.
1

θ2

∫ θ

0
r

(
1

(θ − r)2ε
− 1

)
dr

.
1

θ2ε
(117)

provided 2ε < 1.

In conclusion, the estimates from above proved for J1, J2 yield
(97), while property (98) follows from the lower bound for J1 ob-
tained in (116). This completes the proof of the theorem.

5.1. Appendix

In this section we will prove the two technical lemmas needed in the
proof of Theorem 1.1. We begin with a definition:

Definition 5.5. The space H(ε) := Ḣ1+ε
rad ∩ Ḣ1

rad is the Hilbert space
obtained by completing C∞

0 (R2) with respect to the norm ‖v‖H :=
‖v‖Ḣ1 + ‖v‖Ḣ1+ε .

The definition of the space H1+ε(Ω) for Ω ⊂ R2 is the following
(see e.g. [16], Definition 4.2.1.1):

Definition 5.6. We say that the distribution u belongs to the space
H1+ε(Ω) if there exists an extension ũ ∈ H1+ε(R2) and in this case
the H1+ε(Ω)-norm of u is given by:

‖u‖H1+ε(Ω) = inf
ũ

‖ũ‖H1+ε(R2),

where inf is taken over all extensions ũ of u.
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Our first result applies to the function u(φ) defined as in (61) as
follows

u1 = cos(φ)cos(λ), u2 = cos(φ) sin(λ), u3 = sin(φ) (118)

with

φ = φ(t, r) = 2 arctan
( r

t1/α

)
.

Then we have:

Lemma 5.1. For every function φ = φ(r) ∈ H(ε) = Ḣ1+ε
rad ∩Ḣ1

rad such
that φ′(r) ≥ 0 (almost everywhere in r > 0) we have: the estimates

‖u(φ)‖H(ε) ≤ C‖φ‖H(ε), ∀ ε ∈ [0, 1], (119)

‖u(φ)‖H(ε) ≥ C1‖φ‖H(ε), ∀ ε ∈ [0, 1]. (120)

Proof. The proof relies on the fact that the function u takes its values
on the unit sphere, i.e., the vector-valued function u has norm 1 as
a vector in R

3. The first inequality then is just a special case of
Theorem 1 in Section 5.3.6 of the book of Runst and Sickel ([11]),
and we shall not reproduce it here.

Consider now the second estimate from below We will study sep-
arately the cases ε = 0 and ε = 1 first. In the case ε = 0 we have

‖u(φ)‖2
Ḣ1

rad

=

∫ ∞

0
|∂r(u(φ(r)))|2r dr

=

∫ ∞

0
|u′(φ(r))|2|φ′(r)|2r dr

=

∫ ∞

0
|φ′(r)|2r dr

= ‖φ‖2
Ḣ1

rad

.
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For the case ε = 1 we have analogously:

‖u(φ)‖2
Ḣ2

rad

=

∫ ∞

0
|∂2

r (u(φ(r)))|2r dr

=

∫ ∞

0
|u′′(φ(r))(φ′(r))2 +

+u′(φ)φ′′(r)|2r dr

=

∫ ∞

0
(|u′′(φ(r))|2(φ′(r))2 +

2
(
u′(φ(r)), u′′(φ(r))

)
φ′(r)φ′′(r) +

+|u′(φ(r))|2(φ′′(r))2)r dr

=

∫ ∞

0

(
(φ′(r))2 + (φ′′(r))2

)
r dr

≥ ‖φ‖2
Ḣ2

rad

,

since the vectors u′(φ(r)) and u′′(φ(r)) are orthogonal.
We now consider the fractional case 0 < ε < 1. We have

‖u(φ)‖2
Ḣ1+ε

rad

=

∫ 1

0

1

h1+2ε

∫ ∞

0
|△h∂r(u(φ(r)))|2r dr dh

=

∫ 1

0

1

h1+2ε

∫ ∞

0
|u′(φ(r + h))(φ′(r + h)) +

−u′(φ(r))φ′(r)|2r dr dh

=

∫ 1

0

1

h1+2ε

∫ ∞

0
r|u′(φ(r + h))|2(φ′(r + h))2 +

−2r
(
u′(φ(r + h)), u′(φ(r))

)
φ′(r + h)φ′(r)

+|u′(φ(r))|2(φ′(r))2r dr dh

≥
∫ 1

0

1

h1+2ε

∫ ∞

0
((φ′(r + h))2 − 2φ′(r + h)φ′(r) +

+(φ′′(r))2)r dr dh

= ‖φ‖2
Ḣ1+ε

rad

,

where we used the Cauchy-Schwartz inequality and the positivity of
the first derivative of the function φ.

We now extend the above result to bounded domains Ω ⊂ R
2.

To this end we need to prove the following proposition:
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Proposition 5.1. For a bounded domain Ω and under, the condi-
tions of the previous lemma, we have the following estimates:

‖u(φ)‖H1+ε(Ω) ≤ C‖φ‖H1+ε(Ω), ∀ ε ∈ [0, 1], (121)

‖u(φ)‖H1+ε(Ω) ≥ C1‖φ‖H1+ε(Ω), ∀ ε ∈ [0, 1], (122)

with C,C1 independent of ε.

Proof. We have

‖u(φ)‖H1+ε(Ω) = inf
gu(φ)

‖ũ(φ)‖H1+ε

. ‖u(φ̃)‖H(ε) + ‖φ̃‖L2(Ω′)

. ‖φ̃‖H(ε) + ‖φ̃‖L2(Ω′)

= ‖φ̃‖H1+ε

. ‖φ‖H1+ε(Ω) + δ, (123)

where we used the fact that u(φ̃) is an extension of u(φ); notice
that we are allowed to choose the extension of φ in a slightly larger
domain Ω′ such that φ̃ = 0 in R2 rΩ′ and ‖φ̃‖H1+ε −‖φ‖H1+ε(Ω) < δ,
for any fixed δ > 0. Since δ is arbitrary, this concludes the proof of
the first inequality.

To prove the opposite inequality, we use the fact that |u| = 1 as a
vector in R

3. Then, taking the same extension φ̃ on a larger domain
Ω ⊆ Ω′ as above, we have

‖φ̃‖L2(Ω′) . ‖u(φ̃)‖L2(Ω′). (124)

Moreover, recalling the proof of the previous Lemma, we have also

‖φ̃‖H(ε) . ‖u(φ̃)‖H(ε) . ‖ũ(φ)‖H(ε) + δ. (125)

Taking the sum between these two inequalities we conclude the proof.

Lemma 5.2. Let φ ∈ C([0, T ];Hs) and f ∈ L1((0, T );Hs−1) for some
s > 1. Then

F = f∂φu(φ) ∈ L1((0, T );Hs−1).
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Proof. We first estimate some norms with respect to space variables
at a fixed time t > 0. The L2-norm of the term F = f∂φu(φ) can be
computed immediately as follows:

‖f∂φu(φ)‖L2 = ‖f‖L2 . (126)

Next we use the fact that for µ > 1 the space Hµ is an algebra, and
this gives the estimate

‖f∂φu(φ)‖Hµ . ‖f‖Hµ ‖∂φu(φ)‖Hµ . (127)

Thus, if we consider f as an operator from L2 into L2 and from Hµ

into Hµ, an interpolation argument implies that f is bounded on Hs

for each 0 < s < µ, with a norm bounded by ‖f‖Hs . Hence we have

‖f∂φu(φ)‖Hs . ‖f‖Hs ‖∂φu(φ)‖Hs . (128)

But from the previous lemma we may control the Hs norm of u′(φ)
with the Hs norm of φ. In conclusion, the result follows by integrat-
ing the above estimate and applying Hölder inequality with respect
to time.

An analogous result holds on the restricted cones:

Lemma 5.3. Let φ ∈ C([0, T ];Hs(Ωα(t))) and, for some s > 1, f ∈
L1((0, T );Hs−1(Ωα(t))). Then

F = f∂φu(φ) ∈ L1((0, T );Hs−1(Ωα(t))).

Proof. The argument is identical to the above one (use Proposition
5.1).
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