
Rend. Istit. Mat. Univ. Trieste
Vol. XXXV, 69–80 (2003)

Stress Boundary Value Problem in
Linear Viscoelasticity

W. Desch and E. Fašanga (∗)

Summary. - We will solve the following boundary value problem in
linear viscoelasticity: given the value of the stress on (a part of)
the boundary of the domain find the stress in the whole body at all
positive times. We are especially interested in the regularity of
the stress. We use a constitutive relation giving rise to a partial
integrodifferential equation.

1. Introduction

Consider a linearly viscoelastic body subjected to forces on one part
of its boundary, while another part of the boundary is fixed. The
stress field inside the body is described by a Volterra equation in-
volving an elliptic operator and a scalar convolution kernel which
is singular at time 0. Given sufficient smoothness of the boundary
forces, we show existence of the corresponding stress field, and relate
its regularity to the regularity of the boundary forces.

Technically, the problem is characterized by two features. It is
a time dependent problem with forcing by boundary conditions, on
the other hand it involves an integral equation with a singular kernel.
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Both types of problems have been treated in the literature. The in-
homogeneous boundary conditions can be converted to a distributed
forcing term by solving an elliptic stationary boundary value prob-
lem. Using this approach, we reduce the problem to a parabolic
inhomogeneous Volterra equation with a self-adjoint operator in a
Hilbert space. For this equation known results on wellposedness and
regularity are applicable (see [6]).

Frequently, dynamic problems of elasticity and viscoelasticity are
set in terms of the displacement or velocity fields. In our paper we
write the integral equation in terms of the stress field. The reason
to do so is that we want to get regularity of the stress field in terms
of regularity of the boundary forces, which can be obtained directly
if we utilize the maximal regularity properties of the integral equa-
tion in the stress setting. Notice that Hölder regularity of stress
with respect to time is not equivalent to Hölder regularity of dis-
placement, but of displacement in convolution with the relaxation
modulus. While this problem can be overcome in a displacement
setting, the approach by a stress setting is more direct.

This paper is structured as follows: In Section 2 we set up the
viscoelastic problem and state the main result. Subsequently we de-
compose the problem into an elliptic boundary value problem and a
parabolic Volterra equation. In Section 3 we solve the elliptic prob-
lem describing a tensor valued stress field given normal stresses on
the boundary. The method used is a standard Lax-Milgram argu-
ment, and the result is what one would naturally expect in linear
elasticity (e.g., [1], [4]). However, to our knowledge this result is
not found in literature explicitely and seems worthwhile to be stated
by itself. In Section 4 we prove our main result. Section 5 briefly
sketches how the abstract formulation fits in the framework of a
synchronous linearly viscoelastic body in three dimensions.

The authors wish to thank an anonymous referee for helpful sug-
gestions.

2. Mathematical setting

A viscoelastic body with constant density is occupying a space do-
main Ω. We will use the following notation:
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• x ∈ Ω ⊂ Rn

• ∂Ω = Γ0 ∪ Γ1 the boundary of Ω, Γ1 ∩ Γ0 = ∅

• n(x) is the outer normal to ∂Ω at x

• t ≥ 0 time

• u(t, x) ∈ Rn displacement

• v(t, x) ∈ Rn velocity, v = ut

• σ(t, x) ∈ Rn×n
sym stress

• ε(t, x) ∈ Rn×n
sym strain

We will use the following model:

• linear strain: ε(t, x) = 1
2(∇u(t, x) + ∇uT (t, x))

• conservation of momentum: vt = div σ(t, x)

• constitutive relation: σ(t, x) =
∫ t
0 µ(t − s)P (x)εt(s, x) ds

Here, µ is a scalar valued function of time, independent of x, while
P is a bounded measurable function of space into symmetric and
positive definite fourth order tensors. This setting corresponds to
synchronous viscoelasticity, when all elastic moduli at each material
point have the same relaxation behavior. Also, we have assumed
that the body is in s tress-free reference configuration up to time
t = 0.

Concerning the material properties, we make the following as-
sumptions:

(H1) For each x ∈ Ω, the tensor P (x), considered as an operator
mapping Rn×n → Rn×n, is symmetric and positive definite.
Moreover, P (x) is a measurable bounded function of space,
and the inverse operator P−1(x) is uniformly bounded.

(H2) For some γ > 0, the integral
∫
∞

0 e−γs|µ(s)| ds is finite.
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(H3) There exists a constant Θ < π/2 such that µ̂ : {ℜλ > 0} →
{|Arg λ| < Θ} \ {0}.

(H4) There exists a constant M > 0 such that |λµ̂′(λ)| ≤ M |µ̂(λ)|
for all ℜλ > 0.

(Here, f̂ denotes the Laplace transform of f .)

For example, certain viscoelastic materials can be modelled by a
fractional derivative model (they are then called a power-law solid
materials)

σ(t, x) = P (x) (Dα
t ε(., x)) (t),

α ∈ (0, 1), where

(Dα
t f) (t) :=

d

dt

1

Γ(1 − α)

∫ t

0
s−αf(t − s)ds

(note that Dα
t f = 1

Γ(1−α) t
−α ⋆ d

dtf if f(0) = 0). This can be achieved
by choosing

µ(t) =
t−α

Γ(1 − α)
.

For the equations of linear viscoelasticity we refer to [5], see also [6,
Section 5].

We suppose that Ω is a bounded domain with Lipschitz contin-
uous boundary. Its boundary ∂Ω is divided into two relatively open
disjoint sets Γ0 and Γ1. For t ≥ 0 let the movement of the body
be fixed on Γ0, a given boundary force g(t, x) acts at x ∈ Γ1. (Γ0

may be empty; if Γ1 = ∅ then we are in the situation of a homoge-
neous boundary condition which is solved e.g. in [2]). Let the initial
velocity be v0. The set of equations to be studied is hence written
as

vt = div σ, x ∈ Ω, t > 0 (1)

σ = µ ⋆ P
1

2
(∇v + ∇vT ), x ∈ Ω, t > 0

v = 0, x ∈ Γ0, t > 0

σ.n = g, x ∈ Γ1, t > 0

v = v0, x ∈ Ω, t = 0.
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For shorthand we introduce the following spaces and operators:

• Y := L2(Ω,Rn);

• X := L2(Ω,Rn×n
sym );

• D̃ : dom D̃ ⊂ X → Y , dom D̃ = {σ ∈ X, div σ ∈ L2(Ω,Rn)},
D̃σ = −div σ;

• D : dom D ⊂ X → Y , dom D = {σ ∈ X, div σ ∈ L2(Ω,Rn),
σ.n = 0 on Γ1}, Dσ = −div σ;

• P : X → X, (Pσ)(x) = P (x)σ(x).

(the boundary condition is meant in the sense of traces, in H−
1
2 (Γ1,

Rn); (div σ)i :=
∑n

j=1
∂σij

∂xj
is meant in the sense of distributions).

Lemma 2.1 ([2, Lemma 4.1]).

1. D ⊂ D̃.

2. D is a densely defined closed linear operator.

3. We define an operator D∗ by dom D∗ = {v ∈ Y, v ∈ H1(Ω,Rn),
v = 0 on Γ0},

(D∗v)ij =
1

2

(
∂vi

∂xj
+

∂vj

∂xi

)

(the boundary condition is meant in the sense of traces in

H
1
2 (Γ1,R

n)). Then D∗ is the adjoint of D.

4. P is a self-adjoint, positive definite bounded linear operator on
X.

With this notation (1) can be rewritten as follows: find v :
[0,∞) → dom D∗ ⊂ Y and σ : [0,∞) → dom D̃ ⊂ X such that

vt = −D̃σ, t > 0 (2)

σ = µ ⋆ PD∗v, t > 0

σ.n = g, x ∈ Γ1, t > 0

v = v0 t = 0;
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Eliminating v in (2) we obtain an equation for σ:

σ = µ ⋆ PD∗(v0 − 1 ⋆ D̃σ), t > 0 (3)

σ.n = g, x ∈ Γ1, t > 0

We are now in the position to state our main result:

Theorem 2.2. Let X, D, D̃, P be given as above. Suppose that the
hypotheses (H1), (H2),(H3), (H4) hold. Then for any g ∈ W1,1

loc([0,

∞);H−
1
2 (Γ1,R

n)) and v0 ∈ dom D∗ there exists a function σ ∈
C([0,∞), X) solving (1) in the following sense:

1 ⋆ µ ⋆ σ(t) ∈ dom D∗D̃, t ≥ 0,

σ(t) = −PD∗D̃(1 ⋆ µ ⋆ σ(t)) + 1 ⋆ µ(t)PD∗v0, t ≥ 0,

(1 ⋆ µ ⋆ σ)(t, .).n = (1 ⋆ µ ⋆ g(t, .))(t) in H−
1
2 (Γ1), t ≥ 0.

If, in addition for some α ∈ (0, 1),

(1) |λ2µ̂′′(λ)| ≤ M |µ̂(λ)| whenever ℜλ > 0,

(2) v0 = 0 or µ ∈ L
1/(1−α)

loc
([0,∞)),

then for each g ∈ Cα
0 ([0,∞);H−

1
2 (Γ1,R

n)) there exists σ ∈ Cα
0 ([0,∞);

X) solving (1) in the sense above.

The rest of the paper is devoted to the proof of Theorem 2.2. For
this purpose, we split (3) into two auxiliary problems:

(I) for a fixed t ≥ 0 find r(t) ∈ dom D∗D̃ ⊂ X such that r(t, x).n(x) =

g(t, x) for x ∈ Γ1 (in the sense of traces, i.e. in H−
1
2 (Γ1,R

n))

(II) find ̺ : [0,∞) → dom D∗D ⊂ X solving

̺ = −1 ⋆ A ⋆ D∗D̺ + 1 ⋆ AD∗v0 − 1 ⋆ A ⋆ D∗D̃r − r

In fact, if r and ̺ are given by (I) and (II), then formally we obtain
a solution of (3) by putting

σ := r + ̺.
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3. Problem (I)

Before we give the technical details, we outline the content of this
section. Let D, D̃ be the operators defined in the previous section.
We consider the following auxiliary problem: given g ∈ H−

1
2 (Γ1,R

n)
find w ∈ dom D̃D∗ such that

D̃D∗w + w = 0 in Ω (4)

D∗w.n = g on Γ1.

(H−
1
2 (Γ1) is the dual space of H

1
2 (Γ1) with respect to the L2(Γ1)-

scalar product.) If w is a solution to (4) then r := D∗w will be a
solution of problem (I), satisfying the equations

r ∈ dom(D∗D̃),

D∗D̃r + r = 0 in Ω, (5)

r.n = g on Γ1.

We will denote r = T−1g. The operator T−1 will therefore act as a
generalized inverse for the trace operator Tr = r.n |Γ.

The function r(t) = T−1g(t) will then serve as a solution to Problem I
on the way to prove our main result.

Remark 3.1. In linear elasticity the following problem is studied:

D̃σ = f in Ω, σ.n = g on Γ1 w = 0 on Γ0

with the constitutive relation σ = λ(trD∗w)I + 2µD∗w, see [1,
Section 6.6.3]; we employ the method used for this problem. Similar
methods have been used to solve a boundary value problem in [4,
Theorem I.3.5].

We give now the details in form of a trace theorem:

Theorem 3.2. Let the open set Ω ⊂ Rn be a halfspace or a bounded
set with Lipschitz continuous boundary. We set

W := {r ∈ L2(Ω,Rn×n
sym ); div r ∈ L2(Ω,Rn)},

‖r‖2
W := ‖r‖2

L2 + ‖div r‖2
L2,
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(div r is meant in the sense of distributions), a Banach space. Sup-
pose that the boundary of Ω is divided to two relatively open disjoint
sets ∂Ω = Γ1 ∪ Γ0.

Then there exists a bounded linear operator

T : W → H−
1
2 (Γ1,R

n)

such that Tr = r.n|Γ1 for smooth r.
Moreover, T is surjective and there exists a bounded linear oper-

ator
T−1 : H−

1
2 (Γ1,R

n) → W

such that T (T−1g) = g for any g ∈ H−
1
2 (Γ1,R

n).
The operator T−1 can be constructed so that T−1g ∈ domD∗D̃

and D∗D̃Tg + Tg = 0.

Proof. We divide the proof into two steps.
Step 1. Here we prove the existence of T.

Suppose first that r ∈ H1(Ω,Rn×n
sym ) ⊂ W and u ∈ H

1
2 (Γ1,R

n).
By the trace theorem for scalar valued functions ([3]), for each u ∈
there exists ũ ∈ H1(Ω,Rn) satisfying u1 := u on Γ1, and u1 := 0 on
Γ0, such that ‖ũ‖H1(Ω) ≤ ‖u‖(H1(Ω). Then by Green’s formula ([3])
we have

∫

Γ1

(r.n).udS(x) =

∫

Ω
(div r).ũdx +

∫

Ω
r.∇ũdx.

For r ∈ W we define

〈Tr, u〉
H−

1
2 (Γ1),H

1
2 (Γ1)

:=

∫

Ω
div r.ũdx +

∫

Ω
r.∇ũdx.

Then

|〈Tr, u〉| ≤
(
‖div r‖L2(Ω) + ‖r‖L2(Ω)

)
‖ũ‖H1(Ω) ≤ c‖r‖W ‖u‖

H
1
2 (Γ1)

,

and so by a density argument this is the unique extension of the
restriction operator.
Step 2. Here we prove the surjectivity of T and the existence of
T−1. Let g ∈ H−

1
2 (Γ1,R

n). Consider the Banach space

V := {u ∈ L2(Ω,Rn); u ∈ H1(Ω,Rn), u = 0 on Γ0}, ‖.‖V := ‖.‖H1
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(the boundary value is meant in the sense of traces, i.e. in H
1
2 (Γ0,

Rn)), the bilinear form

a(u,w) :=
1

4

n∑

i=1

n∑

j=1

∫

Ω

(
∂ui

∂xj
+

∂uj

∂xi

)(
∂wi

∂xj
+

∂wj

∂xi

)
+

n∑

i=1

∫

Ω
uiwi

on V and the functional

F (u) :=
n∑

i=1

〈ui, gi〉
H

1
2 (Γ1),H−

1
2 (Γ1)

on V (ui|Γ1 is meant in the sense of traces). Then a is a bounded
bilinear form on V which is coercive due to Korn’s inequality ([3]),

a(u, u) ≥ c‖u‖2
H1(Ω), u ∈ V.

The functional F is bounded due to the trace theorem,

|F (u)| ≤ ‖u‖
H

1
2 (Γ1)

‖g‖
H−

1
2 (Γ1)

= ‖u‖
H

1
2 (∂Ω)

‖g‖
H−

1
2

≤ c‖u‖H1(Ω)‖g‖H−
1
2
.

So we can use the Lax-Milgram lemma to obtain a unique w ∈ V,
depending continuously on g, satisfying

a(w, u) = F (u) for any u ∈ V.

We see that w ∈ dom D∗ and we will show that D∗w ∈ W. Then
we will put T−1g := D∗w.

In particular, for any ϕ ∈ D(Ω,Rn) ⊂ V we have

0 = F (ϕ) =
1

4

n∑

i=1

n∑

j=1

∫ (
∂wi

∂xj
+

∂wj

∂xi

)(
∂ϕi

∂xj
+

∂ϕj

∂xi

)
+

n∑

i=1

∫
wiϕi

= −
1

4

n∑

i=1

n∑

j=1

〈
∂

∂xj

(
∂wi

∂xj
+

∂wj

∂xi

)
, ϕi〉D′,D −

−
1

4

n∑

i=1

n∑

j=1

〈
∂

∂xi

(
∂wi

∂xj
+

∂wj

∂xi

)
, ϕj〉D′,D +

n∑

i=1

∫

Ω
wiϕidx =

= −
n∑

i=1

〈div (D∗w)i, ϕi〉D′,D +
n∑

i=1

∫

Ω
wiϕi = 〈D̃D∗w + w,ϕ〉D′,D.
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Note that D̃D∗w
D′

= −w ∈ L2(Ω,Rn) implies that D∗w ∈ dom D̃
= W. We have

‖D∗w‖2
L2 + ‖div D∗w‖2

L2 =

‖D∗w‖2
L2 + ‖w‖2

L2 ≤ c‖w‖2
V ≤ c1‖g‖

2

H−
1
2 (Γ1)

,

hence the continuity of T−1 follows.

Finally, we show that T (D∗w) = g. Since D∗w ∈ L2 and div D∗w
D′

= w ∈ L2, by definition of T (D∗w) we have for any u ∈ H
1
2 (Γ1,R

n)
(we denote by ũ := T−1

1 u1 ∈ H1(Ω,Rn) the extension associated
continuously by the trace theorem to u1 := u on Γ1, u1 := 0 on Γ0,
see the Appendix):

〈T (D∗w), u〉
H−

1
2 (Γ1),H

1
2 (Γ1)

:=

∫

Ω
div D∗w.ũ +

+
n∑

i,j=1

∫

Ω
(D∗w)ij

∂ũi

∂xj
=

∫

Ω
w.ũ +

n∑

i,j=1

∫

Ω

1

2

(
∂wi

∂xj
+

∂wj

∂xi

)
∂ũi

∂xj
=

= a(w, ũ) = F (ũ) = 〈g, u〉
H−

1
2 (Γ1),H

1
2 (Γ1)

.

Remark 3.3. The above proof does not use that D∗ is the adjoint
of D. In fact, the proof of Lemma 2.1 is based on Theorem 3.2 and
Korn’s inequality.

4. Proof of The main result

We write the equation in problem (II) as

P−
1
2 ̺(t) = −1 ⋆ µ ⋆ P−

1
2 D∗DP

1
2 P−

1
2 ̺(t) + 1 ⋆ µ(t)P

1
2 D∗v0 −

−1 ⋆ µ ⋆ P
1
2 D∗D̃r(t) − P−

1
2 r(t)

which is a Volterra equation for P−
1
2 ̺ studied in [6].

Theorem 4.1. ([6, Theorems 3.1, 3.3]) Let A be a closed linear
operator on a Banach space X with dense domain and T > 0. Let
a ∈ L1

loc([0,∞)) be of subexponential growth and such that
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(1) for some constant M and any ℜλ > 0 we have â(λ) 6= 0, 1
â(λ)

∈

̺(A), ‖(I − â(λ)A)−1‖ ≤ c (i.e. the equation is parabolic);

(2) |λâ′(λ)| ≤ c|â(λ)| for ℜλ > 0 (i.e. the function a is 1-regular).

Then for all f ∈ W1,1([0, T ];X) there exists a unique u ∈ C([0, T ];X)
such that

a ⋆ u(t) ∈ D(A), u(t) = A(a ⋆ u(t)) + f(t), t ∈ [0, T ].

If moreover

(3) |λ2â′′(λ)| ≤ c|â(λ)| for ℜλ > 0 (i.e. the function a is 2-regular)

and α ∈ (0, 1), then for any f ∈ Cα
0 ([0, T ];X) the solution is in

Cα
0 ([0, T ];X).

With A := −P−
1
2 D∗DP

1
2 , a nonnegative self-adjoint operator on

X, a := 1 ⋆ µ and f := 1 ⋆ µP
1
2 D∗w0 + 1 ⋆ µ ⋆ P

1
2 r − P−

1
2 r we may

apply this theorem to obtain P−
1
2 ̺(t), and hence ̺. We only have

to check the regularity of f piece by piece. We note that the time
regularity of g carries over to time regularity of r verbatim, and that
a convolution of a locally integrable function (1 ⋆ µ) with a locally
W1,1- resp. Cα

0 -function is again locally W1,1 resp. Cα
0 . Notice that if

v0 = 0 then we do not need the regularity of 1⋆µ itself. The equation
for σ := ̺ + r is straightforward, and the boundary condition for σ
may be written only in a weak form, since only the convolution 1⋆µ⋆̺
is in the domain of D, and not ̺ itself.

5. Example

Let n = 3 or 2 (for n = 1 the problem (I) can be solved explicitly).
We consider a linearly viscoelastic homogeneous isotropic medium in
Rn. The constitutive relation for this model has the form

σij(t, x) =
n∑

k,l=1

[aijkl(.) ⋆ (εt)kl(., x)] (t)

with
aijkl(t) = λ(t)δijδkl + µ(t)(δikδjl + δilδjk),
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where λ, µ are the Lamé moduli (µ is the shear modulus and λ+2µ/3
is the bulk or compression modulus). We suppose that the material
is synchronous, i.e.

λ(t) +
2

3
µ(t) = βµ(t)

for some constant β > 0, i.e. λ = (β − 2
3)µ (cf. [5, Chapter V] or [6,

Section 5]). Then

aijkl(t) = µ(t)

[
(β −

2

3
)δijδkl + δikδjl + δilδjk

]
=: µ(t)pijkl.

We denote by P the linear operator on Rn×n
sym defined by pijkl. Then

P induces a symmetric and positive definite operator on X.
The constitutive relation is in the form

σ = µ ⋆ PD∗v

which fits the framework of our investigations, e.g. in the case of
the fractional derivative model (µ(t) = 1

Γ(1−α) t
−α, α ∈ (0, 1), µ̂(λ) =

λα−1).
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