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Isomorphism of Commutative Group
Algebras over all Fields

Peter Danchev (∗)

Summary. - It is argued that the commutative group algebra over
each field determines up to an isomorphism its group basis for
any of the following group classes:

• Direct sums of cocyclic groups

• Splitting countable modulo torsion groups whose torsion parts
are direct sums of cyclics;

• Splitting groups whose torsion parts are separable countable

• Groups whose torsion parts are algebraically compact

• Algebraically compact groups

These give a partial positive answer to the R.Brauer’s classical
problem.

1. Introduction

Let K be a field and let G be an arbitrary multiplicative group. In
the theory of the group algebras the following major problem due
to R. Brauer (see, for instance, [3]) is well-known: Whether the
group algebra K[G] over every field K determines G, i.e. is then G
isomorphic to any group H provided K[G] is isomorphic to K[H] as
K-algebras over each field K? This problem has a negative answer
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in general. Actually, there exist two counterexamples: first, E. Dade
(see, for instance, [20]) showed that there are two nonisomorphic
metabelian (noncommutative) groups G and H such that K[G] and
K[H] are isomorphic over all K; secondly, W. May in [18, 14] has
proved such parallel assertion for special countables abelian G and
H.

In this paper we treat the Brauer’s problem in its commutative
variant so that new commutative group classes are obtained, for
which the above question holds (in this aspect the reader can see also
[5, 6, 8]). These classes of abelian groups are the following: direct
sums of cocyclic groups, splitting countable modulo torsion groups
with a torsion part that is a direct sum of cyclics; splitting groups
with a countable separable torsion part; groups with an algebraic
compact torsion part; algebraically compact groups. We also discuss
the question for the so-called Rotman’s and Warfield’s groups.

This work is organized as follows. In the second paragraph, we set
the notation and recall the formulation of certain facts and results,
given by us in [4]. In the third paragraph, we state the main results,
distributed to five sections. As a final, the fourth paragraph contains
some left-open problems and conjectures.

2. Notation and conventions

Throughout this research paper K denotes a field, and all groups are
commutative and written multiplicatively. For G an abelian group
and p a prime natural, Gp denotes the p-primary component of the
torsion subgroup T (G) in G. Besides, VpK[G] will denote the p-
torsion subgroup of the group V K[G] of normed units (i.e. of units
with augmentation 1), and I(K[G];A) will denote the relative fun-
damental (augmentation) ideal of a ring K[G] with respect to the
subgroup A of G.

First we recognize that G splits as a mixed group if T (G) is
its direct factor. We follow for the most part the notations and
terminology of [10, 11] and we refer the reader to [15] for a more
information, too.

In the theory of the group rings the isomorphism problem posed
by R. Brauer (see [3]) for an isomorphism of group algebras over all
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fields plays a central role. The formulation of this problem is the
following: Suppose K[G] ∼= K[H] as K-algebras over all K and for
some groups G and H. Then whether or not G ∼= H? Although this
principal question has a negative solution in the general case, the
discovery of large sorts of groups, for which the Brauer’s conjecture
is true, is of some significance. Here, in this investigation, we will
touch on the commutative case.

In that direction we also examine the same conception in question
but provided that K[G] = K[H] as K-algebras for every field K.
This condition, however, provides us with much more information
than K[G] ∼= K[H] as K-algebras over all fields K.

In [5] the following was documented.

Theorem 2.1 (Isomorphism theorems [5]). Let G be a direct
sum of cyclic groups or be a divisible group or be a simply presented
torsion group. Then for any group H, K[H] ∼= K[G] as K-algebras
over all fields K if and only if H ∼= G.

The above theorem illustrates that a complete system of invari-
ants for the K-algebra K[G] over all K consists of G. The expla-
nation is that G is a splitting group, and that K[G] determines the
splitting of G up to an isomorphism by a reason of the specific char-
acter of the group classes. In some else cases this situation is impos-
sible. As a matter of fact W. May ([18], page 17, Example 2) shows
that there exist two nonisomorphic mixed countable of torsion-free
rank one G and H (as H splits) such that for all choices of the field
K, the algebras K[G] and K[H] are K-isomorphic.

Commentary on the May’s example and detailed analysis. Sup-
pose G is the special selected nonsplitting countable group ([18],
p.17) and

H = T (G) × G/T (G) ∼= T (H) × H/T (H),

for which

H/T (G) ∼= G/T (G) ∼= Q

(the field of all rationals regarded as an additive group). Therefore
G 6∼= H, but it was established that K[G] ∼= K[H] over all K (see
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again the cited paper [18]). The cause of this phenomenon is that for
any field K, the group ring K[G] (as K-algebra) does not in general
provide us with enough information to decide whether or not G splits
as a mixed group.

In addition, in this example G and H are not direct sums of
cyclics and are not algebraically compact. By the same token, G is
not a direct sum of a divisible group and of a direct sum of cyclic
groups; T (H) = T (G) is not p-torsion and finally Hp = Gp is not
separable for any prime number p, i.e. is not a direct sum of cyclics.
Thus T (G) is not separable, is not a direct sum of cyclics and is
not algebraic compact. Moreover, in the May’s counterexample (see
again [18]) G and H are not Rotman’s groups, but are simply pre-
sented whence Warfield groups.

The present study is a sequel to [4]. Here the Brauer’s question
will be solved in the affirmative for the following group classes which
are splitting, namely:

1. Splitting G whose T (G) is a direct sum of cyclics and G/T (G)
is countable.

2. Splitting G whose T (G) is countable separable.

3. T (G) is algebraic compact.

4. G is a direct sum of cyclic and quasicyclic groups.

We also settle the question for other no splitting classes of mixed
abelian groups such as the algebraically compact groups.

In the proofs of these affirmations, we shall base again on the
property of the group algebra to determine the splitting of the group
and also to determine some special group functions which are cardi-
nal numbers. On that tactic, we will specially utilize to the fullest
extent the following result due to Berman and Mollov [2], slightly
modified in a more convenient for us form.

Theorem 2.2. Let G be a group so that T (G) is separable and either
T (G) or G/T (G) is countable, and let E be a finite extension of the
field of rational numbers. Then E[G] splits if and only if G splits
(see [2]).

Now we can state the important results in the next paragraph
entitled.
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3. Isomorphic commutative group algebras over all

fields

The following results are announced in [4] only.

3.1. Direct sums of cyclic and quasicyclic groups

Proposition 3.1. Let K be a field of charK = p 6= 0. Then VpK[G]
is a direct sum of cyclics if and only if Gp is a direct sum of cyclics
[5, 7].

Now we are in a position to prove

Theorem 3.2. Let G be a splitting group whose torsion part T (G)
is a direct sum of cyclics and such that G/T (G) is countable. Then
K[H] ∼= K[G] as K-algebras over every field K and for any group
H if and only if H ∼= G.

Proof. Write

G ∼= T (G) × G/T (G).

But T (G) is a direct sum of cyclics, i.e. Gp is the same for each
prime p. The Kp-isomorphism

Kp[G] ∼= Kp[H]

implies

VpKp[G] ∼= VpKp[H],

where Kp is a field of charKp = p > 0. Thus, using the proposition,
we have that Hp ⊆ VpKp[H] is a direct sum of cyclics. Moreover,
the Ulm p-invariants of G, i.e. the Ulm-Kaplansky functions of Gp,
are determined by Kp[G] (see [17] or, [13, 14], [1] and [3]). That is
why Gp

∼= Hp for all primes p, i.e. T (G) ∼= T (H).

Suppose now E is a finite extension of the field of rationals. Under
the existing circumstances G splits and consequently E[G] ∼= E[H]
splits. From the result of Berman-Mollov, H splits as well, because
a principal known assertion due to May [17] (see [9] as well) implies

G/T (G) ∼= H/T (H),
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hence H/T (H) is countable. Finally

H ∼= T (H) × H/T (H)

and G ∼= H. The theorem is proved.

As a direct consequence we deduce

Corollary 3.3. Let G be a direct sum of cyclic and quasicyclic
groups such that T (G) is separable and G/T (G) is countable. Then
K[H] ∼= K[G] as K-algebras over every field K and some group H
if and only if H ∼= G.

Proof. We see elementarily that G splits as a direct sum of two split-
ting groups. Hence we can apply the theorem to obtain G ∼= H.

The first corollary may be strengthened by dropping the restric-
tive conditions on T (G) and G/T (G). But before made this, we need
a few preliminaries, starting with

Definition 3.4. We shall say that the subgroup N of the abelian
group A is nice if it is p-nice for each prime natural p, i.e. in other
words

(A/N)p
τ

= Apτ

N/N

for all ordinals τ and primes p, or, equivalently,
⋂

α<τ

(

Apα

N
)

= Apτ

N

for all limit ordinals τ and primes p.

The following is useful.

Lemma 3.5. T (A) is nice in A if and only if Ap is nice in A for
every prime number p.

Proof. The necessity is trivial since Ap is a direct factor of T (A) for
each prime number p.

For the reverse, using the above formulated definition, we detect
⋂

α<τ

(

Apα

T (A)
)

=
⋂

α<τ

(

Apα

Ap

)

= Apτ

Ap

= Apτ

T (A),
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for arbitrary, but a fixed, prime p and every limit ordinal τ , because

Aq
p = Aq

for each prime q 6= p, i.e. because all Aq are p-divisible.

Theorem 3.6. Suppose G is a direct sum of cyclic and quasicyclic
groups. Then for some arbitrary group H the K-equality of algebras
K[H] = K[G] for every field K implies H ∼= G.

Proof. Write
G ∼= T (G) × G/T (G)

and
G = d(G) × r(G),

hence
T (G) = T (d(G)) × T (r(G))

and
G/T (G) ∼= [d(G)/T (d(G))] × [r(G)/T (r(G))].

By similar conclusions,

H/T (H) ∼= [d(H)/T (d(H))] × [r(H)/T (r(H))].

But T (G) as a direct factor of the splitting G is its nice subgroup.
The main purpose that we pursue is to argue that T (H) is nice in
H. In fact, the Lemma means that it is sufficient to establish that
Hp is a nice subgroup of H for every prime p. Next, the niceness of
Gp in G quarantees that

VpKp[G] = 1 + I(Kp[G];Gp) = VpKp[H]

is nice in V Kp[G] = V Kp[H] for some perfect field Kp of charKp =
p 6= 0 (for instance see a lemma due to W. May stated and proved
in [14]). But Hp is balanced in VpKp[H], thus in V Kp[H], so Hp is
balanced in H, as required. So, T (H) is indeed a nice subgroup of
H, whence r(H)/T (r(H)) is reduced.

Further, observing via [17] that G/T (G) ∼= H/T (H), we extract
that r(H)/T (r(H)) is a direct sum of cyclics whence T (r(H)) is a
direct factor of r(H). Therefore H splits, i.e. in other words,

H ∼= T (H) × H/T (H);
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but T (G) ∼= T (H); indeed, it is easy to see that T (G) is a direct sum
of cyclic and quasicyclic groups, i.e. Gp is so for all prime integers
p. Consulting with [8], Gp

∼= Hp for each so p, hence the desired
isomorphism of the torsion subgroups holds valid.

Finally, we derive G ∼= H, as stated. The proof is completed.

We shall proceed by proving the following key assertion.

Proposition 3.7. Suppose K[G] = K[H] as K-algebras for every
field K. Then d(G) ∼= d(H).

Proof. Complying with [10], we write down

d(G) ∼=

[

∐

p

d(Gp)

]

×
∐

r0(d(G))

Q

and similarly

d(H) ∼=

[

∐

p

d(Hp)

]

×
∐

r0(d(H))

Q.

Exploiting [17],
∐

p

d(Gp) ∼=
∐

p

d(Hp).

Besides, conforming with [10],

d(G) = Gσ+1

= Gσ

=
⋂

p

Gpωσ

,

where σ is the smallest ordinal that satisfies this property. By the
reason of symmetry

d(H) =
⋂

p

Hpωσ

.

Given Fp is a field in charFp = p 6= 0 and set

R = ×p ×ω Fp.
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Then R × Fp = R for each prime p. Apparently, charR = 0 and
inv(R), the set of all primes q for which q.1R is a unit in R, is
empty. Since

Fp[G
pωσ

] = Fp.(Fp[G])p
ωσ

and similarly
Fp[H

pωσ

] = Fp.(Fp[H])p
ωσ

,

for every prime number p we obtain

R[Gpωσ

] = R[Hpωσ

]

because of the formal equalities

R[Gpωσ

] = (R × Fp)[G
pωσ

]

= R × (Fp[G
pωσ

])

and

R[Hpωσ

] = (R × Fp)[H
pωσ

]

= R × (Fp[H
pωσ

]).

That is why

R[d(G)] = R

[

⋂

p

Gpωσ

]

=
⋂

p

R
[

Gpωσ]

=
⋂

p

R
[

Hpωσ]

= R

[

⋂

p

Hpωσ

]

= R[d(H)].

Since p.1R is not in inv(R), there exists a maximal ideal M of R
with p.1R ∈ M . Putting F = R/M , a field of characteristic p, we
establish F [d(G)] ∼= F [d(H)], hence in view of [17],

r0(d(G)) = r0(d(H)).

Finally, we infer that d(G) ∼= d(H), as claimed. The proof is finished.
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The next, formulated more generally, is a direct consequence of
the above attainment when the group bases are both divisibles.

Corollary 3.8. Assume G is divisible and K[H] ∼= K[G] as K-
algebras for any group H and over all fields K. Then H ∼= G [4, 5].

3.2. Countable groups

Theorem 3.9. Let G be a splitting group for which T (G) is countable
separable and let H be any group. Then K[H] ∼= K[G] as K-algebras
over each field K if and only if H ∼= G.

Proof. It is obvious that by a criterion due to Prüfer [15, 10], T (G)
is a direct sum of cyclics. Therefore, as in the proof of the theorem
from the above section, T (G) ∼= T (H). Further, utilizing step-by-
step the above preceding schema for a proof, we may conclude that
G ∼= H. The proof is fulfilled.

Remark. Assuming that T (G) is not separable, we detect that
there is G so that it can not be retrieved from K[G] (of course as
K-algebra) over all K [18].

Corollary 3.10. Let G be a splitting countable group whose torsion
part T (G) is separable and let H be a group. Then K[H] ∼= K[G] as
K-algebras over each K if and only if H ∼= G.

The proof follows immediately from the theorem.
Remark. This corollary may be obtained also from the Theorem

(3.2) established in the above section.

3.3. Algebraically compact and cotorsion groups

Theorem 3.11. Let G be a group whose torsion part T (G) is alge-
braic compact. Then K[H] ∼= K[G] as K-algebras for every field K
and any group H if and only if H ∼= G.

Proof. It is well-known that (see [10]) G splits, i.e.

G ∼= T (G) × G/T (G).

Suppose again Kp is a field of charKp = p. For each prime p, we will
prove that Gp

∼= Hp and so T (G) ∼= T (H).
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Really, Gp is algebraic compact since T (G) is. Therefore Gp has

a bounded reduced part r(Gp) [10]. But this is equivalent to Gpi

p is
divisible for some natural i.

Select now A = Gpi

, so Ap = Gpi

p is divisible; and select B = Hpi

,

so Bp = Hpi

p for this i. We have Kp[H] = Kp[G], where H is a
normalized group basis (H ⊆ V Kp[G]), and besides without loss of
generality we may assume that Kp is perfect. Hence Kp[A] = Kp[B]
along with [5] imply

1 + I(Kp[A];Ap) = VpKp[A]

= VpKp[B]

= 1 + I(Kp[B];Bp),

and

1 + Ip(Kp[A];Ap) = 1 + I(Kp[A
p];Ap)

= 1 + I(Kp[B
p];Bp

p)

= 1 + Ip(Kp[B];Bp).

Furthermore
I(Kp[A];Ap) = I(Kp[B];Bp

p),

because Kp[A] = Kp[B]. Finally,

I(Kp[B];Bp
p) = I(Kp[B];Bp),

i.e. clearly Bp
p = Bp and thus Bp is divisible. Consequently Hp has a

bounded reduced part r(Hp), i.e. Hp is algebraic compact by virtue
of [10]. But as we see in [17], the Ulm-Kaplansky invariants of r(Gp)
and r(Hp) are equal and thus immediately r(Gp) ∼= r(Hp) [11]. Using
the classical result of May [17] (see also [13, 14]), Kp[G] = Kp[H]
implies d(Gp) ∼= d(Hp), where d(Gp) and d(Hp) are the maximal
divisible parts, respectively in Gp and in Hp. Thus, Gp

∼= Hp for all
primes p. Further

H ∼= T (H) × H/T (H).

But we employ again a statement of May in [17] (see [1] too) to
obtain,

G/T (G) ∼= H/T (H).

So, G ∼= H and we are done.
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Corollary 3.12. Let G be a splitting algebraic compact group and
H is a group. Then K[H] ∼= K[G] as K-algebras for every K if and
only if H ∼= G.

Proof. By a supposition, T (G) is a direct factor of G. Hence T (G)
is algebraic compact invoking to [10] and we have need only apply
the theorem.

Corollary 3.13. Let G be a direct sum of a divisible group and of a
bounded group and H is a group. Then K[H] ∼= K[G] as K-algebras
for every K if and only if H ∼= G.

Proof. Trivially, G is a splitting algebraic compact group. Conse-
quently the last corollary is applicable.

Corollary 3.14. Let G be countable algebraic compact or torsion
algebraic compact and H is a group. Then K[H] ∼= K[G] as K-
algebras for all K if and only if H ∼= G.

Proof. The facts in [10] yield that G is a direct sum of a divisible
group and a bounded group. Furthermore the last corollary verifies
the claim.

Remark. If G is torsion or torsion-free, then via [10] G is alge-
braic compact if and only if G is cotorsion. Therefore if G splits,
then the same conclusion is valid. Besides if G is countable, then the
same observation is again true (see [10]). A well-known connection
between these two group classes is the important result due to K.
Rangaswamy that any abelian cotorsion group is algebraically com-
pact if and only if its periodical (= torsion) part is torsion-complete.

We end the current section with

Theorem 3.15. Suppose G and H are both algebraic compact abelian
groups and K[G] = K[H] as K-algebras over each field K. Then
G ∼= H.

Proof. Employing Proposition (3.7), we have d(G) ∼= d(H). More-
over, by making use of [17], the p- Ulm-Kaplansky invariants of G
and H are equal for every prime number p. After this, we consider
the cardinal number

dimFp(G/(GpT (G))) = dimFp(G/(GpGp))
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taken over the simple field of p-elements Fp for some fixed but ar-
bitrary prime integer p; it is an invariant for the group G. Evi-
dently the groups G and G/Gp have equal such functions, and be-
sides K[G] ∼= K[H] implies

K[G/Gp] ∼= K[H/Hp]

(see for example [17] or [9]), so we will assume further in the sequel
that all group algebras considered are semisimple. But the appli-
cation of [13, 14] leads us to this that the studied cardinal is equal
to

dimF (I(F [G];G)/[I(F [G];Gp)I(F [G];G) + I(F [G];T (G))])

for the field F which is in characteristic p. It is a simple matter to
see that I(F [G];G) and

F [G]Ip(F [G];G) = F [G].I(F p[Gp];Gp)

= I(F [G];Gp)

are both deduced from F [G]. On the other hand I(F [G];T (G)) or
I(F [G];Gp) is a structural invariant for F [G] consulting with [17] or
[9]. Finally, the application of [16] ensures that G ∼= H, as desired.
The proof is concluded.

Corollary 3.16. Suppose G and H are both reduced algebraic com-
pact abelian groups and K[G] ∼= K[H] are K-isomorphic over every
field K. Then G ∼= H.

3.4. Rotman’s groups

Following [21], a mixed countable abelian group of torsion-free rank
one is said to be a Rotman’s group (a KM-group in the terms of [21])
if for any prime number p its element has an infinite p-height if and
only if this element has a finite order relatively prime to p. These
groups are known to be strongly presented, hence Warfield.

Foremost, we mention that in the May’s counterexample (see
again [18]) G and H are not groups of Rotman.

The next attainment is useful.
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Proposition 3.17. Suppose G is a Rotman group and K[H] ∼= K[G]
as K-algebras for some arbitrary but a fixed group H and over each
field K. Then H is a Rotman group.

Proof. Clearly H is abelian. Let now we fix an arbitrary prime p
and choose an arbitrary element x ∈ H such that p − heightH (x) is
infinite. On the other hand we may write Kp[H] = Kp[G] for some
perfect field Kp in characteristic p > 0. Write

x = α1g1 + · · · + αngn,

where αi ∈ Kp with α1 + · · · + αn = 1, gi ∈ G, and 1 ≤ i ≤ n ∈ N.
Since

p − heightH (x) = min1≤i≤n∈N{p − heightG(gi)},

we can deduce

p − height(g1), · · · , p − height(gn)

are infinite. Thus by the definition of a Rotman group,

order(g1), · · · , order(gn)

are finite and moreover

(order(g1), p) = 1, · · · , (order(gn), p) = 1.

That is why order(x) is finite and (order(x), p) = 1. Really, the first
is evident because of the formula T (V P [C]) = V P [T (C)], valid for
each semisimple group algebra P [C] (see, for example, [9]). For the
second, if p divides order(x), we can write

order(x) = psr,

where s is natural and (p, r) = 1. Therefore,

1 = xpsr

= (α1g1 + · · · + αngn)p
sr

= (α1
ps

gps

1 + · · · + αn
ps

gps

n )r,
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and so we may deduce that there are indices

1 ≤ i 6= j 6= · · · 6= k ≤ n

with the property

(gǫi

i g
ǫj

j · · · gǫk

k )p
s

= 1,

where ǫi, ǫj , · · · , ǫk are integers that satisfy

ǫi + ǫj + · · · + ǫk = r.

But this is a contradiction since it is easy to verify that

(order(gǫi

i g
ǫj

j · · · gǫk

k ), p) = 1

conforming with the conditions

(order(gi), p) = (order(gj), p) = · · · = (order(gk), p) = 1.

This gives our claim.

Further, K[G] ∼= K[H] implies |G| = |H|, so H is countable.
Moreover, bearing in mind [17], it implies G/T (G) ∼= H/T (H), so H
is with torsion-free rank equal to this of G.

Finally, inspired by the definition, we can conclude H is a Rot-
man’s group, thus completing the proof.

3.5. Warfield groups

The definition of global Warfield abelian groups was given in [12].
It is proved there that the Warfield p-invariants defined as above in
the case of algebraically compact groups, namely

rank(Gpα

/(T (Gpα

)Gpα+1
)) = rank(Gpα

/(Gpα

p Gpα+1
)),

where p is a prime and α is an ordinal, along with the classical Ulm-
Kaplansky p-invariants (see, for instance, [11]) taken for any prime
number p serve up to an isomorphism the p-mixed objects form this
group class. Nevertheless, this is not the case for arbitrary global
Warfield groups even order all primes.

So, we come to
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Proposition 3.18. Suppose G and H are both commutative Warfield
groups and for every field K the K-algebras equality K[G] = K[H]
holds valid. Then d(G) ∼= d(H) and T (G) ∼= T (H).

Proof. The first half follws from Proposition (3.7). The second one
follows from the fact that the torsion subgroups are S-groups (see
[11, 20]), in virtue of the invariance of the Warfield p-functions just
demonstrated by us above, of the invariance of Ulm-Kaplansky p-
functions by [17] and together with the previous discussion.

Remark. As we have above observed, when G and H are both
reduced, the condition on K-equality of algebras may be replaced by
the more weak condition on K-isomorphism of algebras.

We close the article with

4. Open questions and problems

As we verified, if
G ∼= T (G) × G/T (G),

where T (G) is a direct sum of cyclics and G/T (G) is countable, then
G may be gotten from K[G] over every field K. The first query is
that if G is uncountable modulo torsion, does the above property
hold? Moreover, whether the property algebraic compactness of G
can be invariantly recaptured from the algebras K[G] over every field
K.

Now, we will pose some questions for nonsplitting in general
mixed groups.

First, suppose G a mixed group of torsion-free rank one so that
T (G) is closed or a direct sum of cyclics (see [19]). Is then G retrieved
from K[G] for all fields K? The answer is probably no.

Secondly, following the paper [21], a mixed countable abelian
group of torsion-free rank one is said to be a Rotman’s group (a
KM-group) if for any prime p its element has an infinite p-height if
and only if this element has a finite order relatively prime to p. So,
if G is such a group, is then it recovered from K[G] for all fields K?
The solution is probably no as well.

It is appeared in [18] that K[G] ∼= K[H] as K- algebras over every
field K is not enough to imply that the Ulm-height matrices U(G)
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and U(H) are equivalent. But whether or not this remains valid
under the more stronger conditions K[G] = K[H] as K-algebras for
each field K, is unknown yet.

As a final question, we raise the following:

General Conjecture. Suppose F [G] = F [H] as F -algebras for
each field F . Then G ∼= H holds.

In particular, does it follow that G splitting yields H is splitting?
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