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On Polynomial Approximation of
Entire Functions with Index-Pair (p, q)

H. S. Kasana and D. Kumar (∗)

Summary. - In this paper we have studied interpolation errors for

functions in C(E), the normed algebra of analytic functions on

a compact set E. The lower (p, q)-order and generalized lower

(p, q)-type have been characterized in terms of these approxima-

tion errors. Finally, we have derived necessary conditions for

f ∈ C(E) to be extended to an entire function of perfectly regular

(p, q)-growth with respect to a proximate order.

1. Introduction

Let E be a compact set in complex plane and ξ(n) = (ξn0, ξn1, . . . , ξnn)
be a system of n+ 1 points of the set E such that

V (ξ(n)) =
∏

0≤j<k≤n

|ξnj − ξnk|,

∆(j)(ξ(n)) =

n
∏

k=0
k 6=j

|ξnj − ξnk|, j = 0, 1, . . . , n.
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Again, let η(n) = (ηn0, ηn1, . . . , ηnn) be a system of n+ 1 points in E
such that

Vn ≡ V (η(n)) = sup
ξ(n)⊂E

V (ξ(n)),

∆0(η(n)) ≤ ∆(j)(η(n)), j = 0, 1, . . . , n.

Such a system always exists and is called the n-th extremal system

of E. The polynomials

L(j)(z, η(n)) =

n
∏

k=0
k 6=j

(

z − ηnk

ηnj − ηnk

)

, j = 0, 1, . . . , n

are called the Lagrange extremal polynomials and the limit d ≡

d(E) = limn→∞ V
2/n(n+1)
n is called the transfinite diameter of E.

Let C(E) denote the algebra of analytic function on the set E.
Let us define the approximation errors as follows:

µn,1(f) ≡ µn,1(f ;E) = inf
g∈πn

‖f − g‖,

where ‖ · ‖ is the sup norm and πn denotes the set of all polynomials
of degree ≤ n. For the Lagrange interpolating polynomial

Ln(z) =

n
∑

j=0

L(j)(z, η(n))f(ηnj), n ∈ N

we also define

µn,2(f) ≡ µn,2(f ;E) = ‖Ln − Ln−1‖, n ≥ 2,

µn,3(f) ≡ µn,3(f ;E) = ‖Ln − f‖, n ≥ 0.

Reddy [10] connected classical order and type with polynomial ap-
proximation error of an entire function which is an extension of a
continuous function on [−1; 1]. Juneja [2] extended these results for
lower order and Mass [8] studied for the lower type. Contemporarily,
Rice [11] and Winiarski [15] studied order and type for different ap-
proximation errors of a continuous function on the arbitrary domains.
These results fail to compare the approximation errors of those en-
tire functions which have same order but their types are infinity. To
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include this important class of functions we utilize the concept of
proximate order (see [9]) and moreover, their result are extended to
(p, q)-scale introduced by Juneja et al. ([3], [4]). First we recall t he
(p, q)-scale, p ≥ q ≥ 1. For an entire function f(z) =

∑∞
n=0 anz

n,
set M(r) ≡ M(r, f) = max|z|=r |f(z)|, M(r) is called the maximum
modulus of f(z). Let us define

Pχ(L) =















L p > q
χ+ L p = q = 2
max(1, L) p = q ≥ 3
∞ p = q = ∞

(1)

γ =







(ρ− 1)ρ/ρρ (p, q) = (2, 2)
1/eρ (p, q) = (2, 1)
1 otherwise

Definition 1.1. An entire function f(z) is said to be of (p, q)-order
ρ and lower (p, q)-order λ if it is of index-pair (p, q) such that

lim
r→∞

sup
inf

log[p]M(r)

log[q] r
=

ρ
λ

and the function f(z) having (p, q)-order ρ(b < ρ(p, q) < ∞) is said

to be of (p, q)-type T and lower (p, q)-type t if

lim
r→∞

sup
inf

log[p−1]M(r)

log[q−1] r
ρ =

T
t

where b = 1 if p = q and b = 0 if p > q.

Recently, Nadan et al. [9] has extended the idea of proximate
order to entire functions of (p, q) growth. A positive function ρ(r) is
said to be a proximate order if

1. ρ(r) → r as r → ∞, b < ρ <∞,

2. Λ[q](r)ρ′(r) → 0 as r → ∞,

where Λ[q](r) =
∏q

k=0 log[k](r) and ρ′(r) denotes the derivative or

ρ(r). It is known that (ln[q] r)ρ(r)−A is a monotonically increasing
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function of r for r > r0, where A = 1 if (p, q) = (2, 2) and A = 0
otherwise. Hence we can define the function φ(x) for x > x0 to be
the unique solution of the equation,

x = (ln[q] r)ρ(r)−A ⇔ φ(x) = ln[q] r for r > r0. (2)

Definition 1.2. A positive function ρ(r) defined on [r0,∞), where

r0 > exp[q−1] 1, is said to be a proximate order of an entire function

with index-pair (p, q) if

lim
r→∞

sup
inf

log[p−1]M(r)

log[q−1] r
ρ(r)

=
T ∗

t∗
.

If the quantity t∗ is different from zero and infinite then ρ(r) is
said to be the proximate order of a given entire function f(z) and
t∗ as its generalized lower (p, q)-type. Clearly, proximate order and
corresponding generalized lower (p, q)-type of an entire function are
not uniquely determined [1].

Definition 1.3. An entire function with index pair (p, q) is said to

be of regular (p, q)-growth if b < λ = ρ < ∞, and further, it is of

perfectly regular (p, q)-growth with respaect to a proximate order ρ(r)
if 0 < t∗ = T ∗ <∞.

Let Er be the curve Er = {z ∈ C : |ψ(z)|d = r}, where ψ(z) is
holomorphic and maps the unbounded component of the complement
of E on |ψ(z)| > 1 such that ψ(∞) = ∞ and ψ′(∞) > 0. Also, we
set M̄(r) = supz∈Er

|f(z)|, for r > 1.

2. Auxiliary Results

Let us now prove some auxiliary results to be used in the sequel:

Lemma 2.1. If f(z) is an entire function of (p, q)-order ρ and lower

(p, q)-order λ then

lim
r→∞

sup
inf

log[p] M̄(r)

log[q] r
=

ρ
λ

and, for ρ(b < ρ(p, q) <∞), T ∗ and t∗ are given by

lim
r→∞

sup
inf

log[p] M̄(r)

log[q−1] r
ρ =

T ∗

t∗
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For a proof we refer to [7].

Lemma 2.2. If a function f is defined and bounded an a compact set

E, then

µn,1(f) ≤ ‖f − Ln‖ ≤ (n+ 2)µn,1(f),

‖Ln − Ln−1‖ ≤ 2(n + 2)µn−1,1(f), n = 2, 3, . . .

The proof is illustrated in Winiarski [15].

Proposition 2.3. Let f ∈ C(E). Then f can be extended to an

entire function if and only if

µ
1/n
n,i (f) → 0 as n→ ∞, i = 1, 2, 3.

This is a direct consequence of Lemma (2.1), Eq. (4.5) of Winiarski
[15] and an inequality due to Walsh ([14], p.77).

Proposition 2.4. For every f ∈ C(E) and µn,i(f), i = 1, 2, 3, there

exist an entire function gi(z) =
∑∞

n=0 µn,i(f)zn+1 such that

M̄(r) ≤ a0 + 2gi(r/d)

where d is the transfinite diameter of E.

Proof. Define the function

f̄(z) = π0 +
∞
∑

n=0

(πn+1(z) − πn(z)). (3)

Obviously, f̄(z) = f(z) for all z ∈ E. We prove that f̄(z) = f(z) in
the whole complex plane. For this is enough to show that this series
converges uniformly on every compact subset of the complex plane,
since

|πn+1(z) − πn(z)| ≤ ‖πn+1 − πn‖ z ∈ E

≤ µn+1,1(f) + µn,1(f)

≤ 2µn,1(f),

and using Walsh inequality [14], we have

|πn+1(z) − πn(z)| ≤ 2µn,1(f)
(r

d

)n+1
, z ∈ Er.
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Thus,

|f̄(z)| = |π0| +
∞
∑

n=0

|πn+1(z) − πn(z)|

≤ a0 + 2

∞
∑

n=0

µn,1(f)
(r

d

)n+1
, z ∈ Er. (4)

The last series converges for every r, and therefore the series on the
right of (3) converges uniformly on every compact subset of C and
so f̄(z) = f(z). Construct the function

gi(z) =
∞
∑

n=0

µn,1(f)zn+1.

Since limn→∞ µ
1/n
n,i (f) = 0 by (2.3), it follows that each gi(z) is entire

and further, (4) implies the desired inequality.

3. Main results

Theorem 3.1. If f ∈ C(E) can be extended to an entire function

with index-pair (p, q), lower (p, q)-order λ(b < λ < ∞) and general-

ized lower (p, q)-type t∗, then for every µn,i(f), there exists an entire

functions gi(z) =
∑∞

n=0 µn,i(f)zn+1 such that

λ(f) = λ(gi), t∗(f) = βt∗(gi), (5)

where β = d−ρ for q = 1, otherwise β = 1 and i = 1, 2, 3.

Proof. In view of Propositions (2.3) and (2.4),f̄(z) = f(z) in C,
and for each µn,i(f), gi(z) =

∑∞
n=0 µn,i(f)zn+1 is an entire function.

Winiarski [15] has proved that for every ǫ > 0,

µn,3 ≤ kM̄ (r)

(

deǫ

r

)n

, (6)

where k is a constant and d > 0 has its usual meaning. Using (6) in
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the expansion of gi(z) with i = 3 it is inferred that

g3

( r

de2ǫ

)

=
∞
∑

n=0

µn,3(f)
( r

de2ǫ

)n+1

≤
krM̄(r)

de2ǫ

∞
∑

n=0

1

enǫ
=

krM̄(r)

de2ǫ(eǫ − 1)
,

or
ln g3

( r

de2ǫ

)

≤ O(1) + log M̄(r) + ln r.

This inequality with Lemma (2.1) for q = 1 gives

λ(g3) ≤ λ(f), t∗(g3) ≤ e2ǫρdρt∗(f),

and, for q > 1,

λ(g3) ≤ λ(f), t∗(g3) ≤ t∗(f).

Since ǫ > 0 is arbitrary, the inequalities are combined for all (p, q)
to yeld

λ(g3) ≤ λ(f), βt∗(g3) ≤ t∗(f). (7)

Further, using the inequality M̄(r) ≤ a0 + 2gi(r/d), note that for
q = 1,

λ(f) ≤ λ(gi), t∗(f) ≤ d−ρt∗(gi),

and for q > 1,
λ(f) ≤ λ(gi), t∗(f) ≤ t∗(gi). (8)

Combining these inequalities with (7), we have (5). Further, appli-
cation of Lemma (2.2) makes this result valid for i = 1 and i = 2
also.

Theorem 3.2. Let f(z) ∈ C(E). Then f(z) can be extended to an

entire function of lower (p, q)-order λ(b < λ(p, q) < ∞) if and only

if, for (p, q) 6= (2, 2),

λ = max
{nk}

[Pχ(ℓ)], λ = max
{nk}

[Pχ(ℓ∗)], (9)

where

χ = lim inf
k→∞

lnnk−1

lnnk
, ℓ = lim inf

k→∞

ln[p−1] nk−1

ln[q] µ
−1/nk
nk,i

,
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ℓ∗ = lim inf
k→∞

ln[p−1] nk−1

ln[q−1]
(

1
nk−nk−1

ln
µnk−1,i

µnk,i

) .

Also (9) holds for (p, q) = (2, 2) provided nk be the sequences of

principal indices satisfying lnnk−1 ≈ lnnk as k → ∞.

Proof. Propositions (2.3) and (2.4) reveal that f ∈ C(E) can be
extended to an entire function if and only if gi(z) is an entire function.
Moreover, by (5), f(z) and gi(z) have the same lower (p, q)-order.
Applying Theorem 2 by Juneja et al. [3] to the function gi(z) =
∑∞

n=0 µn,i(f)zn+1, Theorem (3.2) follows at once.

Remark. For E = [−1, 1], i = 3 and (p, q), (9) includes a theorem
by Singh [13] and a result by Massa [8]. Also, for (p, q) = (2, 2), (9)
includes Theorem 5 by Reddy [10]. Moreover, (9) gives Theorems 1
and 2 by Juneja [2] for entire functions of Sato growth [12].

Theorem 3.3. let f ∈ C(E). Then f(z) can be extended to an entire

function fo (p, q)-order ρ(b < ρ(p, q) < ∞) and generalized lower

(p, q)-type t∗(0 < t∗(p, q) <∞) if and only if

t∗ = βmax
{mk}

{

lim inf
k→∞

(

φ(ln[p−2]mk−1)

ln[q−1] µ
−1/mk

mk,i

)ρ}

, p ≥ 3 (10)

and further, if the sequence of pirncipal indices {nk} satisfies nk−1 ≃
nk as k → ∞, the for

t∗ = γβmax
{mk}







lim inf
k→∞

(

φ(mk−1)

ln[A] µ
−1/mk

mk,i

)ρ−A






, (11)

where maximum is taken over all increasing sequences of positive

integers and β, γ and A have been defined, respectively in (5), (1)
and (2).

Proof. To prove this theorem we apply Theorem 2 by Kasana et al.

[6] to the function gi(z) =
∑∞

n=0 µn,i(f)zn+1 and the characterization
of t∗ in terms of µn,i(f) and the relation t∗ = βt∗(gi) to conclude
(10) and (11).
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Corollary 3.4. Let f ∈ C(E). Then f(z) is the restriction of an

entire function having (p, q) order ρ(b < ρ(p, q) < ∞) and lower

(p, q)-type t(0 < t(p, q) <∞) if and only if

t∗ = γβmax
{mk}











lim inf
k→∞

ln[p−2]mk−1
(

ln[q−1] µ
−1/mk

mk,i

)ρ−A











.

On the domain E = [−1, 1] and for approximation error µn,3 this
corollary also includes some results of Reddy [10] when (p, q) = (2, 1)
or (p, q) = (2, 2).

Finally, we study the subsequences {nk,i} of n such that for f ∈
C(E) it satisfies

µnk−1,i > µnk,i, µn,i = µnk−1,i for nk−1,i ≤ n < nk,i. (12)

The next theorem shows how this sequence influences the growth of
an entire function in reference to its generalized (p, q)-type and gener-
alized lower (p, q)-type. This also depicts the necessary condition for
f ∈ C(E) which has an extension of perfectly regular (p, q)-growth
with respect to a proximate order.

Theorem 3.5. Suppose f ∈ C(E) can be extended to an entire func-

tion having (p, q)-order ρ(b < ρ(p, q) < ∞), generalized (p, q)-type
T ∗ and generalized lower (p, q)-type t∗. Let {nk,i} be the sequence

defined by (12). Then

t∗ ≤ T ∗ lim inf
k→∞

(

φ(ln[p−2] nk−1,i)

φ(ln[p−2] nk,i)

)ρ

, p ≥ 3.

Further, if {mk,i} be the sequence of principal indices satisfying mk−1,i

≃ mk,i as k → ∞, then

t∗ ≤ T ∗ lim inf
k→∞

(

φ(nk−1,i)

φ(nk,i)

)ρ−A

.

Proof. Define a function ui(z) such that

µi(z) =

∞
∑

n=1

[µn−1,i(f) − µn,i(f)]zn

=
∞
∑

n=1

αk,i(f)znk,i,
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where αk,i(f) = µnk−1,i(f) − µnk,i
(f). Since the function gi(z) =

∑∞
n=0 µn,i(f)zn+1 has the same (p, q)-order as that of f(z), it follows

that ui(z) has also the same (p, q)-order. Consequently, by Theorem
(3.1) the generalized (p, q)-type and generalized lower (p, q)-type of
ui(z) are given by

T ∗(f) = βT ∗(ui), t∗(f) = βt∗(ui).

Thus, using Theorem 1 by Kasana et al. [6] it can be shown that

T ∗(f) = γβ lim sup
k→∞

(

φ(ln[p−2] nk,i)

ln[q−1] α
−1/nk,i
nk,i

)ρ−A

Considering the above formula and Theorem (3.3) we observe that
for (p, q) 6= (2, 1) and (p, q) 6= (2, 2),

t∗ = βγ max
{km,i}

{

lim inf
m→∞

(

φ(ln[p−2] nkm−1,i)
−1/nkm,i

ln[q−1] αnm,i

)ρ}

≤ βγ max
{km,i}

{

lim sup
m→∞

(

φ(ln[p−2] nkm,i)
−1/nkm,i

ln[q−1] αnm,i

)ρ}

×

max
{km,i}

{

lim inf
m→∞

(

φ(ln[p−2] nkm−1,i)
−1/nkm,i

ln[q−1] αnm,i

)ρ}

≤ T ∗ lim inf
m→∞

(

φ(ln[p−2] nkm−1,i)
−1/nkm,i

ln[q−1] αnm,i

)ρ

For p = 2 and q = 1 or q = 2, let {mk,i} be the sequence of principal
indices that mk−1,i ≃ mk,i as k → ∞, we have

t∗ ≤ T ∗ lim inf
k→∞

(

φ(nk−1,i)

φ(nk,i)

)ρ−A

.
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