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Explicit Parallelizations on Products
of Spheres and Calabi-Eckmann

Structures

Maurizio Parton (∗)

Summary. - A classical theorem of Kervaire states that products of

spheres are parallelizable if and only if at least one of the fac-

tors has odd dimension. We give explicit parallelizations. We

show that the Calabi-Eckmann Hermitian structures on products

of two odd-dimensional spheres are invariant with respect to these

parallelizations.

1. Introduction

It is a classical result in Algebraic Topology that spheres Sn are
parallelizable only in dimension n = 1, 3 or 7. As for the products of
two or more spheres Kervaire proved in the fifties the following (see
[3]):

Theorem 1.1 (Kervaire). The manifold Sn1 × · · · ×Snr , r ≥ 2, is

parallelizable if and only if at least one of the ni is odd.

In his article [1] Bruni provides explicit parallelizations on some
products of spheres, namely, whenever one of the factors is S1, S3,
S5 or S7. The general case is left as an open problem.

We solve this problem by writing down a set of orthonormal vec-
tor fields on products of two spheres, in terms of their standard
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coordinates as submanifolds of Euclidean spaces. This construction
can be recursively repeated to obtain an explicit orthonormal paral-
lelization on products of any number of spheres.

A parallelized manifold (M,P) shares with Lie groups the prop-
erty of possessing privileged finite-dimensional spaces of tensors, that
is, those which are invariant with respect to the parallelization P.
In the case of two odd-dimensional spheres we consider the standard
almost-Hermitian structure, and prove that it is integrable: in fact,
it coincides with a Calabi-Eckmann structure.

2. The explicit parallelization

The construction of the frame is based on formula (1), where εk is
the trivial rank k vector bundle, × denotes the cartesian product and
⊕ the Whitney sum of vector bundles. The equivalence sign means
“isomorphic in the C∞ category”, and the proof is straightforward,
see for instance [4].

α × (β ⊕ εk) ≃ (α ⊕ εk) × β. (1)

Here and henceforth, let m and n be positive integers, and let
n be odd. Denote by x = (x1, . . . , xm+1), y = (y1, . . . , yn+1) the
coordinates of Sm, Sn respectively. It is convenient in the following
to think of T (Sm × Sn) as a Riemannian subbundle of TR

m+1
|Sm

×

TR
n+1
|Sn

. Denote by {∂x1 , . . . , ∂xm+1 , ∂y1 , . . . , ∂yn+1} the orthonormal

frame of TR
m+1
|Sm

× TR
n+1
|Sn

.

Since n is odd, the multiplication by i defines a length 1 vec-
tor field T on Sn ⊂ R

n+1 = C
(n+1)/2, and an orthogonal splitting

T (Sn) = η ⊕ 〈T 〉.

The following argument gives an elementary isomorphism φ be-
tween T (Sm × Sn) and εm−1 × εn+1, as was pointed out by Staples
in [5].

Split T (Sn) in η⊕〈T 〉, then consider it as a subbundle of T (Sm)×
T (Sn) and use formula (1) to shift on the left the trivial summand.
Since T (Sm)⊕ε1 is a trivial vector bundle, a rank 2 trivial summand
can be shifted on the right, again using formula (1). Now remark
that η ⊕ ε2 is trivial to obtain the trivial factor εn+1.
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In the above construction, choose 〈∂xm , ∂xm+1〉 as rank 2 trivial
summand to be shifted on the right. This way, the frame

{∂x1 , . . . , ∂xm−1 , ∂y1 , . . . , ∂yn+1}

is a trivialization of εm−1 × εn+1. Now, define the parallelization P
as the pull-back of this trivialization by means of the isomorphism
φ:

P
def
= φ−1

∗ {∂x1 , . . . , ∂xm−1 , ∂y1 , ṡ, ∂yn+1}

In order to provide formulas for P we introduce the following
notation:

Mi
def
= orthogonal projection of ∂xi

on Sm i = 1, . . . ,m + 1,

Nj
def
= orthogonal projection of ∂yj

on Sn j = 1, . . . , n + 1.

and remark that

Mi = ∂xi
− xiM i = 1, . . . ,m + 1,

Nj = ∂yj
− yjN j = 1, . . . , n + 1,

where M and N denote the normal versor field of Sm ⊂ R
m+1 and

Sn ⊂ R
n+1 respectively. Finally, denote by {tj} the coordinates of

T :

T =

n+1
∑

j=1

tj∂yj

def
= −y2∂y1 + y1∂y2 + · · · − yn+1∂yn + yn∂yn+1 .

A direct computation then proves the following:

Theorem 2.1. The frame P on Sm×Sn, for any odd n, is composed

by the vector fields

{p1, . . . , pm+n} ∈ X(Sm × Sn) given by

pi
def
= Mi + xiT i = 1, . . . ,m − 1,

pm−1+j
def
= yjMm + tjMm+1 + (tjxm+1 + yjxm − tj)T + Nj

j = 1, . . . , n + 1.

(2)

Remark 2.2. The frame P is orthonormal with respect to the prod-
uct metric on Sm × Sn, as one can check using previous theorem.
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Remark 2.3. Formula (2) can be used as a direct definition of P.
In this case, Remark 2.2 becomes a Proposition stating that P is
orthonormal with respect to the product metric on Sm × Sn.

Remark 2.4. In the particular case n = 1 one can naturally de-
fine a simpler parallelization. Denote by Γ the infinite cyclic group
generated by multiplication by e2π in R

m+1 \ 0. The vector fields
{|x|∂xi

}i=1,...,m+1 are Γ-equivariant, whence they define a paralleliza-
tion B on (Rm+1 \ 0)/Γ, which is well-known to be diffeomorphic to
Sm × S1 by

(Rm+1 \ 0)/Γ −→ Sm × S1

[x] 7−→ (x/|x|, log |x| mod 2π).
(3)

Using the above map, one obtains that B = {b1, . . . , bm+1} where

bi = Mi + xiT, i = 1, . . . ,m + 1. (4)

Remark 2.5. To obtain a parallelization in the general case, use
induction in the following way: suppose that Sn2 × · · · × Snr , r ≥ 2,
has at least one odd-dimensional factor, whence it is parallelizable.
Then using formula (1) one obtains

T (Sn1 × · · · × Snr) = T (Sn1) × εn2+···+nr

= (T (Sn1) ⊕ ε1) × εn2+···+nr−1

= εn1+1 × εn2+···+nr−1.

3. Complex structures associated to P

For any even-dimensional parallelized manifold (M,P) denote by IP
the invariant almost-complex structure represented by the unitary
matrix

I
def
= diag

(

0 −1
1 0

)

Let m and n be both odd. On (Sm×Sn,P) the almost-Hermitian
structure IP is then defined. Moreover, on (Sm × S1,B) the almost-
Hermitian structure IB is also defined.

The following is the main theorem of this paper.
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Theorem 3.1. Let m and n be odd. The almost-Hermitian structure

IP on (Sm × Sn,P) is integrable.

Proof. First, look at the simplest case n = 1. Recall that the Hopf
complex structure on Sm ×S1 is by definition the complex structure
induced by the map (3) after the identification R

m+1\0 = C
(m+1)/2 \

0. Being B locally conformal to the standard frame on C
(m+1)/2 \ 0,

the almost-complex structure IB on (Sm×S1,B) lifts to the standard
complex structure of C

(m+1)/2 \ 0, hence IB coincides with the Hopf
complex structure on Sm ×S1. Moreover, since formulas (2) and (4)
imply that P and B differ by an element of GL((m + 1)/2, C), we
obtain that IP coincides with the Hopf complex structure on Sm×S1,
and therefore it is integrable.

We need now to recall the complex Hopf fibration. It is by defi-
nition the restriction to Sm of the canonical projection C

(m+1)/2 →
CP

(m−1)/2, and the tangent bundle TSm is decomposed under this
fibration into a horizontal and a vertical subbundle. We denote by H
the horizontal subbundle, whereas the vertical subbundle is spanned
by the vector field S induced by the multiplication by i in C

(m+1)/2.

The Hopf complex structure on Sm ×S1 turns out to be induced
on H by the complex structure of CP

(m−1)/2, whereas S is mapped
onto the unitary vector field tangent to S1.

Using the Hopf fibrations for Sm and Sn, and collecting all these
arguments, we obtain the following decomposition for the tangent
bundle of Sm × Sn, wherethe horizontal subbundles H1 and H2 are
closed under IP :

T (Sm × Sn) = H1 ⊕ 〈S〉 ⊕ H2 ⊕ 〈T 〉.

To prove the integrability of IP for all odd n, we consider its
torsion tensor N , and we show that N(X,Y ) = 0 for all X, Y ∈
T (Sm × Sn).

First case: X, Y both in H1 or both in H2. Then N(X,Y ) = 0
since IP is a Hopf complex structure.

Second case: X in H1 or in H2, and Y in 〈S〉 ⊕ 〈T 〉. Then
N(X,Y ) = 0 since IP is a Hopf complex structure.

Third case: X, Y both in 〈S〉⊕ 〈T 〉. Then N(X,Y ) = 0 since IP
is a Hopf complex structure.
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Fourth case: X in H1 and Y in H2. Then N(X,Y ) = 0 since H1

and H2 are closed under IP .

4. Calabi-Eckmann revisited

We now briefly recall the definition of Calabi-Eckmann complex
structure Im,n on Sm×Sn, for odd m and n, as given in the classical
paper [2].

Denote by (zi, z
′
j) the complex coordinates of C

(m+1)/2×C
(n+1)/2,

and by Vα,β the open subset of Sm × Sn given by zαz′β 6= 0. Then
the maps

φα,β : Vα,β −→ C
(m−1)/2 × C

(n−1)/2 × (C/Z
2)

(zi, zj) 7−→ (zi/zα, zj/zβ , [(ln zα + i ln z′β)/2πi])
(5)

turn out to define complex coordinates for a complex structure Im,n

on Sm × Sn. Im,n is called a Calabi-Eckmann complex structure on
Sm × Sn.

Theorem 4.1. The complex structure IP on Sm×Sn coincides with

the Calabi-Eckmann complex structure Im,n, namely:

Im,n(pi) = pi+1 if i is odd,

Im,n(pi) = −pi−1 if i is even.

Proof. It is clear from formula (5) that the Hopf fibration Sm×Sn →
CP

(m−1)/2 × CP
(n−1)/2 is locally given by the canonical projection

C
(m−1)/2 × C

(n−1)/2 × (C/Z
2) −→ C

(m−1)/2 × C
(n−1)/2.

Using notation as in Theorem 3.1, this means that Im,n is induced
on H1⊕H2 by the complex structure of CP

(m−1)/2×CP
(n−1)/2, and a

computation shows that Im,n(S) = T . The argument of Theorem 3.1
ends the proof.
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